
u
n
i
bz

ju
n
io
r

r
e
s
e
a
r
c
h
e
r

Domain
Independence
and Query
Reformulations
Under Constraints
Volha Kerhet

Domain
Independence
and Query
Reformulations
Under Constraints
Volha Kerhet

u
n
i
bz

ju
n
io
r

r
e
s
e
a
r
c
h
e
r

Cover design: doc.bz / bu,press

Printer: Druckstudio Leo, Frangart-Frangarto

© 2017 by Bozen-Bolzano University Press

www.unibz.it/universitypress

ISBN 978-88-6046-134-6

E-ISBN 978-88-6046-135-3

This work—excluding the cover and the quotations—is licensed under the Creative

Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

SHOIQ

ALCHOI SHOQ

 ALCHOI

SHOQ

The unibz junior researcher series

Especially at a time when universities are increasingly expected to produce tan-
gible results, it is clear that one of their main tasks is to promote the work of
their young scientists. The decision by the Free University of Bozen-Bolzano to
publish the new series unibz junior researcher, enabling PhD students to present
their research to a wider readership, is designed not so much to promote the work
of individual scholars but rather to foster a common university culture. The idea
is to publish studies which are exemplary, not just within the standards of the
individual discipline, but also because of the wider significance of the issues they
deal with and the way they are dealt with.
Due to the ever-increasing pressure in the academic world to publish papers in
internationally renowned journals, there is a danger that a lot of research reaches
out to only a narrow field of specialists. But we maintain that it is precisely the role
of the university to ensure that knowledge is transmitted to a wider audience, that
discussion between different areas of research is stimulated and that a dialogue
with a wider readership beyond the university is established. This promotes
a public sphere that is better informed and more competent in debating. The
studies which are published in the unibz junior researcher series will serve future
PhD students as reference points for participation in such a culture of research.
Engaging in research in isolation from the general public simply ignores the
requirements of our times: Universities need to open up and academics need to
learn to transmit their knowledge at various levelsall the more so considering
the increasing complexity of research topics and the higher demands of research
methods. This is the only way to justify public investment in universities, only in
this way can universities fulfil their public mandate and contribute to a competent
dialogue over impending societal issues.
The first issues of this series convincingly fulfil these criteria. They present PhD
research projects judged as excellent by the examining commissions. The Free
University of Bozen-Bolzano’s excellent research environment has contributed
greatly to these results: The authors were able to approach their research topics
in a measured way, under the close supervision of members of the respective
PhD advisory commission, who were able to offer a range of perspectives on the
relevant research methodology. Furthermore, the university’s generous bursary
scheme gives PhD students the opportunity to spend periods of study and research

vii

abroad, and to thereby gain experience of how other universities conduct research
on related topics. They could also present their research methodology and pre-
liminary findings at international congresses a valuable experience in improving
communicative competences. Finally, the regional setting of our university gave
them access to a rich variety of empirical data which shows that South Tyrol,
while being an alpine region, is by no means represents ”periphery”. Instead, the
research projects demonstrate that regional study objects can have international
relevance because the condensed dimensions allow processes to be brought into
focus more readily and changes to be monitored more precisely. The region of
South Tyrol is indeed affected by global change, as witnessed for instance in the
environmental field, where its sensitive alpine landscape is particularly susceptible
to harmful developments. So it is possible to see South Tyrol as a sort of labora-
tory where we can register warning signs earlier and experiment with appropriate
counter measures. A greater density of transformation processes can equally be
seen in the social field. As a traditional border area, South Tyrol has always been at
the crossroads of different cultures. Its historical experience with multilingualism,
with differrent political and legal frameworks and with the cultural interaction
of very different reference points for identity, makes for a background against
which some of todays major social challenges such as migration or the globalised
economy, can be analysed and interpreted.
These chances for new socially-relevant scientific insights find expression in the
PhD studies selected for this series. The university authorities hope that these
publications will allow the wider public to gain insights into the quality of the
work of these young researchers, and to recognize that the fruits of the financial
investment in this university have direct beneficial effects on the local society. I
congratulate the authors chosen for this series and wish them every success in their
scientific career hoping they will remain intellectually and emotionally linked to
their university and to South Tyrol.

Walter Lorenz
Rector (2008–2016)
Free University of Bozen-Bolzano

viii

Acknowledgements

First of all, I would like to express my great thanks to my supervisor Prof. Enrico
Franconi for his support and valuable advice, for helping me to find the topic of
the thesis, for his understanding and patience. He is a wise teacher, who takes the
individual characteristics of students into account and helps to broaden a vision,
see other perspectives and choose the right direction. I am really grateful to him
for his belief in me, his constant encouragement, inspiration and, in general, for
taking care of his students.
I want to thank the KRDB Research Center and its members for providing such
a fruitful research environment. Besides, it was a pleasure to work with such
nice people. Special thanks go to Prof. Diego Calvanese for his understanding
of my situation and meeting me halfway. Of course, I would like to deeply thank
my closest colleague Nhung Ngo for the very productive collaboration and the
creative views. I think we made a good team together.
Thanks also to the Free University of Bozen-Bolzano for giving me the possibility
to travel a lot during my PhD. I also would like to thank Michael Zakharyaschev
and Roman Kontchakov for the time I spent at Birkbeck, University of London,
for useful discussions and advice.
I am grateful to my friends from Bolzano, Trento and Minsk. They always
supported me and raised my spirit, and thanks to them I will have great memories
of this period of my life. Last but not least, I thank my brother Alexey, who
induced me to follow his footsteps and conduct scientific research in computer
science, and my parents for all their love, care and understanding.

ix

Preface

It is my pleasure to introduce the work of my PhD student Volha Kerhet, in which
she addresses the problem of query reformulation with expressive ontologies over
databases.
An ontology provides a conceptual view of a database and it is composed of
constraints on a vocabulary extending the basic vocabulary forming the actual
structure of the data. Querying a database using the terms in such a richer ontology
vocabulary allows for more flexibility than using only the basic vocabulary of the
relational database directly.
In this study Volha Kerhet investigates and develops a query rewriting framework
applicable to knowledge representation systems where data is stored in a classical
finite relational database, in a way that in the literature is called locally-closed
world assumption, exact views, or DBox. A DBox is a set of ground atoms
which semantically behaves like a database, i.e. the interpretation of the database
predicates in the DBox is exactly equal to the database relations. The DBox
predicates are closed, i.e. their extensions are the same in every interpretation,
whereas the other predicates in the knowledge base are open, i.e. their extensions
may vary among different interpretations. This study does not consider the open
interpretation for the database predicates (also called ABox or sound views). In
an ABox, the interpretation of database predicates contains the database relations
and possibly more. This notion is less faithful in the representation of a database
semantics since it would allow for spurious interpretations of database predicates
with additional unwanted tuples not present in the original database.
In this general framework an ontology is a set of first-order formulas, and queries
are (possibly open) first-order formulas. Within this setting, the framework
provides support to decide the existence of a domain independent first-order
equivalent reformulation of a query in terms of the database signature. It also
provides an effective approach to construct the reformulation. The interest is
in safe-range reformulations of queries because their range-restricted syntax is
needed to reduce the original query answering problem to a relational algebra
evaluation (e.g., via SQL) over the original database. The framework points out
several conditions on the ontologies and the queries to guarantee the existence of
a safe-range reformulation. It is shown that these conditions are not infeasible in
practice and an efficient method to ensure their validation is provided.

xi

Standard theorem proving techniques can be used to compute the reformulation.
As mentioned, domain independence is an important property of a query that
guarantees that the answer value of the query remains the same regardless of
the underlying domain of the interpretation. Unfortunately, checking domain
independence of a first-order query is well known to be in general undecidable.
There have been several attempts to define syntactic fragments of first-order logic
characterising domain independent formulas that can easily be checked, but all of
them are incomplete. In this work Volha Kerhet found a general way of reducing
the problem of checking domain independence of an arbitrary first-order logic
formula to checking a standard first-order logic entailment. This method can
be applied in any decidable fragment where the formulas participating in the
entailment can be expressed.
In order to be complete, the reformulation framework is applicable to ontologies
and queries expressed in any fragment of first-order logic enjoying finitely con-
trollable determinacy, a stronger property than the finite model property of the
logic. If the logic employed does not enjoy finitely controllable determinacy this
approach would become sound but incomplete, but still effectively implementable
using standard theorem proving techniques. Volha Kerhet explores non-trivial
applications where the framework is complete; in the present study she discusses
the application with expressive description logics ontologies and concept queries.
It is shown (i) how to check whether the answers to a given query with an ontology
are solely determined by the extension of the DBox predicates and, if so, (ii)
how to find an equivalent rewriting of the query in terms of the DBox predicates
to allow the use of standard database technology for answering the query. So,
there is the benefit from the low computational complexity in the size of the data
for answering queries on relational databases. In addition, it is possible to reuse
standard techniques of description logics reasoning to find rewritings.
There is a strong interest in the query reformulation problem in classical relational
database research as well as in modern knowledge representation studies. Dif-
ferently from the mainstream research on query reformulation, which is mostly
based on perfect or maximally contained rewritings with sound views (see, e.g.,
the ODBA approaches), this work focuses on exact rewritings with exact views,
since it characterises more precisely the query answering problem with ontologies
and databases, and it allows for very expressive ontology languages.
The core of Volha Kerhet’s work has been published in the top-class Journal of
Artificial Intelligence Research.

Enrico Franconi
Free University of Bozen-Bolzano
Faculty of Computer Science, KRDB Research Centre

xii

1. Introduction

The goal of this work1 is to formalise a precise and uniform integration between
knowledge bases (also called ontologies or constraints) expressed in classical first-
order logic, queries expressed in safe range first-order logic, and classical relational
databases. We aim at extending relational database theory in an incremental
fashion, namely our approach in absence of an ontology should behave exactly
like classical relational database theories. Also, we don’t want to consider non-
classical variants of first-order logics, such as the one with active domain semantics
and standard name assumption.
There is one principally crucial moment here. Knowledge representation forma-
lisms that are used to express ontologies have open world semantics, typical of
classical first-order logic. According to this, each bit of information that is not
stated to be explicitly true is assumed to be unknown, that is, we have incomplete
information. On the other hand databases have closed world semantics, according
to which each bit of information that is not stated to be explicitly true is assumed
to be false, that is, information is complete. Thus, using ontologies together
with databases, as they are, leads us to a fundamental mismatch between open
and closed worlds. Our main goal is to develop and study a framework that
builds a bridge between these worlds and allows the evaluation of queries over
databases with respect to ontologies effectively and completely by using query
reformulation.
More specifically, we study a general framework for the rewriting of a first-order
query in presence of an arbitrary first-order logic knowledge base over a signature
extending a database signature with additional predicates. The framework sup-
ports deciding the existence of a logically equivalent and – given the constraints
– safe-range first-order reformulation (called exact reformulation) of a domain
independent first-order query in terms of the database signature, and if such a re-
formulation exists, it provides an effective approach to construct the reformulation
based on interpolation using standard theorem proving techniques (e.g. tableau).
Since the reformulation is a safe-range formula, it is effectively executable as an
SQL query. We present a non-trivial application of the framework with ontologies
in the very expressive decidable fragments of first-order logic represented by
the description logics ALCHOI and SHOQ, by providing effective means to
compute safe-range first-order exact reformulations of queries.

1 Parts of this study have been published in Franconi, Kerhet, and Ngo (2012b, 2012a); Kerhet and
Franconi (2012); Franconi, Kerhet, and Ngo (2013).

1

As a separate research direction, originating from the special requirement of SQL
executability of a query, we study domain independence of a first-order formula
and show for the first time a sound and complete procedure to check this property,
by reducing this problem to an entailment problem in first-order logic.

1.1 Domain Independence

Domain independence (Avron, 2008) is an important property of a formula that
guarantees that the truth value of the formula in an interpretation remains the
same regardless of the underlying domain of the interpretation. An example of a
domain independent formula would be ∃x. P (x), since if it turns out to be true in
some interpretation of the unary predicate symbol P with a specific domain, it is
also true in all the structures sharing the same interpretation for the predicate P
and any other compatible domain. On the other hand, the formula ∀x. P (x) is not
a domain independent formula, since if it is true in an interpretation with some
domain, it is definitely not true in any structure sharing the same interpretation for
the predicate P but with a larger domain. Traditionally all standard database con-
straints (e.g. tuple-generating dependencies, equality-generating dependencies)
(Gyssens, 2009) and standard database query languages over databases with such
constraints are domain independent; as a matter of fact they are expressible in
relational algebra – a language meant specifically for relational database queries
and constraints. The importance of checking domain independence of a formula
stems from the use of first-order logic as a query language for databases. Since
we allow a query to be an arbitrary first-order formula, its answer could be infinite
(since the domain is not restricted to be finite in classical first-order logic) or it
may depend on the domain.

Example 1.1. Consider the queryQ(x) = ¬Student(x) over the databaseDB =
{Student(a)}, with domain ∆1 = {a, b} has the answer {x 7→ b}, while with
the extended domain ∆1 = {a, b, c} has the different answer {x 7→ b, x 7→ c}; if
an infinite domain is considered, the answer will be infinite even in the presence
of such a finite database.

Therefore, it is only possible to deal with domain independent queries in relational
databases. Indeed, the above open formula ¬Student(x) turns out not to be
domain independent.

Example 1.2. Let us try to ”fix” the example above by inserting a so-called
”guard” as a conjunct, which will restrict range of the free variable. That is,
consider the query Q(x) = Person(x) ∧ ¬Student(x). For any fixed database

2

this query gives the same answer with any compatible domain (even an infinite
one). Q(x) is domain independent.

Domain independence of constraints is also an important aspect. For non-domain
independent constraints validation of the constraints in some interpretation may
depend on the domain of the interpretation. Thus, the consistency of a database
with respect to a set of non-domain independent constraints may depend not only
on the extensions of the database tables but also on the domain.

Example 1.3. Consider a knowledge base:

KB1 = {∃x.¬Student(x), ∃x. Person(x)}

and consider the database DB = {Student(a), P erson(a)}. This database with
domain ∆1 = {a} is inconsistent with respect to KB1, while it is consistent with
respect to the same knowledge base with domain ∆2 = {a, b}. It happens because
the first sentence of the knowledge base is not domain independent.
Let us now ”fix” the non-domain independent sentence in the knowledge base
and make it domain independent by adding a ”guard” as we did in the previous
example. We obtain the following new knowledge base:

KB2 = {∃x. Person(x) ∧ ¬Student(x)}.

This knowledge base is domain independent, and one can easily see that the
database DB is always inconsistent with respect to this new knowledge base
regardless the underlying domain. And if we ”fix” the database to be consistent
with respect to KB2 (by adding an assertion Person(b), for example), this new
database will be consistent with respect to the knowledge base with all possible
domains.

Still, domain independence of constraints does not guarantee the answer to a query
over a database with respect to these constraints to be finite. That is why one
needs to assume domain independence of both constraints and query.

Example 1.4. Consider the knowledge base:

KB = {∀x, y. (hasTeacher(x, y)→ ∃z. hasTeacher(y, z)),

∀x, y, z. hasTeacher(x, y) ∧ hasTeacher(z, y)→ x = z,

∃x, y. (hasTeacher(x, y) ∧ ¬∃z. hasTeacher(z, x))}.

This knowledge base models an infinite chain. The first sentence informally says
that any teacher has a teacher. The second one says that every teacher has just one
pupil (the one who is taught by somebody). The third sentence says that there is

3

a pupil who is not a teacher. All the sentences are domain independent, but one
can easily see that this knowledge base requires any model of it to have an infinite
domain. It means that there exists a non-domain independent query (for instance,
one can consider Q(x) = ¬Student(x)), that gives an infinite answer over any
database which is consistent with respect to this knowledge base.

The problem of checking whether a first-order logic formula is domain indepen-
dent is undecidable (Di Paola, 1969; Abiteboul, Hull, & Vianu, 1995). The well
known safe-range syntactic fragment of first-order logic introduced by Codd is
an equally expressive language; indeed any safe-range formula is domain inde-
pendent, and any domain independent formula can be easily transformed into
a logically equivalent safe-range formula. This transformation implements the
idea that the range of every variable of domain independent formula should be
restricted by some ”guard” bounding its extension. For instance, like in the exam-
ples 1.2 and 1.3, a guard for a free variable could be a positive atomic conjunct
using this variable. In Subsection 3.3.2 we consider a relativisation of a formula to
a predicate, which is nothing other than a transformation of the original formula to
a domain independent one by restricting the range of all variables of the formula
to this predicate that plays a role of a ”guard” in this case.

1.2 DBoxes

We consider knowledge representation systems (that is, first-order theories) where
ground data is stored in a classical finite relational database, in a way that has been
called the locally-closed world in the literature (Etzioni, Golden, & Weld, 1997),
exact views (Marx, 2007; Nash, Segoufin, & Vianu, 2010; Fan, Geerts, & Zheng,
2012), or DBox (Seylan, Franconi, & de Bruijn, 2009; Franconi, Ibanez-Garcia, &
Seylan, 2011). A DBox is a set of ground atoms which semantically behaves like
a database, i.e. the interpretation of the database predicates in the DBox is exactly
equal to the database relations. We say that the DBox predicates are closed, i.e.
their extensions are the same across all the interpretations, whereas predicates in
classical first-order logic are open, i.e. their extensions may vary among different
interpretations. Ground atoms in classical first-order logic have been also called
ABox or sound views.
In spite of the fact that a DBox represents a database, we can not rely on standard
relational database query evaluation technology if a query involves non-DBox
predicates, since the non-DBox predicates may have different extensions in dif-
ferent models, and the domain of the interpretations is not necessarily restricted
to the active domain (the set of all elements appearing in the database and in the
query). As an example, given an ABox A = {C(a)} and alternatively a DBox

4

with the same data D = {C(a)}, in any model I of the ABox A the extension of
the predicate C includes a: CI = {aI , . . .}; while in any model I of the DBox
D the extension of C is exactly a: CI = {aI}.
So, a system composed of a first-order logic theory (the constraints) and a DBox
may admit many models and we have to rely on certain answer semantics for
answering queries. Given a set of constraints and a DBox, the certain answer is
an answer which holds in every model of the constraints with the DBox predicates
maintaining always the same extension as the given database.

Example 1.5 (DBox versus ABox). Let us compare the semantics of a DBox
with the semantics of an ABox. As an example, consider a boolean negative query
¬Student(mary) over a given standard relational database, expressed by the
DBox D = {Student(john)}. The answer to the query over the DBox is true,
because the only specified student is john. On the other hand, if we consider
D as an ABox and evaluate the query over it, the answer will be false because
the ABox specifies only the necessary facts but not all of them, and, hence, mary
may still be a student in some model.

Note, that by adding an ontology on top of the DBoxD from the previous example,
the answer to the query is not supposed to change — since the query uses only the
signature of the DBox and additional constraints are not supposed to change the
meaning of the query — whereas if D were treated as an ABox the answer may
change in presence of an ontology. For instance, if we consider D as an ABox
and add an ontology {∀x, y. Student(x) ∧ Student(y)→ x = y} that says that
there is at most one student, the answer to the query will be true. This may be
important from the application perspective: a DBox preserves the behaviour of
legacy application queries over relational databases. A DBox represents faithfully
a relational database, in that queries under classical relational database semantics
(i.e. queries involving only database predicates) have the same answer under
DBox semantics.
It has been shown by Franconi et al. (2011) that query answering under constraints
with DBoxes may be strictly harder in data complexity than query answering
under constraints with ABoxes.

1.3 The Proposed Framework

In our general framework an ontology is a set of first-order formulas, and queries
are (possibly open) first-order formulas. An ontology provides a conceptual view
of the database and it is composed of constraints on a vocabulary extending the
basic vocabulary of the database. In other words the language for the ontology
is combined from database predicates and possibly some additional predicates.

5

Querying a database using the terms in such a richer ontology allows for more
flexibility than using only the basic vocabulary of the relational database directly.
A database is represented by a DBox. As we mentioned already, in any model
of the ontology the extension of each DBox predicate is exactly defined by the
content of the corresponding table from the database. All the other predicates
are open (just like in classical first-order logic semantics) and can have different
extensions in different models. In our framework we focus on the necessary
and sufficient conditions which guarantee domain independent reformulations
of queries because we want to reduce the original query answering problem to a
relational algebra evaluation (e.g., via SQL) over the original database (Abiteboul
et al., 1995).
In addition to that, in our framework we focus on queries involving non-DBox
predicates whose answer requires just the data stored in the DBox only. We call
such queries definable from the database predicates. To answer them one needs
to find the logically equivalent reformulation (the exact reformulation) of the
query expressed in terms of the database predicates only. Given that first-order
logic possesses the nice Beth definability property (Beth, 1953), we can find the
precise conditions under which domain independent (in particular safe-range)
exact reformulations exist.
The proposed framework:

1. supports deciding the existence of a safe-range first-order equivalent refor-
mulation of a query in terms of the database signature (DBox predicates),
and

2. it provides an effective approach to construct the reformulation.

Step 1 is in general undecidable for first-order logic, so, some decidable fragments
should be studied. We present a non-trivial application of the framework with
ontologies in the very expressive decidable first-order logic fragments represented
by the description logics ALCHOI and SHOQ.

Example 1.6. Let T be an ontology in ALC (TBox):

T = {Person v Man tWomen,

Man v Person,

Woman v Person,

Woman v ¬Man}.

It defines a partition, namely every person is either man or women, and these sets
are disjoint. Let D be a DBox:

D = {Person(john),Person(maria),Man(john)}.

6

We want to query all the instances of Woman . One can easily see that this query
can be reformulated to the concept Person u¬Man , which is logically equivalent
to the atomic concept Woman with respect to the ontology. This reformulation is
safe-range and expressed in terms of DBox predicates and we can evaluate it over
the database (e.g., via model checking). The answer is {maria}.

1.4 Determinacy and Exact Reformulations

The certain answer to an open query includes all the substitutions which make the
query true in all the models of the ontology with the DBox: so, if a substitution
would make the query true only in some models, then it would be discarded
from the certain answer. In other words, it may be the case that the answer to
the query is not necessarily the same among all the models of the ontology with
the DBox. In this case, the query is not fully determined by the given source
data; indeed, given the database (DBox) there is some answer which is possible,
but not certain. Due to the indeterminacy of the query with respect to the data,
the complexity of computing the certain answer in general increases up to the
complexity of entailment in the fragment of first-order logic used to represent
the ontology. In our framework we focus on the case when a query has the same
answer over all the models of the ontology with the DBox, namely, when the
information requested by the query is fully available from the source data without
ambiguity. In this way, the indeterminacy disappears, and the complexity of the
process decreases drastically (see Section 5.3). The determinacy of a query with
respect to a source database (DBox) (Nash et al., 2010; Marx, 2007; Fan et al.,
2012) has been called implicit definability of a formula (the query) from a set
of predicates (the DBox predicates) by Beth (1953). So, in our framework we
are interested in queries that are implicitly definable by DBox predicates. Since
first-order logic has the Beth definability property, for every formula which is
implicitly definable from the DBox predicates there exists, with respect to the
ontology, a logically equivalent formula expressed in terms of the DBox predicates
only – an exact reformulation. The mainstream research on query reformulation
(Halevy, 2001) is based on perfect or maximally contained rewritings with sound
views under relatively inexpressive constraints (see, e.g., the DL-Lite approach
in Artale, Calvanese, Kontchakov, and Zakharyaschev (2009)). Given an ontology,
a database (DBox) and a query, the perfect reformulation is a formula that gives
the same certain answer over the database (DBox) with respect to the ontology as
the original query. So, in the case of perfect or maximally contained reformuations
reformulated queries are guaranteed to give the same certain answer (or its best
approximation if such rewriting does not exist) as the original arbitrary query. On

7

the other hand, we are looking for a reformulated query expressed in terms of
DBox predicates that is logically equivalent to the original query with respect to
the ontology. Moreover, by focusing on exact reformulations of definable queries
(as opposed to considering the certain answer semantics to arbitrary queries, such
as in DL-Lite), we guarantee that answers to queries can be seen as database views
over the original database (DBox), so that they can be subsequently composed
in an arbitrary way. In other words, exact reformulations can be used in query
composition without affecting the outcome, which is not the case for perfect
reformulations. This may be important for legacy database applications.

Example 1.7 (Perfect reformulation, query composition). Consider an ontology:

KB = {∃x.Person(x) ∧ ¬Woman(x),

∀x.Woman(x)→ Person(x)},

saying that there is a person who is not woman and every woman is person. Let
{Man, Woman} be database predicates and Q(x) = Person(x) be a query.
Then Q̂(x) = Woman(x) is a perfect reformulation of Q, because these queries
have the same certain answer over any database with respect to the ontology. Let
us try to compose a new query Q1 by using the original query Q(x):

Q1 = ∃x.Q(x) ∧ ¬Woman(x) = ∃x. Person(x) ∧ ¬Woman(x).

For any DBox which is consistent with respect to KB answer to this composed
query is true. It is evident that we will get the same answer if we substituteQ(x)
here with any formula, which is logically equivalent to Q(x) with respect to KB.
In other words exact reformulations do not change truth value of the composed
query.
Let us now use a perfect reformulation of Q(x) instead of the query itself in this
composition:

Q2 = ∃x. Q̂(x) ∧ ¬Woman(x) = ∃x.Woman(x) ∧ ¬Woman(x) ≡ false.

Thus, perfect reformulations cannot be used in query composition because they
may change truth value of the composed query.

It should be noticed that every exact reformulation is perfect, but not vice-versa.
In order to be complete, our framework is applicable to ontologies and queries
expressed in any fragment of first-order logic enjoying finitely controllable de-
terminacy (Nash et al., 2010). We say that a fragment has finitely controllable
determinacy if any finitely determined query is also determined in unrestricted
models (the reverse is trivially true). If the employed logic does not enjoy finitely
controllable determinacy our approach would become sound but incomplete, but
still effectively implementable using standard theorem proving techniques.

8

This framework has also been applied to devise the formal foundations of the prob-
lem of view update: informally speaking, a target view of some source database is
updatable if the target predicates are definable by the source predicates (Franconi
& Guagliardo, 2012, 2013; Feinerer, Guagliardo, & Franconi, 2014; Feinerer,
Franconi, & Guagliardo, 2015).

1.5 Main Results

As a useful formal tool, we show for the first time a sound and complete procedure
to check domain independence of a formula, by reducing this problem to an entail-
ment problem in first-order logic. We also considered decidable applications of
the method in a two-variable fragment of first-order logic and in prefix-vocabulary
fragments [∃∗∀∗, all, (0)]C= and [all, (w), (0)]C,free

= .
Within our query rewriting setting, the framework characterises exactly the exis-
tence of a domain independent first-order equivalent reformulation of a query in
terms of the DBox signature. It also provides an effective approach to construct the
reformulation as a safe-range formula with sufficient conditions. Our framework
points out several conditions on the ontologies and the queries to guarantee the
existence of a safe-range reformulation. We show that these conditions are feasi-
ble in practice and we also provide an efficient method to ensure their validation.
Standard theorem proving techniques can be used to compute the reformulation.
We have explored non-trivial applications where the framework is complete;
namely, the applications with ALCHOI and SHOQ description logics and
concept queries are discussed. We show how (i) to check whether the answers to
a given query with respect to an ontology are solely determined by the extension
of the DBox predicates and, if so, (ii) to find an equivalent rewriting of the query
in terms of the DBox predicates to allow the use of standard database technology
for answering the query. This means we benefit from the low computational
complexity in the size of the data for answering queries on relational databases. In
addition, it is possible to reuse standard techniques of description logics reasoning
to find rewritings.
This work extends the works on exact rewritings with exact views by Marx
(2007) and Nash et al. (2010) by focusing on safe-range reformulations and on
the conditions ensuring their existence, and by considering general first-order
ontologies extending the database (DBox) signature, rather than just local as view
constraints over the database predicates (Halevy, 2001).

9

2. Preliminaries

LetFOL(C,P) be a classical function-free first-order language with equality over
a signature Σ = (C,P), where C is a set of constants and P is a set of predicates
with associated arities. The arity of a predicate P we denote as AR(P). We denote
as σ(φ) the signature of the formula φ, that is all the predicates and constants
occurring in φ. We denote with P{φ1,...,φn} the set of all predicates occurring in
the formulas φ1, . . . , φn, with C{φ1,...,φn} the set of all constants occurring in
the formulas φ1, . . . , φn; for the sake of brevity, instead of P{φ} (resp. C{φ}) we
write Pφ (resp. Cφ). We denote with σ(φ1, . . . , φn) the signature of the formulas
φ1, . . . , φn, namely the union of P{φ1,...,φn} and C{φ1,...,φn}.We denote the set of
all variables appearing in φ as VAR(φ), and the set of the free variables appearing
in φ as FREE(φ); we may use for φ the notation φ(x̄), where x̄ = FREE(φ) is the
(possibly empty) set of free variables of the formula. The notation φ(x̄, ȳ) means
FREE(φ) = x̄ ∪ ȳ. A formula in FOL(C,P) is in prenex normal form, if it is
written as a string of quantifiers followed by a quantifier-free part. Every formula
is equivalent to a formula in prenex normal form and can be converted into it in
polynomial time (Kleene, 2002).
Let X be a countable set of variables we use. We define a substitution Θ to be
a total function X 7→ S assigning an element of the set S to each variable in X.
We can see substitution as a countable set of assignments of elements from S
to elements from X. That is, if X = {x1, x2, . . .}, then Θ := {x1 → s1, x2 →
s2, . . .}, where s1, s2, . . . are elements from S assigned to corresponding variables
from X by Θ.
As usual, an interpretation I = 〈∆I , ·I〉 includes a non-empty set – the domain
∆I – and an interpretation function ·I defined over constants and predicates of the
signature. We say that interpretations I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉 are equal,
written I = J , if ∆I = ∆J and ·I = ·J . We use standard definitions of validity,
satisfiability and entailment of a formula. An extension of φ(x̄) in interpretation
I = 〈∆I , ·I〉, denoted (φ(x̄))I , is the set of substitutions which satisfy φ in I.
That is,

(φ(x̄))I = {Θ | I,Θ |= φ(x̄)}.

If φ is closed, then the extension depends on whether φ holds in I = 〈∆I , ·I〉 or
not. Thus, for a closed formula φ, (φ)I = {Θ | Θ : X 7→ ∆I} – the set of all
possible substitutions assigning elements from the domain ∆I to variables X – if
I |= φ, and (φ)I = ∅, if I 6|= φ.
Given an interpretation I = 〈∆I , ·I〉, we denote as I|S the interpretation restricted
to the smaller signature S ⊆ P ∪ C, i.e., the interpretation with the same domain

11

∆I and the same interpretation function ·I defined only for the constants and
predicates from the set S. The semantic active domain of a signature σ′ ⊆ P∪C in
an interpretation I , denoted adom(σ′, I), is the set of all elements of the domain
∆I occurring in interpretations of predicates and constants from σ′ in I:

adom(σ′, I) :=
⋃
P∈σ′

⋃
(a1,...,an)∈PI

{a1, . . . , an} ∪
⋃
c∈σ′
{cI}.

If σ′ = σ(φ), where φ is a formula, we call adom(σ(φ), I) a semantic active
domain of a formula φ in an interpretation I.

12

3. Domain Independence

We study the property of domain independence and its various syntactic subfrag-
ments. We introduce a new expressive subfragment of a domain independent
fragment – relational algebra guarded negation first-order logic (RAGNFO) –
that possesses a finite model property inherited from GNFO. As a main result
we propose a method that allows us to reduce the problem of checking domain
independence of a formula to checking standard first-order logic entailment and
considered applications of the method in several fragments of first-order logic.
In this chapter we assume standard name assumption for constants, i.e. cI = c
for any interpretation I and any constant c ∈ C. This is a usual assumption that is
made when one deals with databases.
Similar to the definition given in Nash et al. (2010), in terms of classical logic
a database instance D over a schema P with underlying domain ∆ (possibly
infinite) is an interpretation D = 〈∆, ·D〉 such that the interpretation function is
defined for the schema P and for any predicate P ∈ P of arity n, PD is a finite
subset of Cn. It corresponds to standard terminology (see Abiteboul et al. (1995)
and Grädel et al. (2005)). Instead of notation PD for databases we will usually
use P (D) (classical notation for databases).

3.1 Importance of Domain Independence

It is well known that satisfiable SPC algebra (with selection, projection, and
cartesian product), satisfiable SPJR (with selection, projection, join, renaming)
algebra and conjunctive calculus queries are equivalent (Abiteboul et al., 1995),
and they can only express domain independent formulas. By adding the union and
difference operators to the algebras how should we extend the expressivity of the
calculus by maintaining the equivalence? It may seem logical that the expressive
power of union can be reached by the conjunctive calculus by adding disjunction
similarly to conjunction. But it turns out that disjunction brings more power to
conjunctive calculus than union brings to algebras. With disjunction it is possible
to express queries that are not expressible in SPCU and SPJRU algebras. The
point is that the union operator can only be applied to expressions having the same
arity (in unnamed perspective) or sort (named perspective), while disjunction can
connect any kinds of formulas. This extra power of disjunction brings some issues:
using disjunction one can easily express queries giving infinite answers.

Example 3.1. Consider a calculus query A(x) ∨ A(y) over a database instance
D with an infinite domain ∆. One can easily see that the answer to this query

13

over the database is (A(I)×∆)∪ (∆×A(I)), where A(I) is an extension of A
in I. Since the domain is infinite the answer is also infinite that contradicts with
the expectations of the user who normally wants to see a finite set of tuples as an
answer.

The difference operator in algebras corresponds to the so-called guarded negation
in calculus, which informally means that all variables appearing in a negated atom
necessarily appear in (are guarded by) a positive atom (called guard). In our case
the guard may not necessarily be atomic. And again, like in the case of union
operator, using unrestricted (full of non-guarded) negation allows the expression
of queries that are not expressible in algebras with difference. Such queries being
asked over a standard relational database may again give unexpected answers:
the answer may be infinite or it may depend on the underlying domain content –
which is typically unknown by the user.

Example 3.2. Consider a calculus query Person(x) ∧ ¬Parent(x) over some
database with some underlying domain. The negation here is guarded and the
query is equivalent to the relational algebra expression Person − Parent. If
we remove the guard and consider the formula ¬Parent(x) as a query, we will
not find any equivalent expression in relational algebra. The answer to the first
guarded query consists of all the tuples from the table Person in the database
that do not appear in the table Parent and, hence, is always finite. In contrast, the
answer to the second non-guarded query consists of all the tuples from the domain
that do not appear in the table Parent, that is, it may contain all kinds of objects
of the domain. Therefore the answer to the second query is infinite if the domain is
infinite. But even if the domain is finite, the answer to the query ¬Parent(x) will
change if we add at least one new element to the domain (keeping the database
unchangeable) - this new element will appear in the answer.

Thus, on the one hand adding disjunction and full negation to the conjunctive
calculus essentially extends its expressive power, on the other hand it yields the
aforementioned issues with the answer. One approach to solve these issues consists
in considering an active domain semantics. Under the active domain semantics
the answer to a query over the database is computed on the fixed finite active
domain - the set of all constants occurring in the database and the query (formally
in our terms this active domain for a database D over a schema P and a query q is
defined as adom(P,D) ∪ Cq). The crucial disadvantage of this approach is that
it makes the answer dependent on the active domain – the information that is not
readily available to the user.
Another approach commonly taken is to consider only queries that give the same
finite answers on all possible underlying domains. Such queries are called domain
independent. Let us give a formal definition of this notion.

14

Two interpretations I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉 are compatible iff they
agree on the interpretations of all the predicates and constants. That is, for any
predicate P ∈ P and constant c ∈ C, the following holds:

P I2 = P I1

cI2 = cI1

Definition 3.3 (Domain independence). Let I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉
be any two compatible interpretations, and φ be a formula in FOL(C,P). φ is
domain independent, if and only if

(φ)I1 = (φ)I2

It is important to notice that these two approaches (considering active domain
semantics and considering domain independent formulas) are equivalent. By
definition, any domain independent query gives the same answer on any domain
containing the active domain. And for any relational calculus query q1 giving
the answer ans on the active domain there is a domain independent query q2 that
gives the same answer ans on any domain, containing the active domain (see
Abiteboul et al. (1995), Theorem 5.3.10).

3.2 Syntactic Fragments of Domain Independent
Formulas

Domain independence is a semantic property of a formula. The problem of check-
ing whether a FOL formula is domain independent is undecidable (Di Paola,
1969; Abiteboul et al., 1995). There have been several attempts to define syn-
tactically restricted decidable subfragments of the domain independent fragment.
The most important of them are: range separable formulas (Codd, 1972), range
restricted formulas (Nicolas, 1982; Gelder & Topor, 1991), evaluable formulas
(Demolombe, 1992; Gelder & Topor, 1991), allowed formulas (Topor, 1987;
Gelder & Topor, 1991) and safe-range formulas (Abiteboul et al., 1995). The first
three classes were introduced without the equality predicate. Range restricted for-
mulas are originally defined as a subset of closed formulas in prenex conjunctive
normal form. This definition was extended to open formulas and then formulas in
disjunctive prenex normal form in Demolombe (1992). Safe-range characterisa-
tion also require preliminary transformation of a formula to a safe-range normal
form. Definitions of range separable, range restricted and evaluable formulas can
be modified so that all of them may contain equality. The way to do this for the
last two classes was described in Gelder and Topor (1991). Below we recall the
definitions of these classes.

15

The definition of evaluable formulas from Demolombe (1992) is too long. Here
we use the simpler equivalent definition of evaluable formulas (with equality)
given in Gelder and Topor (1991). First we need to define gen and con relations
between variables and formulas. They possess the values true or false and are
defined recursively by the following set of rules:

gen(x, φ) if edb(φ) & x ∈ FREE(φ)

gen(x,¬φ) if gen(x, pushnot(¬φ))

gen(x,∃y. φ) if distinct(x, y) & gen(x, φ)

gen(x,∀y. φ) if distinct(x, y) & gen(x, φ)

gen(x, φ ∨ ϕ) if gen(x, φ) & gen(x, ϕ)

gen(x, φ ∧ ϕ) if gen(x, φ)

gen(x, φ ∧ ϕ) if gen(x, ϕ)

con(x, φ) if edb(φ) & x ∈ FREE(φ)

con(x, φ) if x 6∈ FREE(φ)

cen(x,¬φ) if con(x, pushnot(¬φ))

con(x,∃y. φ) if distinct(x, y) & con(x, φ)

con(x,∀y. φ) if distinct(x, y) & con(x, φ)

con(x, φ ∨ ϕ) if con(x, φ) & con(x, ϕ)

con(x, φ ∧ ϕ) if gen(x, φ)

con(x, φ ∧ ϕ) if gen(x, ϕ)

con(x, φ ∧ ϕ) if con(x, φ) & con(x, ϕ)

Here,

– edb(φ) is true if and only if φ is an atomic formula of one of the following
forms:

– P (x̄), where P is a predicate;

– x = c, where c is a constant;

– distinct(x, y) is true if x and y are distinct variables.

– Function pushnot is defined as follows:

pushnot(¬(φ ∧ ϕ)) = ¬φ ∨ ¬ϕ
pushnot(¬(φ ∨ ϕ)) = ¬φ ∧ ¬ϕ

16

pushnot(¬∃x. φ) = ∀x.¬φ
pushnot(¬∀x. φ) = ∃x.¬φ
pushnot(¬¬φ) = φ

pushnot(¬(x = y)) = (x 6= y)

pushnot(¬(x 6= y)) = (x = y).

– & means ’and’.

Now we can define evaluable and allowed formulas.

Definition 3.4 (Evaluable formula). Formula φ in FOL(C,P) is evaluable if

– for every x ∈ FREE(φ), gen(x, φ) is true;

– for every subformula ∃x. ϕ of φ, con(x, ϕ) is true;

– for every subformula ∀x. ϕ of φ, con(x,¬ϕ) is true.

Definition 3.5 (Allowed formula). Formula φ in FOL(C,P) is allowed if

– for every x ∈ FREE(φ), gen(x, φ) is true;

– for every subformula ∃x. ϕ of φ, gen(x, ϕ) is true;

– for every subformula ∀x. ϕ of φ, gen(x,¬ϕ) is true.

The following theorem was proved in Gelder and Topor (1991).

Theorem 3.6. Every allowed formula is evaluable.

It was also proved in Gelder and Topor (1991) that any evaluable formula is
logically equivalent to some allowed formula, and any allowed formula can be
transformed into a relational algebra expression. It means that any evaluable
formula is domain independent. On the other hand any domain independent
formula is logically equivalent to an evaluable formula (Demolombe, 1992).
Hence, a domain independent fragment is equally expressive to an evaluable
fragment. It should be noticed that the advantage of Evaluable Fragment is that in
order to check if a formula belongs to this fragment one does not need to transform
it to any normal form. Moreover, Gelder and Topor (1991) argue that an evaluable
fragment is the largest decidable syntactic fragment of the domain independent
fragment.

Definition 3.7 (Range restricted formulas on conjunctive normal form). Let
φ = Qϕ be a formula in FOL(C,P) in conjunctive normal form, where Q is the

17

list of quantifiers and ϕ = C1 ∧ C2 ∧ . . . ∧ Cn, where each Ci = Li1 ∨ Li2 ∨
. . . ∨ Lipi , and Lij is a literal, that is, a positive or negative atomic formula. φ is
a range restricted formula if

– for each free variable x there is a conjunct Ci such that all its literals Lij are
positive and contain x;

– for each existentially quantified variable x, if x occurs in a negative literal then
there is a conjunct Ci such that all its literals Lij are positive and contain x;

– for each universally quantified variable x, if x occurs in a conjunct Ci, then one
of its literals Lij is negative and contains x.

Definition 3.8 (Range restricted formulas on disjunctive normal form). Let
φ = Qϕ be a formula in FOL(C,P) in disjunctive normal form, where Q
is the list of quantifiers and ϕ = D1 ∨ D2 ∨ . . . ∨ Dn, where each Di =
Li1 ∧ Li2 ∧ . . . ∧ Lipi , and Lij is a literal, that is a positive or negative atomic
formula. φ is a range restricted formula if

– for each free variable x, for each disjunct Di there is one of its literals Lij
which is positive and contains x;

– for each existentially quantified variable x, for each disjunct Di, if x occurs in
Di then there is at least one of its literals Lij which is positive and contains x;

– for each universally quantified variable x, if x occurs in a positive literal then
there is a disjunct Di such that all its literals Lij are negative and contain x.

Theorem 3.9. If φ is a formula in conjunctive or disjunctive normal form, then φ
is range restricted if and only if φ is evaluable.

This result was proved in Demolombe (1992) for formulas without equality. As we
mentioned already it is not so difficult to extend the definitions of range restricted
formulas so that they allow equality, and the same result remains valid in this case
(Gelder & Topor, 1991).
It may be the case that after transformation of an evaluable formula in conjunc-
tive or disjunctive normal form it becomes not evaluable and, hence, not range
restricted.

Example 3.10. Consider an evaluable formula φ = ∃x, y.(A(y) ∨ ((B(x) ∨
C(x)) ∧ ¬D(x))). The formula ϕ = ∃x, y. ((A(y) ∨ B(x) ∨ C(x)) ∧ (A(y) ∨
¬D(x))) is a conjunctive normal form of the formula φ, but it is not evaluable,
since it is not range restricted.

18

A common idea behind each of these syntactic fragments is that each of them in
some particular sense reflects the idea that each variable of a domain independent
formula has a restricted range. Consider for example a safe-range fragment
commonly used in database research. Intuitively, a formula is safe-range if and
only if its variables are bounded by positive predicates or equalities.
We recall here formal definitions (Abiteboul et al., 1995) of safe-range formula.
First, formula should be transformed to a safe-range normal form, denoted by
SRNF. A formula φ in in FOL(C,P) can be transformed to SRNF(φ) by the
following steps:

– Variable substitution: no distinct pair of quantifiers may employ same variable;

– Remove universal quantifiers;

– Remove implications;

– Push negation;

– Flatten ’and’s and ’or’s.

Definition 3.11 (Range restriction of a formula). Range restriction of a formula
φ in a safe-range normal form, denoted rr(φ), is a subset of FREE(φ) or ⊥
recursively defined as follows:

– φ = R(t1, . . . , tn), where each ti is either a variable or a constant : rr(φ) is
a set of variables in t1, . . . , tn;

– φ = (x = c) or φ = (c = x), where c is a constant : rr(φ) = {x};

– φ = (x = y) : rr(φ) = ∅;

– φ = φ1 ∧ φ2 : rr(φ) = rr(φ1) ∪ rr(φ2);

– φ = φ1 ∨ φ2 : rr(φ) = rr(φ1) ∩ rr(φ2);

– φ = φ1 ∧ (x = y) : rr(φ) = rr(φ1) if {x, y} ∩ rr(φ1) = ∅; rr(φ) =
rr(φ1) ∪ {x, y} otherwise;

– φ = ¬φ1 : rr(φ) = ∅ ∩ rr(φ1);

– φ = ∃xφ1 : rr(φ) = rr(φ1) \ {x} if x ∈ rr(φ1); rr(φ) = ⊥ otherwise,

where ⊥ ∪ Z = ⊥ ∩ Z = ⊥ \ Z = Z \ ⊥ = ⊥ for any range restriction of a
formula Z.

19

Definition 3.12 (Safe-range formula). A formula φ in FOL(C,P) is safe-range
iff rr(SRNF(φ)) = FREE(φ).

It was proved in Abiteboul et al. (1995) that a safe-range fragment is equally
expressive to a domain independent fragment. This result is known as Codd’s
theorem.
To sum up, the following relationships between the mentioned classes of domain
independent formulas were investigated (we omit the word ’fragment’ here for
the sake of readability):

Range separable ⊂ Evaluable ⊂ Domain independent
Range restricted = Evaluable ∩ Prenex normal form

Allowed ⊂ Evaluable ⊂ Domain independent
Safe-range ⊂ Evaluable ⊂ Domain independent,

where Prenex normal form means the formulas in conjunctive or disjunctive
normal form. Each of these set inclusions is strict (see Example 3.13). Moreover,
it was proved that any domain independent formula has a logically equivalent
evaluable one, allowed one and safe-range one. In other words, each of the
evaluable, allowed and safe-range fragments have the same expressive power as
domain independent fragment. Since range restricted fragment is actually equal to
evaluable formulas in prenex normal form, we can conclude that range restricted
fragment is also equally expressive to domain independent fragment. That is,

Range restricted ≡ Evaluable ≡ Allowed ≡
≡ Safe-range ≡ Domain independent,

where ’≡’ means ’has the same expressive power as’.

Example 3.13.

– A(x, y) ∧B(x)) ∨ (C(x, y) ∧D(y)) is evaluable, but not range separable.

– ∃x, y.(A(y)∨ ((B(x)∨C(x))∧¬D(x))) is evaluable, but not range restricted
(see Example 3.10). Equivalent range restricted formula is ∃x, y. (A(y) ∨
((B(x) ∧ ¬D(x)) ∨ (C(x) ∧ ¬D(x))).

– ∃x.((A(x, y) ∨ B(y)) ∧ ¬C(y)) is evaluable, but not allowed. Equivalent
allowed formula is (∃x. (A(x, y)) ∨B(y)) ∧ ¬C(y).

– ∃x, y.(A(x) ∨ B(y)) is evaluable, but not safe-range. Equivalent safe-range
formula is ∃x.A(x) ∨ ∃y.B(y).

– ∃x.(P (x)∨¬P (x)) is domain independent (it is a tautology), but not evaluable.
Equivalent evaluable formula is ∀x.(P (x) ∨ ¬P (x)).

20

3.2.1 Relational algebra first-order logic

As we mentioned in Section 3.2 the equality between satisfiable SPC algebra (or
satisfiable SPJR algebra in the named case) and conjunctive queries is violated,
when we add union (∪) and difference (−) operators to the algebra and disjunction
(∨) and full negation (¬) to conjunctive queries. It happens because disjunction
and full negation bring more expressive power to conjunctive queries than, cor-
respondingly, union and difference bring to algebra: first-order logic formulas
A(x) ∨B(y) and ¬A(x) are not expressible in relational algebra.
In this subsection we introduce a new fragment of first-order logic implementing
the idea of replacing ¬ and ∨ operators, which bring extra expressivity to the first-
order logic, with restricted versions of these operators, such that their semantics
will correspond to semantics of− and∪ operators in relational algebra respectively.
Then it is logical to expect such language to be equally expressive to relational
algebra and, hence, domain independent fragment. We call this fragment relational
algebra first-order logic (RAFO). RAFO is a fragment of FOL defined by the
following grammar:

φ ::= R(t1, . . . , tn) | x = c | c1 = c2 | φ1∧φ2 | φ∧(x = y) | φ1(x̄)∨φ2(x̄) |

φ1(x̄, ȳ) ∧ ¬φ2(ȳ) | ∃x. φ

where R is a predicate, each ti is either a variable or a constant, c, c1, c2 are
constants, φ1 and φ2 are RAFO formulas, in the formula φ∧ (x = y), FREE(φ)∩
{x, y} 6= ∅, in the formula ∃x. φ, x ∈ FREE(φ). In this logic instead of full
negation we have a generally guarded negation, which requires any (fully) negated
RAFO formula to be guarded by another RAFO formula; instead of full version
of disjunction we have only disjunction of union-compatible formulas, that is,
formulas with the same sets of free variables.
The following proposition holds.

Proposition 3.14. RAFO is safe-range.

That is,

RAFO ⊂ Safe-range ⊂ Domain independent

As we expected there is a straightforward translation between RAFO and relational
algebra and, hence, the following theorem takes place.

Theorem 3.15. RAFO ≡ Domain independent.

3.2.2 Relational algebra guarded negation first-order logic

Domain independent fragment does not have finite model property.

21

Example 3.16. Consider the following theory:

T = {∀x, y.R(x, y)→ ∃z.R(y, z),

∀x, y, z. R(x, y) ∧R(y, z)→ R(x, z),

¬∃x.R(x, x),

∃x, y.R(x, y)}.

It is domain independent (all the sentences are safe-range) and have only infinite
models.

We consider a guarded negation first-order logic (GNFO) (Bárány, ten Cate, &
Segoufin, 2011; Bárány, ten Cate, & Otto, 2012), which is a fragment of FOL that
is ”good” in a sense that it has a number of useful properties: (i) it is decidable – the
satisfiability problem is 2-EXPTIME-complete, both on arbitrary interpretations
and on finite interpretations; (ii) it has finite model property; (iii) it has tree model
property.
Roughly speaking, GNFO is a fragment of FOL in which all occurrences of
negation are guarded by an atomic predicate. Formally it consists of all formulas
generated by the following recursive definition:

φ ::= R(t1, . . . , tn) | t1 = t2 | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃x. φ | α ∧ ¬φ (3.1)

where each ti is either a variable or a constant, α in α ∧ ¬φ is an atomic formula
(possibly an equality statement) containing all free variables of φ.
GNFO in general does not enjoy a property of domain independence. For instance,
GNFO formulas A(x) ∨B(y) and (x = x) ∧ ¬A(x) are not domain independent.
In order to bring one more useful property – domain independence – we consider
a class of domain independent formulas in GNFO. We define a new fragment
that we call relational algebra guarded negation first-order logic and denote as
RAGNFO:

φ ::= R(t1, . . . , tn) | x = c | c1 = c2 | φ1∧φ2 | φ∧(x = y) | φ1(x̄)∨φ2(x̄) |

R(x̄, ȳ) ∧ ¬φ(ȳ) | ∃x. φ

where R is a predicate, each ti is either a variable or a constant, c, c1, c2 are
constants, φ1 and φ2 are RAGNFO formulas, in the formula φ ∧ (x = y),
FREE(ϕ) ∩ {x, y} 6= ∅, in the formula ∃x. φ, x ∈ FREE(φ). It immediately
follows from the definitions that RAGNFO is equally expressive to intersection of
RAFO and GNFO. Then because of Theorem 3.15,

Domain independent ∩ GNFO ≡ RAGNFO.

22

Therefore, RAGNFO is a quite expressive syntactic subfragment of domain inde-
pendent fragment, which has finite model property.
A similar result was obtained in Bárány et al. (2012) (Theorem 2.2). The authors
introduced a GN-RA – guarded negation fragment of relational algebra – and
proved its equivalence with the domain independent fragment of GNFO.
Note, that domain independent fragment of GNFO is equally expressive but not
equal to RAGNFO.

Example 3.17. Consider a formula ∃x, y. (A(x) ∨ B(y)). This formula is in
GNFO and domain independent, bit it is not in RAFO, since formulas A(x) and
B(y) are not ”union-compatible”. So, it is not in RAGNFO. On the other hand,
the formula ∃x.A(x)∨∃y.B(y), which is logically equivalent to the original one,
is in RAGNFO.

3.3 Checking Domain Independence

In order to introduce our technique for checking domain independence, we intro-
duce a notion of active domain theory in Subsection 3.3.1, which starts by defining
some other auxiliary notions needed for the definition of active domain theory.
Then, in Subsection 3.3.2 our new technique for checking domain independence
is presented.

3.3.1 Active domain theory

First, we define an index set of an n-ary predicate P in a formula φ and denote it
as Ind(P, φ). Each element of this set, index i, corresponds to some occurrence
of the predicate P in φ and is represented by an n-ary vector of natural numbers
and constants: i = (i1, . . . , in). Each natural number (constant) ij in this vector
corresponds to a particular variable (constant) in this particular occurrence of the
predate P in φ. That is, the same number (constant) corresponds to the same
variable (constant), and the greatest number among numeric components of the
index i, denoted as max (i), is the number of distinct variables in the corresponding
occurrence of the predicate P in the formula φ. That is, if all the components of
the index i are constants (only constants appear in the corresponding occurrence
of the predicate P), max (i) := 0.

Example 3.18. Let us consider a formula φ = ∃x. P (x, x, y) ∨ ∃z. P (z, y, y).
Index set of the predicate P in the formula φ is Ind(P, φ) = {(1, 1, 2), (1, 2, 2)}.

The following algorithm formally defines an index set of an n-ary predicate P in
a formula φ.

23

Algorithm 1 Index Set

Input: P ∈ P, φ ∈ FOL(C,P)
Output: Ind(P, φ) – index set of the predicate P in the formula φ

1: Ind(P, φ) := ∅
2: for the next occurrence P (t1, . . . , tn) of P in φ do
3: // each ti is either a variable or a constant
4: // it may be the case that some ti and tj denote the same variable or

constant
5: // define coordinates of the index corresponding to this occurrence

// of the predicate P :
6: if t1 ∈ C then
7: i1 := t1
8: l := 0
9: else

10: i1 := 1
11: l := 1
12: end if
13: // l is the current number of distinct variables
14: for j = 2, . . . , n do
15: if tj ∈ C then
16: ij := tj
17: else
18: k := 1
19: while tj is distinct from tk do
20: k := k + 1
21: end while
22: if k = j then
23: l := l + 1
24: ij := l
25: else
26: ij := ik
27: end if
28: end if
29: end for
30: // define the index itself:
31: i := (i1, . . . , in)
32: // add the index to the index set:
33: Ind(P, φ) := Ind(P, φ) ∪ {i}
34: end for

24

Example 3.19. Note that index set of the predicate P in the formula ψ =
= ∃x. P (x, x, y)∨∃z. P (y, y, z) (that is similar to the formula φ from the example
3.18) consists of just one index: Ind(P,ψ) = {(1, 1, 2)}.
Example 3.20. Consider a formula with constants: ϕ = ∃x. P (x, c, y) ∨
∨ ∃z. P (y, y, z) (that is similar to the formula ψ from the example 3.19). Then
Ind(P,ϕ) = {(1, c, 2), (1, 1, 2)}.
Now we define an active domain theory for the formula φ. First, we introduce a
new unary predicate Adomφ. According to the idea, active domain theory for the
formula φ, denoted as Aφ, encodes that interpretation of Adomφ in any model
of the theory is never empty and contains a so-called semantic active domain
of the formula φ in this model, where a semantic active domain of a formula in
an interpretation (formally defined below) is a set that consists of all elements
appearing in interpretations of all the occurrences of all predicates in the formula
and interpretations of all the constants in the formula in this interpretation.
Formally, Aφ is built according to the following rules:

1. For every n-ary predicate P in the formula φ and every index i ∈ Ind(P, φ),
which contains variables (not only constants),

∀x1, . . . , xmax(i). P (xi1 , . . . , xin)→
max(i)∧
j=1

Adomφ(xj) ∈ Aφ,

where, xc := c for any c ∈ C.
In other words, Adomφ contains any domain element that occurs in the inter-
pretation of each occurrence of each predicate in the formula φ.

2. Adomφ contains all the constants from φ:∧
c∈σ(φ)∩C

Adomφ(c) ∈ Aφ.

3. Adomφ is not empty:

∃x1.Adomφ(x1) ∈ Aφ.
4. There are no other sentences in Aφ.

Definition 3.21 (Semantic active domain). Semantic active domain of a formula
φ ∈ FOL(C,P) in an interpretation I = 〈∆I , ·I〉, denoted adom(φ, I), is a set
of elements of the domain ∆I defined as follows:

adom(φ, I) :=
⋃

P∈σ(φ)∩P

⋃
i∈Ind(P,φ)

⋃
(ai1 ,...,ain)∈PI

{ai1 , ..., ain}∪
⋃

c∈σ(φ)∩C

{cI},

where ac := cI for any c ∈ C.

25

It is easy to see then that for any formula φ from FOL(C,P) and for any inter-
pretation I which is a model of Aφ we have:

adom(φ, I) ⊆ AdomIφ.

In order to understand the idea of the active domain theory of a formula let us
consider an example.

Example 3.22. Let us take the formula from the example 3.18:
φ = ∃x. P (x, x, y) ∨ ∃z. P (z, y, y). Ind(P, φ) = {(1, 1, 2), (1, 2, 2)}.
Then Aφ =

{∀x1, x2. P (x1, x1, x2)→ Adomφ(x1) ∧Adomφ(x2),

∀x1, x2. P (x1, x2, x2)→ Adomφ(x1) ∧Adomφ(x2),

∃x1.Adomφ(x1)}

And consider any interpretation I = 〈{a, b, c}, ·I〉, such that

P I = {(a, a, b), (b, a, a), (a, b, c)}.

Let us compute the semantic active domain of φ in I. adom(φ, I) = {a, b}
by the definition. Then if we specify the interpretation I by assigning some
subset of the domain {a, b, c} containing the semantic active domain {a, b} to the
predicate Adomφ, we will necessarily obtain a model of Aφ. Thus, the following
interpretations are models of the active domain theory for φ:

I1 = 〈{a, b, c}, ·I1〉, P I1 = {(a, a, b), (b, a, a), (a, b, c)}, AdomI1φ = {a, b};

I2 = 〈{a, b, c}, ·I2〉, P I2 = {(a, a, b), (b, a, a), (a, b, c)}, AdomI2φ = {a, b, c}.

3.3.2 Technique for checking domain independence

In this section we show how to prove domain independence of a formula φ by
proving a validity of a first-order logic entailment.
Let φ(x̄) be a formula in FOL(C,P) with free variables x̄, and let P be an unary
predicate. Then relativisation of the formula φ(x̄) to the predicate P is a formula
φ(x̄)|P defined as follows:

φ(x̄)|P := φ(x̄)|quanP ∧
∧
x∈x̄

P (x),

where φ(x̄)|quanP can be computed recursively applying the following relativising
rules:

1. if φ(x̄) is quantifier-free formula, then φ(x̄)|quanP := φ(x̄);

26

2. if φ(x̄) = ∃x. ψ(x̄, x), then φ(x̄)|quanP := ∃x. P (x) ∧ ψ(x̄, x)|quanP ;

3. if φ(x̄) = ∀x. ψ(x̄, x), then φ(x̄)|quanP := ∀x. P (x)→ ψ(x̄, x)|quanP ;

4. if φ(x̄) = ¬ψ(x̄), then φ(x̄)|quanP := ¬(ψ(x̄)|quanP);

5. if φ(x̄) = ψ(ȳ) ◦ ϕ(z̄), where x̄ = ȳ ∪ z̄ and ◦ stands for any of ∧, ∨, →,
then
φ(x̄)|quanP := ψ(ȳ)|quanP ◦ ϕ(z̄)|quanP .

Theorem 3.23. For any formula φ(x̄) in FOL(C,P) and any unary predicate
P ∈ P, φ(x̄)|P is safe-range.

Example 3.24. Let us compute relativisation of the formula φ(z) = ∀x.A(x)→
∃y. (B(x, z) ∨ C(x, y, z)) to the predicate P .

φ(z)|P = (∀x.A(x)→ ∃y. (B(x, z) ∨ C(x, y, z)))|quanP ∧ P (z) =

= (∀x. P (x)→ (A(x)→ ∃y. (B(x, z) ∨ C(x, y, z)))|quanP) ∧ P (z) =

= (∀x. P (x)→ (A(x)→ (∃y.B(x, z) ∨ C(x, y, z))|quanP)) ∧ P (z) =

= (∀x. P (x)→ (A(x)→ ∃y. (P (y) ∧ (B(x, z) ∨ C(x, y, z))))) ∧ P (z).

Theorem 3.25 (Checking domain independence). Let φ(x̄) be a formula in
FOL(C,P). Then φ(x̄) is domain independent iff

Aφ |= ∀x̄ . φ(x̄)↔ φ(x̄)|Adomφ
. (3.2)

Example 3.26. Let us consider the formula φ = ∃x. (A(x) ∨B(a)) from Topor
(1987) that was already mentioned and apply the theorem to it. This formula is
not safe-range but it is domain independent, because it is logically equivalent to
(∃x.A(x)) ∨ B(a), which is safe-range and, hence, domain independent. Such
kinds of formulas are of particular interest for us.
It follows from the definition of Aφ that

Aφ |= ∀x.A(x)→ Adomφ(x).

Hence,

Aφ |= ∃x.A(x)↔ ∃x.Adomφ(x) ∧A(x). (3.3)

Again, from the definition of Aφ,

Aφ |= ∃x.Adomφ(x).

Hence,

Aφ |= B(a)↔ ∃x.Adomφ(x) ∧B(a). (3.4)

27

As we mentioned already,

|= ∃x. (A(x) ∨B(a))↔ (∃x.A(x)) ∨B(a). (3.5)

It follows from (3.3) and (3.4) that

Aφ |= (∃x.A(x))∨B(a)↔ (∃x.Adomφ(x)∧A(x))∨(∃x.Adomφ(x)∧B(a)).

Then

Aφ |= (∃x.A(x)) ∨B(a)↔ ∃x.Adomφ(x) ∧ (A(x) ∨B(a)).

Hence, from (3.5) and the statement above we have:

Aφ |= ∃x. (A(x) ∨B(a))↔ ∃x.Adomφ(x) ∧ (A(x) ∨B(a)).

That is,

Aφ |= φ↔ φ|Adomφ

Therefore by applying the theorem we proved that the formula φ is domain
independent.

3.4 Applications to Various Fragments of First-Order
Logic

In this section we consider some applications of our technique (Theorem 3.25).
Using this technique makes particular sense when the formula to be checked
for domain independence is not safe-range. The following algorithm based on
Theorem 3.25 can be used for checking domain independence of a formula from
some fragment of first-order logic:

Algorithm 2 Checking domain independence

Input: A formula φ(x̄) from some fragment of FOL(C,P)
Output: If (3.6) is valid, φ(x̄) is domain independent. Otherwise, φ(x̄) is not

domain independent.

1: Construct active domain theory for φ(x̄): Aφ
2: Construct a relativisation of φ(x̄): φ(x̄)|Adomφ

3: Construct a conjunction of all sentences in Aφ: αφ.
4: Consider the following sentence:

αφ → (∀x̄ . φ(x̄)↔ φ(x̄)|Adomφ
). (3.6)

If this sentence is expressible in some decidable fragment of FOL(C,P),
check its validity.

28

In practice this algorithm is useful and can be applied for a formula φ(x̄) from
any not-safe-range fragment of FOL(C,P). The important requirement is that
the sentence (3.6) can be expressed in some decidable fragment. In the next
subsections of this section we consider applications of this algorithm for formulas
in such fragments of FOL(C,P), for which the sentence (3.6) is necessarily
expressible in some decidable fragment. Thus, for these fragments we have a
practical way to check domain independence by using the algorithm.

3.4.1 Two-variable fragment

Two-variable fragment of first-order logic FO2(C,P) (with equality) consists
of all formulas from FOL(C,P) (with equality) containing at most two distinct
variables. The first decidability result for this fragment without equality was
obtained by Scott. He showed that it is decidable (Scott, 1962). Decidability of
the two-variable fragment with equality was proved by Mortimer together with
the finite model property (1975). The satisfiability problem for FO2(C,P) with
equality is NEXPTIME-complete (Grädel, Kolaitis, & Vardi, 1997). It should be
noted that equality makes no difference to the complexity of the problem for this
fragment.
Following the relativising rules one can easily see that φ(x̄)|Adomφ

is expressed in
FO2(C,P) whenever φ(x̄) is in FO2(C,P). On the other hand, for any φ(x̄) ∈
FO2(C,P) and every predicate P from φ(x̄) and every index i ∈ Ind(P, φ) we
have: max (i) ≤ 2. Hence, by the definition of the active domain theory for a
formula, αφ is expressed in FO2(C,P) if φ is expressed in FO2(C,P).
Then αφ → (∀x̄ . φ(x̄) ↔ φ(x̄)|Adomφ

) is expressed in FO2(C,P) whenever
φ(x̄) is in FO2(C,P). Besides, FO2(C,P) contains domain independent formu-
las that are not safe-range. As an example one can consider the formula from
Example 3.26 or a tautology ∃x.A(x) ∨ ¬A(x). Thus, a two-variable fragment
of first-order logic is a reasonable application of our technique.

3.4.2 Prefix-vocabulary classes

First, let us recall what prefix-vocabulary classes are.
Prefix-vocabulary classes are classes of first-order logic that are determined by the
quantifier prefix and the vocabulary of relation and function symbols. The classical
decision problem for all such classes is solved. That is, we have a partition of
the family of prefix-vocabulary classes into decidable and undecidable (Börger,
Grädel, & Gurevich, 1997).
Prefix-vocabulary classes are denoted as [Π, (p1, p2, . . .), (f1, f2, . . .)](=), where
– Π stands for a word over {∃,∀,∃∗,∀∗} that denotes a set of quantifier prefixes,

where ’∗’ means any number of the preceding quantifier;

29

– pn, fn ≤ ω are respectively numbers of available relation and function symbols
of arity n (n is a natural number);

– presence (absence) of ’=’ indicates that the formulas in the fragment may
(cannot) contain equality.

In other words, [Π, (p1, p2, . . .), (f1, f2, . . .)](=) is a set of all formulas without
(with) equality of the form π.ϕ, where π ∈ Π, ϕ is quantifier-free, the number
of n-ary predicate symbols in ϕ is less than or equal to pn, the number of n-ary
function symbols in ϕ is less than or equal to fn and ϕ has no constants and no
free variables.

Example 3.27. [∃∗∀∃∗, (ω, 1), all]= is the class of all first-order sentences of the
form ∃x1, . . . , xm,∀y,∃z1, . . . , zn. ϕ, where ϕ is quantifier free and

– may contain at most one binary predicate and cannot contain predicates of
higher arities,

– may contain any number of unary predicates,

– may contain any number of function symbols of any arity higher than one,

– may contain equality.

Let [Π, (p1, p2, . . .), (f1, f2, . . .)]
C,free
(=) be fragments that are the same as

[Π, (p1, p2, . . .), f1, f2, . . .)](=), but where the constants from C, and free vari-
ables are allowed (one of the parameters C and free may be absent).
It is mentioned in Börger et al. (1997) that decidability class for

[Π, (p1, p2, . . .), (f1, f2, . . .)]
C,free
(=)

is the same as for

[Π, (p1, p2, . . .), (f1, f2, . . .)](=).

As usual, given a function-free first-order logic with equality FOL(C,P). We
consider prefix-vocabulary fragments of FOL(C,P) as applications of our tech-
nique.

3.4.2.1 Application in ∃∗-prefix class

Let us consider [∃∗, all, (0)]C= – a class of existential first-order formulas with
equality and without functions.

Proposition 3.28. If sentence φ is expressible in [∃∗, all, (0)]C=, then αφ → (φ↔
φ|Adomφ

) is expressible in [∃∗∀∗, all, (0)]C=.

30

The class [∃∗, all, (0)]C= is decidable because [∃∗, all, (0)]= is decidable as a sub-
fragment of existential first-order formulas with equality [∃∗, all, all]= (Börger
et al., 1997). The class [∃∗∀∗, all, (0)]C= is decidable because a corresponding
so-called Ramsey class [∃∗∀∗, all, (0)]= is decidable (Börger et al., 1997). De-
cidability of [∃∗∀∗, all, (0)]C= is more important for us since we need to check
satisfiability of the formula αφ → (φ↔ φ|Adomφ

) expressed in it. The formula
φ = ∃x. (A(x) ∨B(a)) from Example 3.26 is domain independent but not safe-
range and expressed in [∃∗, all, (0)]C=. Then it makes sense to apply our technique
to [∃∗, all, (0)]C=.

3.4.2.2 Application in Löwenheim class

Let us consider a set of first-order formulas over unary predicates with equality
and without functions in FOL(C,P). Let us denote this fragment F for this
subsection. Then the set of all prenex normal forms of all formulas from this frag-
ment is actually a prefix-vocabulary class [all, (w), (0)]C,free

= , which is decidable,
since the class [all, (w), (0)]=, which is called Löwenheim class with equality,
is decidable (Van Heigenoort, 1977; Börger et al., 1997). So, without loss of
generality we can assume that we consider the fragment [all, (w), (0)]C,free

= .
Let φ(x̄) be a formula from F (or [all, (w), (0)]C,free

=). Again, following the
relativising rules and definition of the active domain theory for a formula one
can see that αφ → (∀x̄ . φ(x̄) ↔ φ(x̄)|Adomφ

) is expressed in F . Then after
a standard transformation of this sentence to prenex normal form we obtain a
logically equivalent formula, which is expressed in [all, (w), (0)]C,free

= . And
again, the formula ∃x. (A(x) ∨B(a)) from Example 3.26 can be considered as
an example of a safe-range but not domain independent formula expressed in
[all, (w), (0)]C,free

= . It means that our method is applicable in [all, (w), (0)]C,free
= .

3.5 Proofs of Section 3.2

3.5.1 Auxiliary definitions

We recall the formal semantics of the standard relational algebra RA (see, e.g.,
Abiteboul et al. (1995) for details). Let I be a database instance of a database
schemaR over an underlying domain ∆. Algebra expressions are either atomic
expressions (atomic relations, constant singletons) or complex expressions built
according to inductive formation rules based on standard unary and binary opera-
tors (selection, projection, cartesian product, union and difference). The semantics
of an algebra expression e is inductively defined as the transformation of database
instances I to a set of tuples e(I) as follows:

31

– Atomic relation - R - (where R ∈ R)

R(I) = I(R).

– Constant singleton - 〈c〉 - (where c is a constant)

〈c〉(I) = {〈c〉}.

– Selection - σi=c(e), σi=j(e) - (where c is a constant, m is the arity of e, and
i, j ≤ m)

σi=c(e)(I) = {s is a m-tuple | s ∈ e(I) and s(i) = c},
σi=j(e)(I) = {s is a m-tuple | s ∈ e(I) and s(i) = s(j)}.

– Projection - πi1,...,ik(e) - (where m is the arity of e, and {i1, . . . , ik} ⊆
[1 . . .m])

πi1,...,ik(e)(I) =

= {s is a k-tuple | exists s′ ∈ e(I) s.t. for all 1 ≤ j ≤ k. s(j) = s′(ij)}.

– Cartesian product - e× e′ - (where n,m are the arities of e, e′)

(e× e′)(I) = {s is a (n+m)-tuple | exists t ∈ e(I), t′ ∈ e′(I) s.t.
for all 1 ≤ j ≤ n. s(j) = t(j) and
for all 1 + n ≤ j ≤ (n+m). s(j) = t′(j − n)}.

– Union/Difference - e ∪ e′, e− e′ - (where m is the arity of e and e′)

(e ∪ e′)(I) = {s is a m-tuple | s ∈ e(I) or s ∈ e′(I)},
(e− e′)(I) = {s is a m-tuple | s ∈ e(I) and s 6∈ e′(I)}.

3.5.2 Proof of Proposition 3.14

Proof. Let us prove the proposition by induction on the structure of formula.

– Base.

1. φ = R(t1, . . . , tn), where each ti is either a variable or a constant. φ is in
safe-range normal form.
rr(R(t1, . . . , tn)) = FREE(R(t1, . . . , tn)). Hence, φ is safe-range.

2. φ = (x = c), where c is a constant. φ is in safe-range normal form.
rr(x = c) = {x} = FREE(x = c). Hence, φ is safe-range.

32

3. φ = (c1 = c2), where c1 and c2 are a constants. φ is in safe-range normal
form.
rr(c1 = c2) = ∅ = FREE(c1 = c2). Hence, φ is safe-range.

– φ = ϕ ∧ (x = y), where FREE(ϕ) ∩ {x, y} 6= ∅. Suppose that the proposition
holds for the formula ϕ, i.e. rr(SRNF(ϕ)) = FREE(ϕ).
We have: SRNF(φ) = SRNF(ϕ) ∧ (x = y). Then rr(φ) = rr(SRNF(φ)) =
rr(SRNF(ϕ))∪{x, y} = FREE(ϕ)∪{x, y} = FREE(φ). Hence, φ is safe-range.

– φ = ϕ1 ∧ ϕ2. Suppose that the proposition holds for the formulas ϕ1 and ϕ2,
i.e. rr(ϕ1) = FREE(ϕ1), rr(ϕ2) = FREE(ϕ1).
One can easily see, taking into account safe-range transformation rules, that
rr(φ) = rr(ϕ1) ∪ rr(ϕ2) = FREE(ϕ1) ∪ FREE(ϕ2) = FREE(φ). Hence, φ is
safe-range.

– φ = ∃x. ϕ, where x ∈ FREE(ϕ). Suppose that the proposition holds for the
formula ϕ, i.e. rr(SRNF(ϕ)) = FREE(ϕ).
We have: rr(φ) = rr(SRNF(φ)) = rr(∃x. SRNF(ϕ)) = rr(SRNF(ϕ))\{x} =
FREE(ϕ) \ {x} = FREE(φ). Hence, φ is safe-range.

– φ = ϕ1(x̄) ∨ ϕ̄2(x̄). Suppose that the proposition holds for the formu-
las ϕ1(x̄) and ϕ2(x̄), i.e. rr(ϕ1(x̄)) = FREE(ϕ1(x̄)) = x̄, rr(ϕ2(x̄)) =
FREE(ϕ1(x̄)) = x̄.
One can easily see, taking into account safe-range transformation rules, that
rr(φ) = rr(ϕ1(x̄)) ∩ rr(ϕ2(x̄)) = x̄ ∩ x̄ = x̄ = FREE(φ). Hence, φ is
safe-range.

– φ = ϕ1(x̄, ȳ) ∧ ¬ϕ2(ȳ). Suppose that the proposition holds for the formulas
ϕ1(x̄, ȳ) andϕ2(ȳ), i.e. rr(ϕ1(x̄, ȳ)) = FREE(ϕ1(x̄, ȳ)) = x̄∪ȳ, rr(ϕ2(ȳ)) =
FREE(ϕ1(ȳ)) = ȳ.
One can easily see, taking into account safe-range transformation rules, that
rr(φ) = rr(ϕ1(x̄, ȳ)) ∪ rr(¬ϕ2(ȳ)) = x̄ ∪ ȳ ∪ (∅ ∩ rr(ϕ2(ȳ))) = x̄ ∪ ȳ ∪
(∅ ∩ ȳ) = x̄ ∪ ȳ ∪ ∅ = x̄ ∪ ȳ = FREE(φ). Hence, φ is safe-range.

The proposition is proved.

3.5.3 Proof of Theorem 3.15

Let us first prove the following lemma.

Lemma 3.29. RA v RAFO.

Proof. We need to prove that for each n-ary RA expression e there is an
equivalent RAFO formula φe, i.e. with a little abuse of notation e(I) = (φe)

I for

33

any I, that can be seen either as a relational database (on the left-hand side) or as
an interpretation with the same domain (on the right-hand side). Let us prove the
lemma by induction on the structure of the RA expression e.

– Base.

1. e = R, where R is a relation name of arity n. Then one can easily see that
φe = R(x1, . . . , xn) ∈ RAFO (R here can be seen as an n-ary predicate).

2. e = 〈c〉, where c is a constant. Then φe = (x = c) ∈ RAFO.

– e = σi=c(e1), where e1 ∈ RA, c is a constant and i ≤ n. Suppose that for e1

there exists an equivalent formula φe1 ∈ RAFO. Then φe = φe1 ∧ (xi = c).
φe ∈ RAFO because φe1 ∈ RAFO.

– e = σi=j(e1), where e1 is an RA expression of arity n and i, j ≤ n. Suppose
that for e1 there exists an equivalent formula φe1 ∈ RAFO. Then φe = φe1 ∧
(xi = xj). φe ∈ RAFO because φe1 ∈ RAFO, xi ∈ FREE(φe) and xj ∈
FREE(φe).

– e = πi1,...,in(e1), where e1 is an RA expression of arity m and i1, . . . , in ≤ m.
Suppose that for e1 there exists an equivalent formula φe1 ∈ RAFO. Then

φe(xi, . . . , xn) =

∃y1, . . . , ym. (φe1(y1, . . . , ym) ∧ (x1 = yi1) ∧ . . . ∧ (xn = yin)).

φe(xi, . . . , xn) ∈ RA because φe1 ∈ RA, each yij ∈ {y1, . . . , ym}.

– e = e1 × e2, where e1 and e2 are RA expressions of arities l and m re-
spectively. Suppose that for e1 there exists an equivalent formula φe1 ∈
RAFO and for e2 there exists an equivalent formula φe2 ∈ RAFO. Then
φe(x1, . . . , xl, xl+1, . . . , xl+m) = φe1(xi, . . . , xl) ∧ φe2(xl+1, . . . , xl+m).
φe ∈ RAFO because φe1 ∈ RAFO and φe2 ∈ RAFO.

– e = e1 ∪ e2, where e1 and e2 are RA expressions of the same arity n. Suppose
that for e1 there exists an equivalent formula φe1 ∈ RAFO and for e2 there exists
an equivalent formula φe2 ∈RAFO. Then φe(x1, . . . , xn) = φe1(x1, . . . , xn)∨
φe2(x1, . . . , xn). φe(x1, . . . , xn) ∈ RAFO, because
φe1(x1, . . . , xn) ∈ RAFO, φe2(x1, . . . , xn) ∈ RAFO and φe1 and φe2 have the
same arity n.

– e = e1 − e2, where e1 and e2 are RA expressions of the same arity n. Suppose
that for e1 there exists an equivalent formula φe1 ∈ RAFO and for e2 there exists
an equivalent formula φe2 ∈RAFO. Then φe(x1, . . . , xn) = φe1(x1, . . . , xn)∧

34

¬φe2(x1, . . . , xn). φe(x1, . . . , xn) ∈ RAFO, because
φe1(x1, . . . , xn) ∈ RAFO, φe2(x1, . . . , xn) ∈ RAFO and FREE(φe2) =
= {x1, . . . , xn} ⊆ FREE(φe1) = {x1, . . . , xn}.

The lemma is proved.

It is known that Safe-range ⊂ Domain independent and RA ≡ Domain indepen-
dent (Abiteboul et al., 1995). Then the Theorem 3.15 follows from the Proposition
3.14 and Lemma 3.29.

3.6 Proofs of Sections 3.3 and 3.4

3.6.1 Proof of Theorem 3.23

Proof. Without loss of generality assume that φ(x̄) is in safe-range normal form
(if it is not we, first, transform φ(x̄) to SRNF(φ(x̄))). Recall:

φ(x̄)|P := φ(x̄)|quanP ∧
∧
x∈x̄

P (x)

Let us prove the theorem by induction on a structure of a formula.

1. Base. φ(x̄) = R(t1, . . . , tn), where each ti is either a variable from x̄ or a
constant (remember, that x̄ = FREE(φ)). Then

R(t1, . . . , tn)|P = R(t1, . . . , tn) ∧
∧
x∈x̄

P (x)

by definition. Then

rr(φ(x̄)|P) = rr(R(t1, . . . , tn)) ∪
⋃
x∈x̄

rr(P (x)) = x̄ = FREE(φ).

Hence, φ(x̄)|P is safe-range by definition.

2. φ(x̄) = ∃y. ψ(x̄, y), where ψ(x̄, y)|P is safe-range by supposition. Then
φ(x̄)|P = (∃y. P (y) ∧ ψ(x̄, y)|quanP) ∧

∧
x∈x̄

P (x). rr(φ(x̄)|P) = ({y} ∪

rr(ψ(x̄, y)|quanP) \ {y}) ∪ x̄. Since ψ(x̄, y)|P is safe-range, rr(ψ(x̄, y)|quanP

cannot be ⊥ by definition. That is, rr(φ(x̄)|P) = x̄ = FREE(φ). Hence,
φ(x̄)|P is safe-range by definition. Note that this means that for any formula
φ(x̄) in safe-range normal form, rr(φ(x̄))|quanP can never be ⊥.

35

3. φ(x̄) = ¬ψ(x̄), where ψ(x̄)|P is safe-range by supposition. Then φ(x̄)|P :=

¬(ψ(x̄)|quanP)∧
∧
x∈x̄

P (x). rr(φ(x̄)|P) = (∅∩rr(ψ(x̄)|quanP))∪
⋃
x∈x̄

rr(P (x)).

Since rr(ψ(x̄)|quanP) can never be ⊥, we have that rr(φ(x̄)|P) = x̄ =
FREE(φ). Hence, φ(x̄)|P is safe-range by definition.

4. φ(x̄) = ψ(ȳ) ◦ ϕ(z̄), where x̄ = ȳ ∪ z̄, ◦ stands for any of ∧, ∨ and ψ(ȳ)|P
and ϕ(z̄)|P are both safe-range. Then φ(x̄)|P := (ψ(ȳ)|quanP ◦ ϕ(z̄)|quanP) ∧∧
x∈x̄

P (x). Then rr(φ(x̄)|P) = (rr(ψ(ȳ)|quanP) • rr(ϕ(z̄)|quanP))∪

∪
⋃
x∈x̄

rr(P (x)), where • stands for ∪ when ◦ stands for ∧, and • stands for

∩ when ◦ stands for ∨. Since none of the rr(ψ(ȳ)|quanP), rr(ϕ(z̄)|quanP) is ⊥,
rr(φ(x̄)|P) = x̄ = FREE(φ). Hence, φ(x̄)|P is safe-range by definition.

The theorem is proved.

3.6.2 Auxiliary definitions, propositions and lemmas

Here we give some auxiliary definitions, propositions and lemmas that we need to
prove the main theorem (Theorem 3.25).

Definition 3.30 (φ-compatible interpretations). Let φ be a formula from
FOL(C,P). Two interpretations I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉 are φ-
compatible iff for any predicate P appearing in φ and constant c appearing in φ
the following holds:

cI1 = cI2 ,⋃
i∈Ind(P,φ)

{(ai1 , . . . , ain) | (ai1 , . . . , ain) ∈ P I1} =

=
⋃

i∈Ind(P,φ)

{(ai1 , . . . , ain) | (ai1 , . . . , ain) ∈ P I2},

where ac := cI1 = cI2 for any c ∈ C.

Note that any two compatible interpretations are always φ-compatible for any
formula φ.

Proposition 3.31. Formula φ in FOL(C,P) is domain independent iff for any
two φ-compatible interpretations I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉, such that if
C 6= ∅, then ∆1 ∩∆2 6= ∅, we have:

(φ)I1 = (φ)I2 .

36

Proof. ” ⇐ ” Let I1 = 〈∆1, ·I1〉 and I2 = 〈∆2, ·I2〉 be any two compatible
interpretations. Then I1 and I2 are φ-compatible. Two cases are possible:

1. C = ∅. By supposition we have, that (φ)I1 = (φ)I2 .

2. C 6= ∅. Since I1 and I2 are compatible, for any constant c from C we have:
cI1 = cI2 . Let e := cI1 = cI2 . Then it is evident that e ∈ ∆1 ∩∆2. Hence,
∆1 ∩∆2 6= ∅. Again by supposition we have: (φ)I1 = (φ)I2 .

Therefore, φ is domain independent by definition.
”⇒ ” Suppose, φ is domain independent. Suppose also that I1 = 〈∆1, ·I1〉 and
I2 = 〈∆2, ·I2〉 are any two φ-compatible interpretations such that ∆1 ∩∆2 6= ∅
if the set of all constants C is not empty. We need to prove that (φ)I1 = (φ)I2 .
Let us construct two interpretations I ′1 = 〈∆1, ·I

′
1〉 and I ′2 = 〈∆2, ·I

′
2〉 such that:

– for any P ∈ σ(φ) ∩ P,
P I
′
1 =

⋃
i∈Ind(P,φ)

{(ai1 , . . . , ain) | (ai1 , . . . , ain) ∈ P I1} = P I
′
2 ;

– for any c ∈ σ(φ) ∩ C, cI
′
1 = cI1 = cI

′
2 ;

– for any P ∈ P \ σ(φ) : P I
′
1 = ∅ = P I

′
2 ;

– if C 6= ∅, then for any constant c ∈ C \ σ(φ) : cI
′
1 = cI

′
2 = e, where e is any

element in a set ∆1 ∩∆2, which is not empty by supposition.

By construction I ′1 and I ′2 are compatible. Since φ is domain independent,

(φ)I
′
1 = (φ)I

′
2 . (3.7)

Let us consider interpretations I1 and I ′1. They have the same domain ∆1 and
they are φ-compatible by definition. Then it is evident that for any substitution
Θ : X 7→ ∆1 we have: I1,Θ |= φ iff I ′1,Θ |= φ. So, by definition of extension
of a formula:

(φ)I1 = (φ)I
′
1 . (3.8)

Similarly

(φ)I2 = (φ)I
′
2 . (3.9)

So, it follows from (3.7), (3.8) and (3.9) that (φ)I1 = (φ)I2 . The proposition is
proved completely.

The proposition is proved.

37

Lemma 3.32. Let φ(x̄) be any (possibly closed) formula in FOL(C,P), I =
〈∆, ·I〉 be any model of Aφ, and I ′ = 〈AdomIφ, ·I

′〉 be any φ-compatible with I
interpretation. Then

(φ(x̄))I
′

= (φ(x̄)|Adomφ
)I (3.10)

Proof. First, we need to note that the statement of the lemma is well defined,
because for any model I of Aφ there always exists a φ-compatible interpretation
I ′ = 〈AdomIφ, ·I

′〉 that can be constructed, for example, as follows:

– for any P ∈ σ(φ) ∩ P,
P I
′

:=
⋃

i∈Ind(P,φ)

{(ai1 , . . . , ain) | (ai1 , . . . , ain) ∈ P I} ⊆ AdomIφ,

where ac := cI for any c ∈ C;

– for any c ∈ σ(φ) ∩ C, cI
′

:= cI ∈ AdomIφ;

– for any P ∈ P \ σ(φ) : P I
′

:= ∅;

– for any c ∈ C \ σ(φ) : cI
′

:= e, where e is any element from AdomIφ, which
is not empty because I is a model of Aφ.

We need to prove that

(φ(x̄))I
′

= (φ(x̄)|quanAdomφ ∧
∧
x∈x̄

Adomφ(x))I

For any substitution Θ from (φ(x̄))I
′

we have that Θ : X 7→ AdomIφ, because

AdomIφ is domain of I ′. Hence, Θ ⊆
⋂
x∈x̄

(Adomφ(x))I .

We will prove the lemma by induction on the structure of formula.

1. Base.

a) φ(x̄) = P (c̄, x̄) is an atomic formula, in which all constants from c̄ =
{c1, . . . , ck} and all variables from x̄ = {x1, . . . , xn} occur at some
places.
”⊆” Let Θ be any substitution from (P (c̄, x̄))I

′
, i.e. I ′,Θ |= P (c̄, x̄), and

let ai = Θ(xi), i = 1, . . . , n; ā = {a1, . . . , an}; c̄I
′

= {cI′1 , . . . , c
I′
k }.

Then (c̄I
′
, ā) ∈ P I′ , where position of each cI

′

i in (c̄I
′
, ā) corresponds to

the position of ci in P (c̄, x̄) and position of each aj in (c̄I
′
, ā) corresponds

to the position of xj in P (c̄, x̄). Then, since I ′ and I are φ-compatible,
(c̄I , ā) ∈ P I . Hence, I,Θ |= P (c̄, x̄). So, Θ ∈ (P (c̄, x̄))I . More-
over, as we mentioned, Θ ∈ (Adomφ(x1) ∧ . . . ∧ Adomφ(xn))I . Then

38

Θ ∈ (P (c̄, x̄))I ∩ (Adomφ(x1) ∧ . . . ∧ Adomφ(xn))I = (P (c̄, x̄) ∧
Adomφ(x1) ∧ . . . ∧Adomφ(xn))I = (φ(x̄)|Adomφ

)I .
”⊇” Let now Θ be any substitution from (P (c̄, x̄) ∧Adomφ(x1) ∧ . . . ∧
Adomφ(xn))I = (φ(x̄)|Adomφ

)I and such that ai = Θ(xi), i = 1, . . . , n.
To prove that Θ ∈ (P (c̄, x̄))I

′
we basically need to follow the proof ”⊆”

in opposite direction.

b) φ(x) = (x = c), where c is a constant. Let Θ be any substitution from
(x = c)I

′
such that Θ(x) = a. That is I ′,Θ |= x = c. Then a = cI

′
, and

a = cI , because I ′ and I are φ-compatible. Then I,Θ |= x = c, that is
Θ ∈ (x = c)I and as we mentioned Θ ∈ (Adomφ(x))I . Then Θ ∈ (x =
c)I ∩ (Adomφ(x))I = ((x = c) ∧Adomφ(x))I = (φ(x)|Adomφ

)I .
Let now Θ be any substitution from ((x = c) ∧ Adomφ(x))I such that
Θ(x) = a. To prove that Θ ∈ (x = c)I

′
we basically need to follow the

proof ”⊆” in opposite direction.

c) Cases φ(x, y) = (x = y), and φ = (c1 = c2) (c1 and c2 are constants)
can be proved similarly to the case (b).

2. φ(x̄, ȳ, z̄) = ψ(ȳ, x̄) ∧ ϕ(x̄, z̄), FREE(φ) = x̄ ∪ ȳ ∪ z̄, FREE(ψ) = ȳ ∪ x̄,
FREE(ϕ) = x̄ ∪ z̄. Suppose that the lemma holds for the formulas ψ and
ϕ,that is

– for any model I1 = 〈∆1, ·I1〉 of Aψ and any ψ-compatible with I1 inter-
pretation I ′ = 〈AdomI1ψ , ·I

′〉 we have:

(ψ(ȳ, x̄))I
′

= (ψ(ȳ, x̄)|quanAdomψ∧
∧
y∈ȳ

Adomψ(y)∧
∧
x∈x̄

Adomψ(x))I1 (3.11)

– for any model I2 = 〈∆2, ·I2〉 of Aϕ and any ϕ-compatible with I2 inter-
pretation I ′′ = 〈AdomI2ϕ , ·I

′′〉 we have:

(ϕ(x̄, z̄))I
′′

= (ϕ(x̄, z̄)|quanAdomϕ∧
∧
x∈x̄

Adomϕ(x)∧
∧
z∈z̄

Adomϕ(z))I2 (3.12)

Let I = 〈∆, ·I〉 be any model of Aφ and let I∗ = 〈AdomIφ, ·I
∗〉 be any

φ-compatible with I interpretation. Let Ī = 〈∆, ·Ī〉 be an interpretation such
that Adom Īψ = Adom Īϕ = AdomIφ and ·Ī interpret all the other predicates
and constants as ·I . Then Ī is a model of Aφ and since σ(φ) = σ(ψ) ∪ σ(ϕ),

39

Ī is a model of Aψ and Aϕ by construction and

(ψ(ȳ, x̄)|quanAdomψ)Ī = (ψ(ȳ, x̄)|quanAdomφ)Ī = (ψ(ȳ, x̄)|quanAdomφ)I ,

(ϕ(x̄, z̄)|quanAdomϕ)Ī = (ϕ(x̄, z̄)|quanAdomφ)Ī = (ϕ(x̄, z̄)|quanAdomφ)I .

Thus, by (3.11) we have:
(ψ(ȳ, x̄))I

∗
= (ψ(ȳ, x̄)|quanAdomψ ∧

∧
y∈ȳ

Adomψ(y) ∧
∧
x∈x̄

Adomψ(x))Ī =

= (ψ(ȳ, x̄)|quanAdomψ)Ī ∩
⋂
y∈ȳ

(Adomψ(y))Ī ∩
⋂
x∈x̄

(Adomψ(x))Ī =

= (ψ(ȳ, x̄)|quanAdomφ)I ∩
⋂
y∈ȳ

(Adomφ(y))I ∩
⋂
x∈x̄

(Adomφ(x))I

= (ψ(ȳ, x̄)|quanAdomφ ∧
∧
y∈ȳ

Adomφ(y) ∧
∧
x∈x̄

Adomφ(x))I .

Similarly, by (3.12) we have:
(ϕ(x̄, z̄))I

∗
= (ϕ(x̄, z̄)|quanAdomφ ∧

∧
x∈x̄

Adomφ(x) ∧
∧
z∈z̄

Adomφ(z))I .

Then (φ(x̄, ȳ, z̄)I
∗

= (ψ(ȳ, x̄) ∧ ϕ(x̄, z̄))I
∗

= (ψ(ȳ, x̄)I
∗ ∩ (ϕ(x̄, z̄))I

∗
=

= (ψ(ȳ, x̄)|quanAdomφ ∧ ϕ(x̄, z̄)|quanAdomφ ∧
∧
y∈ȳ

Adomφ(y) ∧
∧
x∈x̄

Adomφ(x)∧∧
z∈z̄

Adomφ(z))I = (φ(x̄, ȳ, z̄)|quanAdomφ ∧
∧

x∈x̄∪ȳ∪z̄
Adomφ(x))I =

(φ(x̄, ȳ, z̄)|Adomφ)I .

The case is proved.

3. φ(x̄) = ¬ψ(x̄). Suppose that the lemma holds for the formula ψ(x̄). Let
I = 〈∆, ·I〉 be any model ofAφ and I ′ = 〈AdomIφ, ·I

′〉 be any φ-compatible
with I interpretation. Since σ(ψ) = σ(φ), we have: I is a model of Aψ
as well, AdomIφ = AdomIψ, and, hence, (Adomφ(x̄))I = (Adomψ(x̄))I ,
(ψ(x̄)|quanAdomφ)I = (ψ(x̄)|quanAdomψ)I . Then, since the lemma holds for ψ(x̄), we
have:

(ψ(x̄))I
′

= (ψ(x̄)|quanAdomψ ∧
∧
x∈x̄

Adomψ(x))I .

Then (φ(x̄))I
′

= (¬ψ(x̄))I
′

=

=
⋂
x∈x̄

(Adomφ(x))I \ (ψ(x̄))I
′

=
⋂
x∈x̄

(Adomφ(x))I \ (ψ(x̄)|quanAdomψ∧

∧
∧
x∈x̄

Adomψ(x))I =
⋂
x∈x̄

(Adomφ(x))I \ ((ψ(x̄)|quanAdomψ)I∩

40

∩
⋂
x∈x̄

(Adomψ(x))I) =

=
⋂
x∈x̄

(Adomφ(x))I \ ((ψ(x̄)|quanAdomφ)I ∩
⋂
x∈x̄

(Adomφ(x))I) =⋂
x∈x̄

(Adomφ(x))I \ (ψ(x̄)|quanAdomφ)I = ({Θ | Θ : X 7→ ∆}n \ (ψ(x̄)|quanAdomφ)I)

∩
⋂
x∈x̄

(Adomφ(x))I = (¬(ψ(x̄)|quanAdomφ))I ∩
⋂
x∈x̄

(Adomφ(x))I =

= ((¬ψ(x̄))|quanAdomφ ∧
∧
x∈x̄

Adomφ(x))I = (φ(x̄)|Adomφ)I .

The case is proved.

4. φ(x̄, ȳ, z̄) = ψ(ȳ, x̄) ∨ ϕ(x̄, z̄). Suppose that the lemma holds for the
formulas ψ(ȳ, x̄) and ϕ(x̄, z̄). Let I = 〈∆, ·I〉 be any model of Aφ and
I ′ = 〈AdomIφ, ·I

′〉 be any φ-compatible with I interpretation. Then
(φ(x̄, ȳ, z̄))I

′
= (ψ(ȳ, x̄) ∨ ϕ(x̄, z̄)I

′
= (¬(¬ψ(ȳ, x̄) ∧ ¬ϕ(x̄, z̄))I

′
. By

the cases that are proved already we have: (¬(¬ψ(ȳ, x̄) ∧ ¬ϕ(x̄, z̄))I
′

=
((¬(¬ψ(ȳ, x̄) ∧ ¬ϕ(x̄, z̄)))|Adomφ)I = ((ψ(ȳ, x̄) ∨ ϕ(x̄, z̄))|Adomφ)I =
= (φ(x̄, ȳ, z̄)|Adomφ)I .

The case is proved.

5. φ(x̄, ȳ, z̄) = ψ(ȳ, x̄)→ ϕ(x̄, z̄). This case can be proved similarly to the case
4.

6. Let φ(x̄) = ∃y. ψ(y, x̄), where FREE(φ(x̄)) = x̄, FREE(ψ(y, x̄)) = y ∪ x̄.
Suppose that the lemma holds for the formula ψ(y, x̄). Let I = 〈∆, ·I〉
be any model of Aφ and I ′ = 〈AdomIφ, ·I

′〉 be any φ-compatible with I
interpretation. Since σ(ψ) = σ(φ), we have: I is a model of Aψ as well, I ′
is ψ-compatible with I, AdomIφ = AdomIψ, and, hence, (Adomφ(x))I =

(Adomψ(x))I , (ψ(x̄)|quanAdomφ)I = (ψ(x̄)|quanAdomψ)I . Then, since the lemma
holds for ψ(y, x̄), we have:

(ψ(y, x̄))I
′

= (ψ(y, x̄)|quanAdomφ ∧Adomφ(y) ∧
∧
x∈x̄

Adomφ(x̄))I .

”⊆” Θ ∈ (φ(x̄))I
′

= (∃y. ψ(y, x̄))I
′
. Hence, there exists a ∈ AdomIφ such

that
I ′,Θ[y → a] |= ψ(y, x̄), where Θ[y → a] is a substitution that is the same as

41

Θ except that it assigns element a to variable y. Then

Θ[y → a] ∈ (ψ(y, x̄))I
′

= (ψ(y, x̄)|quanAdomφ ∧Adomφ(y)
∧
x∈x̄

Adomφ(x̄))I .

Hence,

Θ ∈ (∃y.(Adomφ(y) ∧ ψ(y, x̄)|quanAdomφ)
∧
x∈x̄

Adomφ(x̄))I = (φ(x̄)|Adomφ
)I .

”⊇” Let Θ ∈ (φ(x̄)|Adomφ
)I . By following the previous proof in opposite

direction we can get that Θ ∈ (φ(x̄))I
′
.

The case is proved.

7. φ(x̄) = ∀y. ψ(y, x̄). Suppose that the lemma holds for the formula ψ(y, x̄).
Let I = 〈∆, ·I〉 be any model of Aφ and I ′ = 〈AdomIφ, ·I

′〉 be any φ-
compatible with I interpretation. Since σ(ψ) = σ(φ), we have: I is a model
of Aψ as well, I ′ is ψ-compatible with I, AdomIφ = AdomIψ, and, hence,
(Adomφ(x))I = (Adomψ(x))I , (ψ(x̄)|quanAdomφ)I = (ψ(x̄)|quanAdomψ)I . Then

taking into account the previous cases we have: (φ(x̄))I
′

= (∀y. ψ(y, x̄))I
′

=

= (¬∃y.¬ψ(y, x̄))I
′

= ((¬∃y.¬ψ(y, x̄))|quanAdomψ ∧
∧
x∈x̄

Adomψ(x))I =

= (¬∃y. (Adomψ(y) ∧ ¬(ψ(y, x̄))|quanAdomψ) ∧
∧
x∈x̄

Adomψ(x))I =

= (∀y. (¬Adomφ(y) ∨ ψ(y, x̄)|quanAdomφ) ∧
∧
x∈x̄

Adomφ(x))I =

= (∀y. (Adomφ(y)→ ψ(y, x̄)|quanAdomφ) ∧
∧
x∈x̄

Adomφ(x))I = (φ(x̄)|Adomφ)I .

The case is proved.

The lemma is proved.

3.6.3 Proof of Theorem 3.25

Proof. ”⇒” Let φ(x̄) be domain independent. I = 〈∆, ·I〉 is a model of Aφ
and I ′ =
〈AdomIφ, ·I

′〉 be any φ-compatible with I (it exists as we mentioned in the
previous proof). Then ∅ 6= AdomIφ ⊆ ∆. Hence, since φ(x̄) is domain in-
dependent, by Proposition 3.31 we have: (φ(x̄))I = (φ(x̄))I

′
. By Lemma

3.32, (φ(x̄))I
′

= (φ(x̄)|Adomφ
)I . Then (φ(x̄))I = (φ(x̄)|Adomφ

)I . It means
that for any substitution Θ, I,Θ |= φ(x̄) iff I,Θ |= φ(x̄)|Adomφ

. That is,

42

I,Θ |= φ(x̄)↔ φ(x̄)|Adomφ
. That is I |= ∀x̄. φ(x̄)↔ φ(x̄)|Adomφ

. Recall that
I is any model of Aφ. Then Aφ |= ∀x̄. φ(x̄)↔ φ(x̄)|Adomφ

.
”⇐” Suppose, that Aφ |= ∀x̄. φ(x̄) ↔ φ(x̄)|Adomφ

. Let us prove that φ(x̄) is
domain independent.
Let I1 = 〈∆1, ·I1〉 be any interpretation. Consider interpretation I∗ = 〈∆1, ·I

∗〉
such that the interpretation function ·I∗ assigns everything exactly as ·I1 except the
interpretation of the predicate Adomφ. Let AdomI

∗

φ be any non empty set contain-
ing adom(φ, I1). Then it is easy to see that I∗ is a model of Aφ. Interpretations
I1 and I∗ have the same domain ∆1 and they interpret all the predicates (except
Adomφ) and constants in the same way. Then, evidently, (φ(x̄))I1 = (φ(x̄))I

∗

(because Adomφ 6∈ σ(φ)).
Since I∗ is a model of Aφ, by supposition we have:

I∗ |= ∀x̄. φ(x̄)↔ φ(x̄)|Adomφ
.

That is, for any Θ : X 7→ ∆ we have: I∗,Θ |= φ(x̄) ↔ φ(x̄)|Adomφ
. That

is (φ(x̄))I
∗

= (φ(x̄)|Adomφ
)I
∗
. By Lemma 3.32 we have: (φ(x̄)|Adomφ

)I
∗

=

(φ(x̄))I
′
, where I ′ = 〈AdomI

∗

φ , ·I′〉 is any φ-compatible with I∗ and I1 inter-
pretation. Summing up we have: (φ(x̄))I1 = (φ(x̄))I

∗
= (φ(x̄)|Adomφ

)I
∗

=

(φ(x̄))I
′
.

Together with I1 let us consider any other φ-compatible with I1 interpretation
I2 = 〈∆2, ·I2〉. Then similarly (φ(x̄))I2 = (φ(x̄))I

′
. Hence, (φ(x̄))I1 =

(φ(x̄))I
′

= (φ(x̄))I2 . Then by Proposition 3.31 formula φ(x̄) is domain indepen-
dent.

The theorem is proved.

3.6.4 Proof of Proposition 3.28

Proof. αφ =
∧

P∈σ(φ)

∧
i∈Ind(P,φ)

(∀x1, . . . , xmax(i). P (xi1 , . . . , xiAR(P)
)→

→
max(i)∧
j=1

Adomφ(xj)) ∧
∧

c∈σ(φ)∩C

Adomφ(c) ∧ ∃x1.Adomφ(x1). Let m(φ) be

the maximal number in the set {max (i) | i ∈ Ind(P, φ), P ∈ σ(φ)}. Then one
can easily check that
αφ ≡ (∀x1, . . . , xm(φ).

∨
P∈σ(φ)

∨
i∈Ind(P,φ)

P (xi1 , . . . , xiAR(P)
)→

→
m(φ)∧
j=1

Adomφ(xj)) ∧
∧

c∈σ(φ)∩C

Adomφ(c) ∧ ∃w.Adomφ(w).

43

Suppose φ = ∃ȳ. ϕ(ȳ) ∈ [∃∗, all, (0)]C=, where ȳ = y1, . . . , yn and ϕ(ȳ) is
quantifier free. Then φ↔ φ|Adomφ

≡ (¬φ ∨ φ|Adomφ
) ∧ (φ ∨ ¬φ|Adomφ

) ≡
≡ (¬∃ȳ. ϕ(ȳ) ∨ (∃ȳ. ϕ(ȳ) ∧

∧
y∈ȳ

Adomφ(y))) ∧ (∃ȳ. ϕ(ȳ) ∨ (¬∃ȳ. ϕ(ȳ)∧

∧
∧
y∈ȳ

Adomφ(y))) ≡ (∀ȳ.¬ϕ(ȳ) ∨ (∃z̄. ϕ(z̄) ∧
∧
z∈z̄

Adomφ(z)))∧

∧(∃ū. ϕ(ū) ∨ ∀v̄.¬(ϕ(v̄) ∧
∧
v∈v̄

Adomφ(v))) ≡ ∃z̄.∃ū.∀ȳ.∀v̄. (¬ϕ(ȳ)∨

∨(ϕ(z̄) ∧
∧
z∈z̄

Adomφ(z))) ∧ (ϕ(ū) ∨ ¬(ϕ(v̄) ∧
∧
v∈v̄

Adomφ(v))).

Then αφ → (φ↔ φ|Adomφ
) ≡ ¬αφ ∨ (φ↔ φ|Adomφ

) ≡
≡

∨
c∈σ(φ)∩C

¬Adomφ(c) ∨ ∀w.¬Adomφ(w)∨

∨∃x1, . . . , xm(φ).¬(
∨

P∈σ(φ)

∨
i∈Ind(P,φ)

P (xi1 , . . . , xiAR(P)
)→

→
m(φ)∧
j=1

Adomφ(xj)) ∨ ∃z̄.∃ū.∀ȳ.∀v̄. (¬ϕ(ȳ) ∨ (ϕ(z̄) ∧
∧
z∈z̄

Adomφ(z)))∧

∧(ϕ(ū) ∨ ¬(ϕ(v̄) ∧
∧
v∈v̄

Adomφ(v))) ≡

≡ ∃x1, . . . , xm(φ).∃z̄.∃ū.∀w.∀ȳ.∀v̄. (¬(
∨

P∈σ(φ)

∨
i∈Ind(P,φ)

P (xi1 , . . . , xiAR(P)
)→

→
m(φ)∧
j=1

Adomφ(xj)) ∨ ((¬ϕ(ȳ) ∨ (ϕ(z̄) ∧
∧
z∈z̄

Adomφ(z))) ∧ (ϕ(ū)∨

∨¬(ϕ(v̄) ∧
∧
v∈v̄

Adomφ(v)))) ∨
∨

c∈σ(φ)∩C

¬Adomφ(c) ∨ ∀w.¬Adomφ(w)) ∈

∈ [∃∗∀∗, all, (0)]C=.

The proposition is proved.

44

4. Domain Independent Fragments of Description
Logics

A domain independent fragment of first-order logic is in general undecidable
(i.e. determining satisfiability of a domain independent formula is undecidable).
Later we will consider description logics as possible applications of our query
rewriting framework. Since, as we mentioned already, domain independence is a
desirable property for a reformulation, it makes sense to study domain independent
fragments of Description Logics. In this chapter we consider domain independent
fragments of SHOIQ, SHOQ and ALCHOI and prove variants of Codd’s
theorem for them.
We show that domain independent fragment of SHOIQ does not have the finite
model property, as the logic itself, while domain independent fragments of both
SHOQ and ALCHOI have this property. The first one inherits it from SHOQ
itself. The second one – from the guarded negation first-order logic, because it
turned out that all domain independent axioms and concepts in ALCHOI can be
expressed in GNFO, which has the finite model property (Bárány et al., 2011).
We also give recursive definitions of domain independent concepts of ALCHOI
and SHOQ and thus provide convenient syntactic characterizations of domain
independent fragments of these logics.
As usual, a description logic has two main components: a TBox and an ABox. The
first one consists of a finite set of a concept inclusion axioms of the form C v D
and/or role inclusion axioms of the form R v S, where C, D are concepts and R,
S are roles defined according to the grammar of this logic. All these axioms that
can potentially appear in a TBox are called TBox axioms. Each concept and role
has a first-order logic translation, i.e. has an equivalent first-order logic formula.
Here, we will use mainly the first component – TBox.
A description logic L is said to have the finite model property if for every L-
concept C and every L-TBox T , if C is satisfiable with respect to T then there
exists some finite interpretation I such that I |= T and CI 6= ∅.
We say that a fragment L1 of some description logic is equal to a fragment L2 of
another (possibly the same one) description logic if

– the set of TBox axioms of L1 is equal to the set of TBox axioms of L2;

– the set of concepts of L1 is equal to the set of concepts of L2.

We say that a fragment L1 of some description logic is equally expressive to a
fragment L2 of another (possibly the same one) description logic if

45

– for any TBox axiom in L1 there exists a logically equivalent TBox axiom in L2

and vice versa;

– for any concept in L1 there exists a logically equivalent concept in L2 and vice
versa.

For any description logic L, which is a fragment of FOL(C,P), we denote a
first-order translation of a concept C to FOL(C,P) as C(x).
We call any axiom (concept) in some description logic safe-range (domain inde-
pendent), if the corresponding first-order translation of the axiom (concept) is
safe-range (domain independent) formula in FOL(C,P). In particular,

– we call any concept in some description logic safe-range (domain independent),
if the corresponding first-order translation of the concept is safe- range (domain
independent) formula in FOL(C,P);

– we call any concept inclusion axiom C v D safe-range (domain independent),
if the corresponding first-order translation ¬∃x.C(x) ∧ ¬D(x) is safe-range
(domain independent) formula in FOL(C,P), where C(x) and D(x) are first-
order translations of the concepts C and D respectively;

– we call any role inclusion axiom S v R safe-range (domain independent), if the
corresponding first-order translation ¬∃x, y. S(x, y) ∧ ¬R(x, y) is safe-range
(domain independent) formula in FOL(C,P), where formulas S(x, y) and
R(x, y) are first-order translations of the roles S and R respectively;

– we call any transitivity axiom Trans(R) safe-range (domain independent), if
the corresponding first-order translation ¬∃x, y, z. R(x, y)∧R(y, z)∧¬R(x, z)
is safe-range (domain independent) formula in FOL(C,P), where S(x, y) and
R(x, y) are first-order translations of the roles S and R respectively.

Safe-range (domain independent) fragment of some description logic is a set of
safe-range (domain independent) concepts and safe-range (domain independent)
TBox axioms in this logic.

4.1 Domain Independent Fragment of SHOIQ

SHOIQ is an extension of the description logic ALC with role hierarchies (H),
transitive roles (S), individuals (O), inverse roles (I), and qualified cardinality
restrictions (Q); it is the logic at the basis of OWL. The syntax and semantics of
SHOIQ concept and role expressions are summarised in the Table 4.1, where
A is an atomic concept, C and D are concepts, o is an individual name, P is an

46

atomic role, and R is either P or P−. The standard first-order logic translation of
the SHOIQ concepts and roles is given in the Table 4.2, where πx is a mapping
that maps each SHOIQ concept to a corresponding first-order logic formula
with one free variable x and πx,y is a mapping that maps each SHOIQ role to a
corresponding first-order logic formula with two free variables x and y. A TBox
in SHOIQ is a set of concept inclusion axioms C v D, role inclusion axioms
R v S and transitivity axioms Trans(R) (where C, D are concepts and R, S are
roles) with the usual description logics semantics.

Table 4.1 – Syntax and semantics of SHOIQ concepts and roles

Syntax Semantics

A AI ⊆ ∆I

P P I ⊆ ∆I ×∆I

P− {(y, x)|(x, y) ∈ P I}
C uD CI ∩DI

C tD CI ∪DI

¬C ∆I\CI

{o} {o}I ⊆ ∆I

≥ nR {x|#({y|(x, y) ∈ RI}) ≥ n}
≤ nR {x|#({y|(x, y) ∈ RI}) ≤ n}
≥ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≥ n}
≤ nR.C {x|#({y|(x, y) ∈ RI} ∩ CI) ≤ n}

47

Table 4.2 – The standard inductive first-order logic translation of SHOIQ concepts and
roles

SHOIQ First-order logic

πx(A) A(x)

πx,y(P) P (x, y)

πx,y(P−) P (y, x)

πx(C uD) πx(C) ∧ πx(D)

πx(C tD) πx(C) ∨ πx(D)

πx(¬C) ¬πx(C)

πx({o}) x = o

πx(≥ nR) ∃x1, . . . , xn. πx,x1(R) ∧ . . . ∧ πx,xn(R)∧
∧(x1 6= x2) ∧ . . . ∧ (xn−1 6= xn)

πx(≤ nR) ∀x1, . . . , xn+1. πx,x1
(R) ∧ . . . ∧ πx,xn+1

(R)→
→ (x1 = x2) ∨ . . . ∨ (xn = xn+1)

πx(≥ nR.C) ∃x1, . . . , xn. πx,x1(R) ∧ . . . ∧ πx,xn(R)∧
∧πx1

(C) ∧ . . . ∧ πxn(C) ∧ (x1 6= x2) ∧ . . . ∧ (xn−1 6= xn)

πx(≤ nR.C) ∀x1, . . . , xn+1. πx,x1
(R) ∧ . . . ∧ πx,xn+1

(R)∧
∧πx1(C) ∧ . . . ∧ πxn+1(C)→ (x1 = x2) ∨ . . . ∨ (xn = xn+1)

In this section we reveal a connection between domain independent and safe-range
fragments of SHOIQ. Concept inclusion axioms in SHOIQ ontologies may
not be safe-range: for example, the axiom ¬ male v female is not safe-range,
because the corresponding first-order logic formula¬∃x.¬male(x)∧¬female(x)
is not safe-range. It is easy to see that an axiom C v D is not safe-range if and
only if C(x) is not safe-range and ¬D(x) is not safe-range: just observe the
logically equivalent first-order translation ¬∃x. C(x) ∧ ¬D(x) (which is actually
in a safe-range normal form).
The following proposition provides recursive rules deciding whether an SHOIQ
concept is safe-range.

Proposition 4.1. Let A be an atomic concept, let C and D be SHOIQ concepts,
and let R be either an atomic role or an inverse atomic role. Then:

1. A, {o},≥ nR,≥ nR.C are safe-range;

48

2. C uD is safe-range if and only if C is safe-range or D is safe-range;

3. C tD is safe-range if and only if C is safe-range and D is safe-range;

4. ¬C is safe-range if and only if C is not safe-range.

Corollary 4.2. A SHOIQ concept inclusion axiom C v D is safe-range if and
only if C is safe-range or D is not safe-range.

It turned out that the description logic has such strict syntax that the safe-range
fragment of it is not only equally expressive, but even equal to the domain
independent fragment whenever we consider satisfiable axioms.
Let SHOIQ∗ be a fragment of SHOIQ, where only satisfiable TBox axioms
are allowed. Then the following theorem takes place.

Theorem 4.3. The domain independent fragment of SHOIQ∗ is equal to safe-
range fragment of SHOIQ∗.

Note that the Theorem 4.3 holds only for a fragment, where only satisfiable
concept inclusion axioms are allowed as TBox assertions, that is in the fragment
SHOIQ∗. There are unsatisfiable domain independent concept inclusion axioms
in SHOIQ which are not safe-range. For example, A t ¬A v A u ¬A is one
of them. Below we prove that for such axioms there exist logically equivalent
safe-range concept inclusion axioms in SHOIQ. That is, safe-range and domain
independent fragments of SHOIQ are equally expressive. In order to prove this
we need to assume that the set of constants (individual names) C is not empty.

Theorem 4.4 (Version of Codd’s theorem). If C 6= ∅, then domain independent
fragment of SHOIQ is equally expressive to safe-range fragment of SHOIQ.

Unfortunately, SHOIQ does not have finite model property. Neither does its
domain independent fragment.

Example 4.5. Let T be a TBox in SHOIQ:

T = {A v ∃R,
∃R− v A,
B v ∃R,
B v ¬A,
> v≤ 1R−}.

This TBox may be rewritten as {A v≥ 1R, ≥ 1R− v A, B v≥ 1R, B v ¬A,
A t ¬A v ¬ ≥ 2R−} so that we can really see that it is expressed in SHOIQ.

49

Then, by using Corollary 4.2 and Proposition 4.1 one can see that T is safe-range.
T is also satisfiable, and in any model I of T such that BI 6= ∅ we have an
infinite number of instances of A, each one connected by R to the next one.
Hence, safe-range (domain independent) fragment of SHOIQ does not have
finite model property.

Note that in the example above it is even enough to consider logic ALCFI – a
strict sublogic of SHOIQ.

4.2 Syntactic Characterizations of Domain Independent
Fragments of ALCHOI and SHOQ

Each of the description logics SHOQ and ALCHOI is a sublogic of the descrip-
tion logic SHOIQ. SHOQ corresponds to the SHOIQ without inverse roles
(Table 4.3). For more details see e.g. Horrocks and Sattler (2001). Similarly,
SHOIQ without transitivity axioms and cardinality restrictions forms the descrip-
tion logic ALCHOI (Table 4.4). Hence, the following propositions and theorems
immediately follow from the Proposition 4.1, Theorem 4.3 and Theorem 4.4.

Table 4.3 – Syntax and semantics of SHOQ concepts and roles

Syntax Semantics

A AI ⊆ ∆I

P P I ⊆ ∆I ×∆I

C uD CI ∩DI

C tD CI ∪DI

¬C ∆I\CI

{o} {o}I ⊆ ∆I

≥ nP {x|#({y|(x, y) ∈ P I}) ≥ n}
≤ nP {x|#({y|(x, y) ∈ P I}) ≤ n}
≥ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≥ n}
≤ nP.C {x|#({y|(x, y) ∈ P I} ∩ CI) ≤ n}

50

Table 4.4 – Syntax and semantics of ALCHOI concepts and roles

Syntax Semantics

A AI ⊆ ∆I

{o} {oI} ⊆ ∆I

P P I ⊆ ∆I ×∆I

P− {(y, x)|(x, y) ∈ P I}
¬C ∆I\CI

C uD CI ∩DI

C tD CI ∪DI

∃R {x|{y|(x, y) ∈ RI} 6= ∅}
∃R.C {x|{y|(x, y) ∈ RI} ∩ CI 6= ∅}
∀R.C {x| if (x, y) ∈ RI then y ∈ CI}

Proposition 4.6. LetA be an atomic concept, letC andD beALCHOI concepts,
and let R be either an atomic role or an inverse atomic role. Then:

1. A, {o},∃R,∃R.C are safe-range;

2. C uD is safe-range if and only if C is safe-range or D is safe-range;

3. C tD is safe-range if and only if C is safe-range and D is safe-range;

4. ¬C is safe-range if and only if C is not safe-range.

Proposition 4.7. Let A be an atomic concept, let C and D be SHOQ concepts,
and let R be an atomic role. Then:

1. A, {o},≥ nR,≥ nR.C are safe-range;

2. C uD is safe-range if and only if C is safe-range or D is safe-range;

3. C tD is safe-range if and only if C is safe-range and D is safe-range;

4. ¬C is safe-range if and only if C is not safe-range.

Let ALCHOI∗ and SHOQ∗ be, respectively, fragments of ALCHOI and
SHOQ, where only satisfiable TBox assertions are allowed. Let us assume
hereafter in this chapter that C 6= ∅. Then by Theorem 4.3 and Theorem 4.4, since

51

ALCHOI and SHOQ are subfragments of SHOIQ, the following theorems
take place:

Theorem 4.8. Domain independent fragment of ALCHOI∗ is equal to safe-
range fragment of ALCHOI∗.

Theorem 4.9. Domain independent fragment of SHOQ∗ is equal to safe-range
fragment of SHOQ∗.

Theorem 4.10 (Version of Codd’s theorem). Domain independent fragment of
ALCHOI is equally expressive to safe-range fragment of ALCHOI.

Theorem 4.11 (Version of Codd’s theorem). Domain independent fragment of
SHOQ is equally expressive to safe-range fragment of SHOQ.

4.2.1 Guarded negation fragment of ALCHOI
Recall the definition of guarded negation first-order logic (GNFO) given in
Subsection 3.2.2. Now we consider ALCHOIGN – a guarded negation fragment
of ALCHOI (i.e. an intersection of GNFO and ALCHOI), which is defined as
follows. We say that

– a concept C is an ALCHOIGN concept if C is an ALCHOI concept and the
corresponding first-order logic translation C(x) is expressed in GNFO;

– a concept inclusion axiom C v D is anALCHOIGN concept inclusion axiom
if C and D are ALCHOI concepts and formula ¬∃x.C(x) ∧ ¬D(x) (which
is equivalent to the first-order translation of C v D) is expressed in GNFO
(here x = x is not allowed to be a guard, because such formulas cannot be
expressed in description logic);

– a role inclusion axiom S v R is an ALCHOIGN role inclusion axiom if S
and R are roles (atomic or inverse atomic) and the formula ¬∃x, y. S(x, y)∗ ∧
¬R(x, y)∗, where (x, y)∗ stands for (x, y) if the preceding role is atomic and
(x, y)∗ stands for (y, x) if the preceding role is inverse atomic, is expressed in
GNFO.

A guarded negation fragment of ALCHOI is a set of ALCHOIGN concepts
and ALCHOIGN TBox axioms.
From the definition of GNFO and ALCHOI it follows that the complex concept
C of the logic ALCHOIGN is recursively defined as follows:

B ::= A | {o} | ∃R

C ::= B | ∃R.C | ∃R.¬C | B u ¬C | C uD | C tD (4.1)

52

where A is an atomic concept, R is an atomic role or an inverse atomic role, and
C and D are ALCHOIGN concepts (possibly complex).
Strictly speaking, ∃R u ¬C is not in GNFO. Indeed, the formula (∃y.R(x, y)) ∧
¬C(x) is not in GNFO (R(x, y) here stands for P (x, y) if R stands for an atomic
role P , and R(x, y) stands for P (y, x) if R stands for an inverse atomic role P−),
but it can be easily transformed to a logically equivalent GNFO one by simply
shifting the parentheses: ∃y.(R(x, y)) ∧ ¬C(x)). So, we can assume that the
formula ∃R u ¬C is in ALCHOIGN .
Since GNFO has finite model property, ALCHOIGN also has finite model prop-
erty as a subfragment.

Proposition 4.12. All ALCHOIGN concepts are safe-range.

Proposition 4.13. Any safe-range ALCHOI concept is equivalent to some
ALCHOIGN concept.

Proposition 4.14. All ALCHOIGN TBox axioms are safe-range.

Proposition 4.15. Any safe-range ALCHOI TBox axiom is equivalent to some
ALCHOIGN TBox axiom.

Then the following connection between the safe-range fragment of ALCHOI
and ALCHOIGN takes place.

Theorem 4.16. Safe-range fragment ofALCHOI andALCHOIGN are equally
expressive.

Theorem 4.10 and Theorem 4.16 imply the following theorem.

Theorem 4.17 (Expressive power equivalence). Domain independent fragment
of ALCHOI and ALCHOIGN are equally expressive.

4.2.2 Extended guarded negation fragment of SHOQ
Here we introduce a new subfragment SHOQGN+ of SHOQ.
Any concept C of SHOQGN+ is recursively defined as follows:

B ::= A | {o} | ≥ nR

C ::= B | ≥ nR.C | ≥ nR.¬C | B u ¬C | C uD | C tD (4.2)

where A is an atomic concept, R is an atomic role, and C and D are SHOQGN+

concepts (possibly complex). We say that

– a role inclusion axiom is in SHOQGN+ if it is a SHOQ role inclusion axiom;

53

– a transitivity axiom is in SHOQGN+ if it is a SHOQ transitivity inclusion
axiom;

– A SHOQ concept inclusion axiom C v D is a SHOQGN+ concept inclusion
axiom ifC is a SHOQGN+ concept or SimplePushNeg(¬D) is a SHOQGN+

concept, where the function SimplePushNeg recursively replaces ¬¬D by D.
This SimplePushNeg transformation is evidently equivalence-preserving.

The fragment SHOQGN+ is a set of SHOQGN+ concepts (defined in (4.2)) and
SHOQGN+ TBox axioms (concept inclusion axioms, role inclusion axioms and
transitivity axioms). This fragment is not in GNFO just because of the cardinality
restrictions and transitivity axioms, which are not expressible in GNFO. That is
the reason for ”+” in its abbreviation.

Example 4.18. Let us check if the concept inclusion axiom ¬A t {o} v ¬ ≤
6R.¬(¬C t D) is a SHOQGN+ concept inclusion axiom. PusgNeg(¬ ≤
6R.¬(¬C tD)) =≥ 7R.(C u ¬D) is a SHOQGN+ concept by (4.2). Hence,
by the definition, the concept inclusion axiom is a SHOQGN+ concept inclusion
axiom. Note that in the left-hand side of the inclusion, the concept ¬A t {o}, is
not in SHOQGN+ .

Proposition 4.19. All SHOQGN+ concepts are safe-range.

Proposition 4.20. Any safe-range SHOQ concept is equivalent to some
SHOQGN+ concept.

Proposition 4.21. All SHOQGN+ TBox axioms are safe-range.

Proposition 4.22. Any safe-range SHOQ TBox axiom is equivalent to some
SHOQGN+ TBox axiom.

The four last propositions prove the following theorem.

Theorem 4.23. The safe-range fragment of SHOQ and SHOQGN+ are equally
expressive.

Theorem 4.11 and Theorem 4.23 imply the following theorem.

Theorem 4.24 (Expressive power equivalence). The domain independent frag-
ment of SHOQ and SHOQGN+ are equally expressive.

54

4.3 Proofs of Section 4.1

First we need to prove an auxiliary proposition.

Proposition 4.25. Let φ(x) be any formula in FOL(C,P) with one free variable.

1. If φ(x) is domain independent then ¬φ(x) is not domain independent.

2. If ∀x.φ(x) is domain independent and satisfiable then φ(x) is not domain
independent.

Proof.

1. Let us consider two interpretations: I = 〈∆I , ·I〉, J = 〈∆I ∪ {a}, ·J 〉,
where a 6∈ ∆I and ·I = ·J . Since φ(x) is domain independent and
act-range({x → a}) = a 6∈ ∆I , we have: J , {x → a} 6|= φ(x). Hence,
J , {x→ a} |= ¬φ(x). Then ¬φ(x) is not domain independent by definition
because act-range({x→ a}) = a 6∈ ∆I .

2. Since ∀x.φ(x) is satisfiable, there exists an interpretation I = 〈∆I , ·I〉 such
that I |= ∀x.φ(x). Let J = 〈∆I ∪ {a}, ·J 〉, where a 6∈ ∆I and ·I = ·J .
Then, since ∀x.φ(x) is domain independent and I |= ∀x.φ(x), we have that
J |= ∀x.φ(x). Then J , {x→ a} |= φ(x). act-range({x→ a}) = a 6∈ ∆I ,
hence, φ(x) is not domain independent by definition.

The proposition is proved.

Note that the Proposition 4.25 can be extended to the case, when φ has more than
one free variable. The requirements of φ to be open and ∀x.φ(x) to be satisfiable
(item 2) are essential for the proposition.

Example 4.26. Let φ be a closed formula. φ = ∀x.A(x) ∨ ¬A(x) ≡ true
– closed and domain independent. ¬φ = ¬∀x.A(x) ∨ ¬A(x) ≡ false – also
domain independent. This example shows that if φ is not an open formula, then
the item 1 of the Proposition 4.25 does not hold.

Example 4.27. Let φ = A(x) ∧ ¬A(x) - domain independent. Then ∀x.φ(x) =
∀x.A(x)∧¬A(x) ≡ false is domain independent and unsatisfiable. This example
shows that in the case when ∀x.φ(x) is unsatisfiable, the item 2 of the Proposition
4.25 does not hold.

4.3.1 Proposition 4.1

Proof. It is enough to prove the proposition just for atomic roles because the
order of variables in binary atoms of a first-order logic translation of a SHOIQ

55

concept does not affect the safe-range property of the translation. Therefore
hereafter we assume that R is an atomic role.

– Since A is an atomic concept, A(x) is safe-range.

– {o}(x) = (x = o) - safe-range.

– (≥ nR)(x) = ∃x1, . . . , xn. R(x, x1) ∧ . . . ∧ R(x, xn) ∧ (x1 6= x2) ∧ . . . ∧
(xn−1 6= xn) – safe-range.

– (≥ nR.C)(x) = ∃x1, . . . , xn. R(x, x1) ∧ . . . ∧ R(x, xn) ∧ C(x1) ∧ . . . ∧
C(xn) ∧ (x1 6= x2) ∧ . . . ∧ (xn−1 6= xn) – safe-range.

– Let us prove, that (C uD)(x) = C(x)∧D(x) is safe-range if and only if C(x)
is safe-range or D(x) is safe-range. ⇐) Let C(x) or D(x) be safe-range and
let both of them be in safe-range normal forms. Then
C(x) ∧D(x) is safe-range by definition.
⇒) Let C(x) ∧D(x) be safe-range and in safe-range normal form (i.e. both
C(x) and D(x) are in safe-range normal form). Let us prove by contradiction.
Suppose, both C(x) and D(x) are not safe-range. Then C(x) ∧D(x) is not
safe-range by definition. It is a contradiction. Therefore, C(x) is safe-range or
D(x) is safe-range.

– Let us prove, that (C tD)(x) = C(x)∨D(x) is safe-range if and only if C(x)
is safe-range and D(x) is safe-range.
⇐) Let C(x) and D(x) be both safe-range and in safe-range normal forms.
Then
C(x) ∨D(x) is safe-range by definition.
⇒) Let C(x) ∨D(x) be safe-range and in safe-range normal form (i.e. both
C(x) and D(x) are in safe-range normal form). Let us prove by contradiction.
Suppose, C(x) or D(x) is not safe-range. Then C(x) ∨D(x) is not safe-range
by definition. It is a contradiction. Therefore, C(x) is safe-range and D(x) is
safe-range.

– Let us prove, that ¬C(x) is safe-range if and only if C(x) is not safe-range.
⇒) Let ¬C(x) be safe-range. Let us prove by contradiction. Let C(x) be
also safe-range. Then both ¬C(x) and C(x) are domain independent, that it is
impossible by the Proposition 4.25. Therefore, C(x) is not safe-range.
⇐) We need to prove, that if C(x) is not safe-range, then ¬C(x) is safe-range.
Let us prove by induction on structure of the formula. Suppose, the item is true
for any subformula of the formula C(x).

56

Suppose, C(x) is not safe-range. Let us consider (using already proved items)
all the possible cases, when C(x) is not safe-range.

– C(x) = (≤ nR.D)(x) = ∀x0 . . . xn. R(x, x0)∧. . .∧R(x, xn)∧D(x0) . . .∧
D(xn) → (x0 = x1) . . . (xn−1 = xn) ≡ ¬∃x0, . . . , xn. R(x, x0) ∧ . . . ∧
R(x, xn) ∧D(x0) ∧ . . . ∧D(xn) ∧ (x0 6= x1) ∧ . . . ∧ (xn−1 6= xn) - not
safe-range, where D is any (possibly complex) concept. Then ¬C(x) =
∃x0, . . . , xn. R(x, x0) ∧ . . . ∧ R(x, xn) ∧ D(x0) ∧ . . . ∧ D(xn) ∧ (x0 6=
x1) ∧ . . . ∧ (xn−1 6= xn) is safe-range.

– Suppose, C(x) = (DuF)(x) is not safe-range. ThenD(x) is not safe-range
and F (x) is not safe-range. Since both D(x) and F (x) are subformulas of
C(x), by applying the current item we get: ¬D(x) and ¬F (x) are safe-range.
¬C(x) ≡ ¬(D(x)∧F (x)) ≡ ¬D(x)∨¬F (x) - safe-range, because ¬D(x)
and ¬F (x) are safe-range.

– Suppose, C(x) = (DtF)(x) is not safe-range. ThenD(x) is not safe-range
or F (x) is not safe-range. Since both D(x) and F (x) are subformulas of
C(x), by applying the current item we get: either ¬D(x) or ¬F (x) is safe-
range. ¬C(x) ≡ ¬(D(x)∨F (x)) ≡ ¬D(x)∧¬F (x) - safe-range, because
either ¬D(x) or ¬F (x) is safe-range.

– Suppose, C(x) = ¬D(x) is not safe-range. We need to prove, that ¬C(x) ≡
D(x) is safe-range. Let us prove by contradiction. Suppose, D(x) is not
safe-range. Then, since D(x) is a subformula of C(x), by applying the
current item we get: ¬D(x) ≡ C(x) is safe-range. It is a contradiction.
Hence, ¬C(x) is safe-range.

The item is proved.

The proposition is proved.

4.3.2 Corollary 4.2

Proof. By definition axiom C v D is safe-range if and only if the first-order
logic formula ¬∃x.C(x) ∧ ¬D(x) is safe-range. This formula is safe-range if
and only if the formula C(x) ∧ ¬D(x) is safe-range. This formula is safe-range
if and only if the SHOIQ concept C u ¬D is safe-range. By items 2 and 4 of
Proposition 4.1 this concept is safe-range if and only if C is safe-range or D is
not safe-range.

The corollary is proved.

57

Proposition 4.28. All SHOIQ role inclusion and transitivity axioms are safe-
range.

Proof.

– Let S v R be any role inclusion axiom in SHOIQ. Then S v R ≡
¬∃x, y. S(x, y)∗ ∧ ¬R(x, y)∗ – safe-range.

– For any role R in SHOIQ, Trans(R) = ¬∃x, y, z. R(x, y)∗ ∧ R(y, z)∗ ∧
¬R(x, z)∗ – safe-range.

Here (x, y)∗ stands for (x, y) if the preceding role is atomic and (x, y)∗ stands
for (y, x) if the preceding role is inverse atomic.

The proposition is proved.

4.3.3 Theorem 4.3

Proof. Since any safe-range formula is domain independent, any safe-range
concept (TBox axiom) in SHOIQ∗ is domain independent. Let us prove now,
that all domain independent concepts and TBox axioms in SHOIQ∗ are safe-
range.

1. Concepts. Let C be a domain independent concept in SHOIQ∗. Let us
prove that C is safe-range by contradiction. Suppose that C is not safe-range.
Then by the item 4 of the Proposition 4.1 ¬C is safe-range. Hence, ¬C is
domain independent. But since C is domain independent, by the first item of
the Proposition 4.25 ¬C is not domain independent. Contradiction.

2. Concept inclusion axioms. Let C v D be a domain independent concept
inclusion axiom in SHOIQ∗. That is C v D is satisfiable. ∀x.C(x) →
D(x) is a corresponding domain independent formula in FOL(C,P), where
C(x) and D(x) are formulas in FOL(C,P) corresponding to the concepts
C and D respectively. ∀x.C(x)→ D(x) ≡ ∀x.¬(C(x) ∧ ¬D(x)) - domain
independent and satisfiable. Then by the second item of the Proposition 4.25
¬(C(x) ∧ ¬D(x)) is not domain independent. Hence, ¬(C(x) ∧ ¬D(x)) is
not safe-range. That is the concept ¬(C u ¬D) is not safe-range. Then by the
item 4 of the Proposition 4.1, C u ¬D is safe-range. That is, C(x) ∧ ¬D(x)
is safe-range. Hence, ¬∃x.C(x) ∧ ¬D(x) is safe-range. Therefore C v D is
safe-range.

3. Transitivity axioms. Any transitivity axiom in SHOIQ and, hence, in
SHOIQ∗ is safe-range and, hence, domain independent by Proposition 4.28.

58

4. Role inclusion axioms. Any role inclusion axiom in SHOIQ and, hence, in
SHOIQ∗ is safe-range and, hence, domain independent by Proposition 4.28.

The theorem is proved.

4.3.4 Theorem 4.4

Proof. Since any safe-range formula is domain independent and the Theorem
4.3 holds, the only thing one left to prove is that for any unsatisfiable domain inde-
pendent concept inclusion axiom in SHOIQ there exists a logically equivalent
safe-range concept inclusion axiom in SHOIQ.
Let C v D be any unsatisfiable domain independent concept inclusion axiom
in SHOIQ. Then, since the set of constants (individual names) is not empty,
C v D is logically equivalent to the unsatisfiable SHOIQ concept inclusion
axiom {o} v ¬{o}, where o is a constant. This axiom is safe-range, because its
first-order translation is a safe-range formula ¬∃x. (x = o) ∧ (x = o).

The theorem is proved.

4.4 Proofs of Subsection 4.2.1

4.4.1 Proposition 4.12

Proof. Let us prove by induction on the structure of ALCHOIQGN concepts
defined by (4.1).

1. A, {o},∃R,∃R.C,∃R.¬C (C is an ALCHOIQGN concept) are safe-range
because of the item 1 of Proposition 4.6.

2. For any atomic concept A, any individual o, any role R and any concept
C in ALCHOIQGN the concepts A u ¬C, {o} u ¬C and ∃R u ¬C are
safe-range because of the item 2 of Proposition 4.6 and since A, {o} and ∃R
are safe-range by the first item.

3. Suppose that ALCHOIQGN concepts C and D are safe-range. Then the
concepts C uD and C tD are safe-range by the items 2 and 3 of Proposition
4.6 respectively.

The proposition is proved.

Lemma 4.29. For any safe-range concept C in ALCHOI the following holds:

C v B1 t . . . tBn,

59

where Bi appears as a subconcept in C and is one of the following concepts:

– an atomic concept A;

– {o}, where o is an individual name;

– ∃R, where R is an atomic role or inverse atomic role.

Proof. Let us prove the proposition by induction for all safe-range concepts of
ALCHOI.
Base. A, {o},∃R,∃R.C are safe-range by Proposition 4.6. A v A, {o} v {o},
∃R v ∃R, ∃R.C v ∃R.
Suppose now that C is a complex safe-range concept and the proposition holds
for all safe-range subconcepts of C.

1. C = C1 u C2 – safe-range. Then either C1 or C2 is safe-range. Let C1

be safe-range. Hence, C1 v B1 t . . . t Bm, where Bi is a concept of the
aforementioned type. Then C1 u C2 v C1 v B1 t . . . tBm.

2. C = C1 t C2 – safe-range. Then C1 and C2 are safe-range. Hence, C1 v
B1 t . . . t Bk and C2 v Bk+1 t . . . t Bm, where Bi is a concept of the
aforementioned type. ThenC1tC2 v (B1t. . .tBk)t(Bk+1t. . .tBm) v
B1 t . . . tBm.

3. C = ¬D is safe-range. By Proposition 4.6 it is possible if and only if D is
not safe-range. That is one of the following cases takes place.

– D = ∀R.D1 ≡ ¬∃R.¬D1. Then ¬D ≡ ∃R.¬D1 v ∃R. ∃R is safe-range
the item 1 of Proposition 4.6.

– D = D1 uD2. Then ¬D ≡ ¬D1 t ¬D2. And we reduced this case to the
item 2.

– D = D1 tD2. Then ¬D ≡ ¬D1 u ¬D2. And we reduced this case to the
item 1.

– D = ¬D1. Then ¬D ≡ ¬¬D1 ≡ D1. Hence, D1 is a safe-range sub-
concept of ¬D. Then the proposition holds for D1 and, hence, also for C,
because C ≡ ¬D ≡ D1.

The lemma is proved.

Lemma 4.30. For any ALCHOI concept C there exists an ALCHOIGN con-
cept C ′ such that either C ≡ C ′ or C ≡ ¬C ′.

60

Proof. Suppose that the lemma holds for all ALCHOI subconcepts of the
ALCHOI concept C. Let us prove it for C.

1. Base. A, {o},∃R are ALCHOIGN concepts by the definition of
ALCHOIGN concept (4.1).

2. C = ∃R.D and D′ is an ALCHOIGN concept such that D ≡ D′ or D ≡
¬D′. Then C ≡ ∃R.D′ or C ≡ ∃R.¬D′. ∃R.D′ and ∃R.¬D′ are both
ALCHOIGN concepts. Hence, the item is proved.

3. C = ∀R.D ≡ ¬∃R.¬D and C ′ is an ALCHOIGN concept such that
∃R.¬D ≡ C ′ or ∃R.¬D ≡ ¬C ′. Then C ≡ ¬∃R.¬D ≡ ¬C ′ or C ≡
¬∃R.¬D ≡ ¬¬C ′ ≡ C ′. And the item is proved.

4. C = ¬D and D′ is anALCHOIGN concept such that D ≡ D′ or D ≡ ¬D′.
Then C ≡ ¬D′ or C ≡ ¬¬D′ ≡ D′. The item is proved.

5. C = C1 u C2 and C ′1 is an ALCHOIGN concept such that C1 ≡ C ′1 or
C1 ≡ ¬C ′1, C ′2 is anALCHOIGN concept such that C2 ≡ C ′2 or C2 ≡ ¬C ′2.
Consider all possible cases.

a) C1 ≡ C ′1 and C2 ≡ C ′2. Then C ≡ C ′, where C ′ = C ′1 u C ′2 is an
ALCHOIGN concept (because C ′1 and C ′2 are ALCHOIGN concepts).

b) C1 ≡ ¬C ′1 and C2 ≡ ¬C ′2. Then C ≡ ¬C ′1u¬C ′2 ≡ ¬(C ′1tC ′2) = ¬C ′,
where C ′ = C ′1 tC ′2 is anALCHOIGN concept (because C ′1 and C ′2 are
ALCHOIGN concepts).

c) C1 ≡ C ′1 and C2 ≡ ¬C ′2 (the case when C1 ≡ ¬C ′1 and C2 ≡ C ′2 is
the similar one). Then C ≡ C ′1 u ¬C ′2. Since C ′1 is an ALCHOIGN

concept by Proposition 4.12 it is safe-range and, hence, by Lemma 4.29
C ′1 v B1 t . . . tBn, where each Bi is either an atomic concept A or {o}
or ∃R. Then C ′1 ≡ C ′1 u (B1 t . . . t Bn) and, hence, C ≡ C ′1 u (B1 t
. . . tBn) u ¬C ′2 ≡ C ′1 u (B1 u ¬C ′2 t . . . tBn u ¬C ′2). Each disjunct
Bi u ¬C ′2 is an ALCHOIGN concept (because C2 is ALCHOIGN

concept and by the definition (4.1) of ALCHOIGN concepts). Then
C ′ = C ′1 u (B1 u ¬C ′2 t . . . t Bn u ¬C ′2) is an ALCHOIGN concept.
C ≡ C ′. The item is proved.

6. C = C1 t C2 ≡ ¬(¬C1 u ¬C2). This case is reduced to the items 3 and 4.

The lemma is proved.

61

Corollary 4.31. For anyALCHOI concept C and any conceptB, which is either
an atom A or {o} or ∃R, the concept B u C is equivalent to some ALCHOIGN

concept.

Proof. By Lemma 4.30 there exists an ALCHOIGN concept C ′ such that
either C ≡ C ′ or C ≡ ¬C ′. Then B u C ≡ B u C ′ or B u C ≡ B u ¬C ′.
Both B u C ′ and B u ¬C ′ are ALCHOIGN concepts (by the definition (4.1) of
ALCHOIGN concepts).

The corollary is proved.

4.4.2 Proposition 4.13

Proof. Let C be any safe-range ALCHOI concept. By Lemma 4.29 C v
B1 t . . . t Bn, where each Bi is either an atom A or {o} or ∃R. Then C ≡
C u (B1 t . . . tBn) ≡ B1 u C t . . . tBn u C. By the corollary 4.31 for each
disjunct Bi uC there exists anALCHOIGN concept Di such that Bi uC ≡ Di.
Then C ≡ D1t . . .tDn. The conceptD1t . . .tDn is anALCHOIGN concept
as a disjunction of ALCHOIGN concepts.

The proposition is proved.

Proposition 4.32.

– All ALCHOIGN role inclusion axioms are safe-range.

– All safe-range role inclusion axioms in ALCHOI are in ALCHOIGN .

Proof. It is easy to see that any role inclusion axiom in ALCHOI is a role
inclusion axiom inALCHOIGN . Then the proof of the proposition follows from
Proposition 4.28.

4.4.3 Proposition 4.14

Proof.

– Any ALCHOIGN role inclusion axiom is safe-range by the first item of
Proposition 4.32.

– Let C v D be any concept inclusion axiom in ALCHOIGN . It means
that the corresponding first-order logic translation ¬∃x.C(x) ∧ ¬D(x) is in
GNFO. Hence, C(x) ∧ ¬D(x) is in GNFO or, that is the same, C u ¬D is
in ALCHOIGN . It is easy to see that ¬∃x.C(x) ∧ ¬D(x) is safe-range if
and only if the formula C(x) ∧ ¬D(x) is safe-range, that is if and only if the

62

correspondingALCHOIGN conceptCu¬D is safe-range. But by Proposition
4.12 any ALCHOIGN concept is safe-range.

The proposition is proved.

Lemma 4.33. For any safe-range ALCHOI concept C and any ALCHOI con-
cept D the concept C uD is equivalent to some ALCHOIGN concept C ′ uD′,
where C ′ and D′ are ALCHOIGN concepts.

Proof. Since C is safe-range by Lemma 4.29 C v B1 t . . . tBn, where each
Bi is either an atomic concept A or {o} or ∃R. Then C ≡ C u (B1 t . . . tBn)
and, hence, C uD ≡ C u (B1 t . . .tBn)uD ≡ C u (B1 uDt . . .tBn uD).
By Corollary 4.31 for each disjunct Bi uD there is an equivalent ALCHOIGN

concept Di. Hence, D′ := D1 t . . . tDn is an ALCHOIGN concept, that is
equivalent to B1 uDt . . .tBn uD. Since C is s safe-range by Proposition 4.13
there exists an ALCHOIGN concept C ′ such that C ≡ C ′. Then C uD ≡ C ′ u
D′, and C ′uD′ is anALCHOIGN concept, where C ′ andD′ areALCHOIGN

concepts.

The lemma is proved.

Proposition 4.34. Any safe-range ALCHOI concept inclusion axiom C v D
can be transformed to a concept inclusion axiom C ′ v ¬D′, where C ′ and D′ are
ALCHOIGN .

Proof. Let C v D be any safe-rangeALCHOI concept inclusion axiom. Then
the corresponding formula ¬∃x.C(x)∧¬D(x) is safe-range. Then the first-order
logic formula C(x) ∧ ¬D(x) is safe-range, or, that is the same, the ALCHOI
concept C u ¬D is safe-range. By Proposition 4.6 we have that C is safe-range
or ¬D is safe-range.

– C is safe-range. Then by Lemma 4.33 there exist two ALCHOIGN concepts
C ′ andD′ such thatCu¬D is logically equivalent to theALCHOIGN concept
C ′ u D′. Then ¬∃x.C(x) ∧ ¬D(x) is logically equivalent to ¬∃x.C ′(x) ∧
D′(x). Hence, C v D is logically equivalent to C ′ v ¬D′ (C ′ and D′ are
ALCHOIGN concepts).

– ¬D is safe-range. The proof is similar to the previous item.

The proposition is proved.

Proposition 4.35. For any two ALCHOIGN concepts C and D the axiom
C v ¬D is an ALCHOIGN concept inclusion axiom.

63

Proof. The axiomC v ¬D is logically equivalent to the first-order logic formula
¬∃x.C(x)∧D(x), where C(x) andD(x) are in GNFO. Then ¬∃x.C(x)∧D(x)
is also in GNFO. Hence, by the definition of ALCHOIGN concept inclusion
axiom the axiom C v ¬D is an ALCHOIGN concept inclusion axiom.

The proposition is proved.

4.4.4 Proposition 4.15

Proof. The proof is implied by the second item of Proposition 4.32, Proposition
4.34 and Proposition 4.35.

4.4.5 Theorem 4.16

Proof. Just take into account Proposition 4.12, Proposition 4.13, Proposition
4.14, Proposition 4.15 and Proposition 4.32.

4.5 Proofs of Subsection 4.2.2

4.5.1 Proposition 4.19

Proof. Let us prove by induction on the structure of SHOQGN+ concepts
defined by (4.2).

1. A, {o},≥ nR,≥ nR.C,≥ nR.¬C (C is an SHOQGN+ concept) are safe-
range because of the item 1 of Proposition 4.7.

2. For any atomic concept A, any individual o any atomic role R and any natural
number n the concepts A u ¬C, {o} u ¬C and ≥ nR u ¬C are safe-range
because of the item 2 of Proposition 4.7 and since A, {o} and ≥ nR are
safe-range by the first item.

3. Suppose that SHOQGN+ concepts C and D are safe-range. Then the con-
cepts C uD and C tD are safe-range by the items 2 and 3 of Proposition 4.7
respectively.

The proposition is proved.

Lemma 4.36. For any safe-range concept C in SHOQ the following holds:

C v B1 t . . . tBn,

where Bi appears as a subconcept in C and is one of the following concepts:

– an atomic concept A;

64

– {o}, where o is an individual name;

– ≥ nR, where R is an atomic role, n is a natural number.

Lemma 4.37. For any SHOQ concept C there exists a SHOQGN+ concept C ′

such that either C ≡ C ′ or C ≡ ¬C ′.
Corollary 4.38. For any SHOQ concept C and any concept B, which is either
an atom A or {o} or ≥ nR, the concept B uC is equivalent to some SHOQGN+

concept.

Proofs of Lemma 4.36, Lemma 4.37, Corollary 4.38 and Proposition 4.20 repeat
the proofs of Lemma 4.29, Lemma 4.30, Corollary 4.31 and Proposition 4.13
respectively. One just needs to replace existential restrictions with cardinality
restrictions, ALCHOIGN with SHOQGN+ and auxiliary statements (lemmas,
propositions and corollaries) for ALCHOIGN with the corresponding auxiliary
statements for SHOQGN+ .

Lemma 4.39. SHOQ concept inclusion axiom C v D is safe-range if and only
if either C is safe-range or ¬D is safe-range.

Proof. Let C v D is any concept inclusion axiom in SHOQ. It is safe-range
if and only if the corresponding first-order formula ¬∃x. C(x) ∧ ¬D(x) is safe-
range. It is safe-range if and only if the concept C u ¬D is safe-range, which, by
Proposition 4.7 is safe-range if and only if either the concept C is safe-range or
the concept ¬D is safe-range. Hence, we have that the concept inclusion C v D
is safe-range if and only if either C is safe-range or ¬D is safe-range.

The lemma is proved.

4.5.2 Proposition 4.21

Proof.

– All SHOQGN+ role inclusion and transitivity axioms are safe-range because
all SHOQ role inclusion and transitivity axioms are safe-range by Proposition
4.28.

– Let C v D be any concept inclusion axiom in SHOQGN+ . Then by definition
we have that either C is in SHOQGN+ and, hence, safe-range by Proposition
4.19 or SimplePushNeg(¬D) is in SHOQGN+ and, hence, safe-range by
Proposition 4.19 and, hence, ¬D is safe-range, because SimplePushNeg is a
necessary step in transformation of a formula to safe-range normal form. Then
by Lemma 4.39 the concept inclusion C v D is safe-range.

The proposition is proved.

65

4.5.3 Proposition 4.22

Proof.

– All role inclusion and transitivity axioms in SHOQ are safe-range by Propo-
sition 4.28. And all role inclusion and transitivity axioms in SHOQ are in
SHOQGN+ . Hence, all safe-range role inclusion and transitivity axioms in
SHOQ are in SHOQGN+ .

– Let C v D be any safe-range concept inclusion axiom in SHOQ. Hence, by
Lemma 4.39, either C is safe-range or ¬D is safe-range. By Proposition 4.20,
either C is equivalent to some SHOQGN+ concept C ′ or ¬D is equivalent to
some SHOQGN+ concept D′.

– Suppose that C is equivalent to some SHOQGN+ concept C ′. Then C v D
is equivalent to C ′ v D. By definition C ′ v D is a SHOQGN+ concept
inclusion axiom.

– Suppose that ¬D is equivalent to some SHOQGN+ concept D′.
Then C v D is equivalent to C v ¬D′. SimplePushNeg(¬¬D′) =
SimplePushNeg(D′) = D′ – SHOQGN+ concept, because it is evident
by the definition (4.2) of SHOQGN+ concepts that for any SHOQGN+

concept C, SimplePushNeg(C) = C.

The proposition is proved.

66

5. Query Reformulation

This chapter describes our query reformulation framework that presents a construc-
tive way (a tableau-based algorithm) to obtain a reformulation of a query under an
ontology. We also show which conditions an ontology and a query should satisfy
in order to obtain as an output of the algorithm an ”SQL-executable” reformulation
– namely a safe-range formula – that can be evaluated over a database (DBox)
without taking into account the ontology. Finally, we present applications of the
framework in expressive description logics ALCHOI and SHOQ.
A DBox DB is a finite set of ground atoms of the form P (c1, . . . , cn), where
P ∈ P, n-ary predicate, and ci ∈ C (1 ≤ i ≤ n). DBox can be seen as a variant
of database representation. The set of all predicates appearing in a DBox DB is
denoted as PDB, and the set of all constants appearing in DB is called the active
domain of DB, and is denoted as CDB. A (possibly empty) finite set KB of closed
formulas will be called an ontology.
An interpretation I embeds a DBox DB, if it holds that aI = a for every
DBox constant a ∈ CDB (the standard name assumption (SNA), customary
in databases, see Abiteboul et al. (1995)) and that (c1, . . . , cn) ∈ P I if and only if
P (c1, . . . , cn) ∈ DB. We denote the set of all interpretations embedding a DBox
DB as E(DB).
In other words, in every interpretation embedding DB the interpretation of any
DBox predicate is always the same and it is given exactly by its content in the
DBox; this is, in general, not the case for the interpretation of the non-DBox
predicates. We say that all the DBox predicates are closed, while all the other
predicates are open and may be interpreted differently in different interpretations.
We do not consider here the open world assumption (the ABox) for embedding a
DBox in an interpretation. In an open world, an interpretation I soundly embeds a
DBox if it holds that (c1, . . . , cn) ∈ P I if (but not only if) P (c1, . . . , cn) ∈ DB.
In order to allow for an arbitrary DBox to be embedded, we generalise the standard
name assumption to all the constants in C; this implies that the domain of any
interpretation necessarily includes the set of all the constants C, which we assume
to be finite. The finiteness of C corresponds to the finite ability of a database
system to represent distinct constant symbols; C is meant to be unknown in
advance, since different database systems may have different limits. We will see
that the framework introduced here will not depend on the choice of C.
If σ′ ⊆ PDB ∪ C, then for any interpretations I and J embedding DB we
have: adom(σ′, I) = adom(σ′,J); so, for such a case we introduce the notation
adom(σ′,DB) := adom(σ′, I), where I is any interpretation embedding the
DBox DB, and call it a semantic active domain of a signature σ′ in a DBox DB.

67

Intuitively, adom(σ′,DB) includes the constants from σ′ and from DB appearing
in the relations corresponding to the predicates from σ′. If σ′ = σ(φ) ⊆ DB,
where φ is a formula, we call adom(σ(φ),DB) a semantic active domain of a
formula φ in a DBox DB.
Let X ⊆ X be a set of variables and S a set; in this chapter we consider the
restriction of a substitution to a set of variables from X. That is, we consider
a function Θ|X assigning an element in S to each variable in X . We abuse the
notation and call such restriction simply substitution. Thus, hereafter substitution
is a function from a set of variables X ⊆ X to a set S: Θ : X 7→ S, including the
empty substitution ε when X = ∅. Domain and image (range) of a substitution Θ
are written as dom(Θ) and rng(Θ) respectively.
Given a subset of the set of constants C′ ⊆ C, we write that a formula φ(x̄) is true
in an interpretation I with its free variables substituted according to a substitution
Θ : x̄ 7→ C′ as I |= φ(x̄/Θ).
Given an interpretation I = 〈∆I , ·I〉 and a subset of its domain ∆ ⊆ ∆I , we
write that a formula φ(x̄) is true in I with its free variables interpreted according
to a substitution Θ : x̄ 7→ ∆ as I,Θ |= φ(x̄).
The extension domain of a formula φ(x̄) with respect to the interpretation I is
defined as the set of domain elements

⋃
{rng(Θ) | dom(Θ) = x̄, rng(Θ) ⊆

∆, I,Θ |= φ(x̄)}.
As usual, an interpretation in which a closed formula is true is called a model for
the formula; the set of all models of a formula φ (respectively KB) is denoted as
M(φ) (respectively M(KB)). A DBox DB is legal for an ontology KB if there
exists a model of KB embedding DB.

5.1 Queries

A query is a (possibly closed) formula. Given a queryQ(x̄). We define the certain
answer over a DBox DB and under an ontology KB as follows:

Definition 5.1 (Certain answer). The (certain) answer to a query Q(x̄) over a
DBox DB under an ontology KB is the set of substitutions with constants:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}.

Query answering is defined as an entailment problem, and as such it is going to
have the same (high) complexity as entailment.
Note that if a query Q is closed (i.e., a boolean query), then the certain answer
is {ε} if Q is true in all the models of the ontology embedding the DBox, and ∅
otherwise. In the following, we assume that the closed formulaQ(x̄/Θ) is neither
valid nor inconsistent under the ontology KB, given a substitution Θ : x̄ 7→ C

68

assigning to variables distinct constants not appearing in Q, nor in KB, nor in
CDB: this would lead to trivial reformulations.
One can see that if an ontology is inconsistent or a DBox is illegal for an ontology,
then the certain answer to any query over the DBox under the ontology is a set of
all possible substitutions. Also, if an ontology is a tautology, we actually have a
simple case of query answering over a database (DBox) without an ontology. Thus,
we can discard these cases and assume to have only consistent non-tautological
ontologies and legal DBoxes.
We now show that we can weaken the standard name assumption for the constants
by just assuming unique names, without changing the certain answers. As we
said before, an interpretation I satisfies the standard name assumption if cI = c
for any c ∈ C. Alternatively, an interpretation I satisfies the unique name
assumption (UNA) if aI 6= bI for any different a, b ∈ C. We denote the set of all
interpretations satisfying the standard name assumption as I(SNA). We denote
the set of all interpretations satisfying the unique name assumption as I(UNA).
The following proposition allows us to freely interchange the standard name and
the unique name assumptions with interpretations embedding DBoxes. This is of
practical advantage, since we can encode the unique name assumption in classical
first-order logic reasoners, and many description logics reasoners do support
natively the unique name assumption as an extension to OWL.

Proposition 5.2 (SNA vs UNA). For any query Q(x̄), ontology KB and DBox
DB,
{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ I(SNA) ∩M(KB) ∩ E(DB) : I |=
Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ I(UNA) ∩M(KB) ∩ E(DB) : I |=
Q(x̄/Θ)}.

Since a query can be an arbitrary first-order formula, its answer may depend
on the domain, which we do not know in advance. For example, the query
Q(x) = ¬Student(x) over the database (DBox) {Student(a), Student(b)},
with domain {a, b, c} has the answer {x → c}, while with domain {a, b, c, d}
has the answer {x → c, x → d}. Therefore, the notion of domain independent
queries has been introduced in relational databases. Here we adapt the classical
definitions (Avron, 2008; Abiteboul et al., 1995) to our framework: we need a
more general version of domain independence, namely domain independence w.r.t
an ontology, i.e., restricted to the models of an ontology.

Definition 5.3 (Domain independence). A formulaQ(x̄) is domain independent
with respect to an ontology KB if and only if for every two models I and J of
KB (i.e., I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉) which agree on the interpretation

69

of the predicates and constants (i.e. are compatible), and for every substitution
Θ : x̄ 7→ ∆I ∪∆J we have:

rng(Θ) ⊆ ∆I and I,Θ |= Q(x̄) iff

rng(Θ) ⊆ ∆J and J ,Θ |= Q(x̄).

The above definition reduces to the classical definition of domain independence
whenever the ontology is empty. In the case when KB = ∅ this definition coincide
with Definition 3.3. For convenience in this section use this variant of definition
of domain independence. A weaker version of domain independence – which is
relevant for open formulas – is the following.

Definition 5.4 (Ground domain independence). A formula Q(x̄) is ground
domain independent if and only if Q(x̄/Θ) is domain independent for every
substitution Θ : x̄ 7→ C.

For example, the formula ¬P (x) is ground domain independent, but it is not
domain independent.
The problem of checking whether a FOL formula is domain independent is unde-
cidable (Abiteboul et al., 1995). The well known safe-range syntactic fragment of
FOL introduced by Codd is an equally expressive language (that we mentioned
already in Section 3.2); indeed any safe-range formula is domain independent,
and any domain independent formula can be easily transformed into a logically
equivalent safe-range formula. Intuitively, a formula is safe-range if and only if
its variables are bounded by positive predicates or equalities (see Definition 3.12).
For example, the formula ¬A(x) ∧B(x) is safe-range, while queries ¬A(x) and
∀x.A(x) are not. To check whether a formula is safe-range, the formula is trans-
formed into a logically equivalent safe-range normal form and its range restriction
is computed according to a set of syntax based rules; the range restriction of a
formula is a subset of its free variables, and if this coincides with the free variables
then the formula is said to be safe-range (Abiteboul et al., 1995).
Similar to domain independence, a formula is ground safe-range if any grounding
of this formula is safe-range. An ontologyKB is safe-range (domain independent),
if every formula in KB is safe-range (domain independent).
The safe-range fragment of first-order logic with the standard name assumption is
equally expressive to the relational algebra, which is the core of SQL (Abiteboul
et al., 1995).

5.2 Determinacy

Definition 5.5 (Finite determinacy or implicit definability). A query Q(x̄) is
(finitely) determined by (or implicitly definable from) the DBox predicates PDB

70

under KB if and only if for any two models I and J of the ontology KB – both
with a finite interpretation to the DBox predicates PDB – whenever I|PDB∪C =
J |PDB∪C then for every substitution Θ : x̄ 7→ ∆I we have: I,Θ |= Q(x̄) if and
only if J ,Θ |= Q(x̄).

Intuitively, the answer to an implicitly definable query does not depend on the
interpretation of non-DBox predicates. Once the DBox and a domain are fixed,
it is never the case that a substitution would make the query true in some model
of the ontology and false in others, since the truth value of an implicitly defined
query depends only on the interpretation of the DBox predicates and constants and
on the domain (which are fixed). In practice, by focusing on finite determinacy of
queries we guarantee that the user can always interpret the answers as being not
only certain, but also exact – namely that whatever is not in the answer can never
be part of the answer in any possible world.
In the following we focus on ontologies and queries in those fragments of
FOL(C,P) for which determinacy under models with a finite interpretation of
DBox predicates (finite determinacy) and determinacy under models with an
unrestricted interpretation of DBox predicates (unrestricted determinacy) coincide.
We say that these fragments have finitely controllable determinacy. Sometimes
it may be the case that we consider ontology in one fragment (F1) and query
in another one (F2). Then we say that fragment F1 has finitely controllable
determinacy of queries from fragment F2 if for every query expressed in F2 and
for every ontology expressed in F1 finite determinacy of the query under the
ontology coincides with unrestricted determinacy.
We require that whenever a query is finitely determined then it is also determined
in unrestricted models (the reverse is trivially true). Indeed, the results in this thesis
would fail if finite determinacy and unrestricted determinacy do not coincide: it
can be shown (Gurevich, 1984) that Theorem 5.9 below fails if we consider only
models with a finite interpretation of DBox predicates.

Example 5.6 (Example from database theory). Let P = {P,R,A}, PDB =
{P,R},

KB = {∀x, y, z. R(x, y) ∧R(x, z)→ y = z,

∀x, y.R(x, y)→ ∃z.R(z, x),

(∀x, y.R(x, y)→ ∃z.R(y, z))→ (∀x.A(x)↔ P (x))}.

KB is domain independent. The formula ∀x, y.R(x, y)→ ∃z.R(y, z) is entailed
from the first two formulas only over finite interpretations of R. The query
Q = A(x) is domain independent and finitely determined by P (it is equivalent to
P (x) under the models with a finite interpretation of R), but it is not determined

71

by any DBox predicate under models with an unrestricted interpretation of R. The
fragment in which KB and Q are expressed does not enjoy finitely controllable
determinacy.

This theorem immediately follows from the example above.

Theorem 5.7. Domain independent fragment does not have finitely controllable
determinacy.

The exact reformulation of a query (Nash et al., 2010) (also called explicit defini-
tion by Beth (1953)) is a formula logically equivalent to the query which makes
use only of DBox predicates and constants.

Definition 5.8 (Exact reformulation or explicit definability). A query Q(x̄) is
explicitly definable from the DBox predicates PDB under the ontology KB if and
only if there is some formula Q̂(x̄) in FOL(C,P), such that KB |= ∀x̄.Q(x̄)↔
Q̂(x̄) and σ(Q̂) ⊆ PDB. We call this formula Q̂(x̄) an exact reformulation of
Q(x̄) under KB over PDB.

Determinacy of a query is completely characterised by the existence of an exact
reformulation of the query: it is well known that a first-order query is determined
by DBox predicates if and only if there exists a first-order exact reformulation.

Theorem 5.9 (Projective Beth definability, (Beth, 1953)). A query Q(x̄) is im-
plicitly definable from the DBox predicates PDB under an ontology KB, if and
only if it is explicitly definable as a formula Q̂(x̄) in FOL(C,P) over PDB under
KB.

Let Q be any formula in FOL(C,P) the formula obtained from it by uniformly
replacing every occurrence of each non-DBox predicate P with a new predicate P̃ .
We extend this renaming operator ·̃ to any set of formulas in a natural way. One
can check whether a query is implicitly definable by using the following theorem.

Theorem 5.10 (Testing determinacy, which can be easily shown from Beth
(1953)). A query Q(x̄) is implicitly definable from the DBox predicates PDB
under the ontology KB if and only if KB ∪ K̃B |= ∀x̄.Q(x̄)↔ Q̃(x̄).

5.2.1 Finite controllability of determinacy for GNFO

Finite controllability of determinacy for GNFO is important of us because we
consider GNFO subfragments of DLs (Section 5.6) for application of our query
reformulation framework.
Suppose, we have an ontology KB and a query Q(x̄) both expressed in GNFO.
PDB is a set of DBox predicates. Let τ be a conjunction of all sentences in KB.

72

Then by the Theorem 5.9 we will have a finite controllability of determinacy if
validity of the sentence τ ∧ τ̃ → (∀x̄.Q(x̄)→ Q̃(x̄)) over finite models implies
the validity of the sentence over unrestricted models. That is, we have a finite
controllability of determinacy if whenever sentence τ ∧ τ̃ ∧ ∃x̄. (Q(x̄) ∧ ¬Q̃(x̄))

has a finite model, it has an unrestricted one. If Q(x̄) ∧ ¬Q̃(x̄) is in GNFO
then the sentence τ ∧ τ̃ ∧ ∃x̄. (Q(x̄) ∧ ¬Q̃(x̄)) is in GNFO, and we gain finite
controllability of determinacy simply by finite model property of GNFO. But
even if Q(x̄) is a conjunctive query, which is a strict subfragment of GNFO, the
formula Q(x̄) ∧ ¬Q̃(x̄) may not be in GNFO.

Example 5.11. Q(x, z) = ∃y.A(x, y) ∧ B(z, y). Then Q(x, z) ∧ ¬Q̃(x, z) =

(∃y.A(x, y)∧B(z, y))∧¬(∃y. Ã(x, y)∧B̃(z, y)) = ∃y1. (A(x, y1)∧B(z, y1)∧
¬∃y2. Ã(x, y2) ∧ B̃(z, y2)) 6∈GNFO.

We say that a first-order logic formula is answer-guarded if it has a form

Atom(x̄) ∧ ϕ(x̄),

where Atom is a predicate which arity is equal to the number of free variables of
the formula.

Theorem 5.12. GNFO has finitely controllable determinacy of

– answer-guarded GNFO queries;

– boolean GNFO queries;

– GNFO queries with one free variable.

The problem of checking whether a query is implicitly definable reduces to the
problem of checking entailment in first-order logic.

5.3 Exact Safe-Range Query Reformulation

In this section we analyse the conditions under which the original query answering
problem corresponding to an entailment problem can be reduced systematically to
a model checking problem of a safe-range formula over the database (e.g., using a
database system with SQL).
Given a DBox signature PDB, an ontology KB, and a query Q(x̄) expressed in
some fragment of FOL(C,P) and determined by the DBox predicates, our goal
is to find a safe-range reformulation Q̂(x̄) of Q(x̄) in FOL(C,P), that when
evaluated as a relational algebra expression over a legal DBox, gives the same

73

answer as the certain answer to Q(x̄) over the DBox under KB. This can be
reformulated as the following problem:

Problem 5.13 (Exact safe-range query reformulation). Find an exact reformu-
lation Q̂(x̄) of Q(x̄) under KB as a safe-range query in FOL(C,P) over PDB.

Since an exact reformulation is equivalent under the ontology to the original query,
the certain answer to the original query and to the reformulated query are identical.
More precisely, the following proposition holds.

Proposition 5.14. Given a DBox DB, letQ(x̄) be implicitly definable from PDB
under KB and let Q̂(x̄) be an exact reformulation of Q(x̄) under KB over PDB,
then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩ E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩ E(DB) : I |= Q̂(x̄/Θ)}.

From the above equation it is clear that in order to answer to an exactly refor-
mulated query, one may still need to consider all the models of the ontology
embedding the DBox, i.e., we still have an entailment problem to solve. The
following theorem states the condition to reduce the original query answering
problem – based on entailment – to the problem of checking the validity of the
exact reformulation over a single model: the condition is that the reformulation
should be domain independent. Indeed there is only one interpretation (with a
particular domain) embedding the DBox with the signature restricted to the DBox
predicates.

Theorem 5.15 (Adequacy of exact safe-range query reformulation). Let DB
be a DBox which is legal for KB, and let Q(x̄) be a query. If Q̂(x̄) is an exact
domain independent (or safe-range) reformulation of Q(x̄) under KB over PDB,
then:

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩E(DB) : I |= Q(x̄/Θ)} =

{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :

I|PDB∪C |= Q̂(x̄/Θ)}.

A safe-range reformulation is necessary to transform a first-order query to a
relational algebra query which can then be evaluated by using SQL techniques.
The theorem above shows in addition that being safe-range is also a sufficient
property for an exact reformulation to be correctly evaluated as an SQL query.
Let us now see an example in which we cannot reduce the problem of answering
an exact reformulation to model checking over a DBox, if the exact reformulation
is not safe-range.

74

Example 5.16. Let P = {P,A}, PDB = {P}, C = {a},
DB = {P (a, a)}, KB = {∀y. P (a, y) ∨A(y)},
Q(x̄) = Q̂(x̄) = ∀y. P (x, y) (i.e., x̄ = {x}).

– C includes the active domain CDB (it is actually equal).

– DB is legal for KB because there is I = 〈{a}, ·I〉 such that P I = {(a, a)},
AI = ∅ and obviously, I ∈M(KB).

– {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}
= ∅ because one can take I = 〈{a, b}, ·I〉 such that P I = {(a, a)},
AI = {b}; then I ∈M(KB) ∩ E(DB), but for the only possible substitution
{x→ a} we have: I 6|= ∀y P (a, y).

– However,
{Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB), ∀I = 〈C, ·I〉 ∈ E(DB) :

I|PDB∪C |= Q̂(x̄/Θ)} = {x→ a}

As we have seen, answers to a query for which a reformulation exists will contain
only constants from the active domain of the DBox and the query; therefore,
ground statements in the ontology involving non-DBox predicates and non-active
domain constants (for example, as ABox statements) will not play any role in the
final evaluation of the reformulated query over the DBox.

5.4 Conditions for an Exact Safe-Range Reformulation

We have just seen the importance of getting an exact safe-range query reformula-
tion. In this section we are going to study the conditions under which an exact
safe-range query reformulation exists.
First of all, we will focus on the semantic notion of safe-range, namely domain
independence. While implicit definability is – as we already know – a sufficient
condition for the existence of an exact reformulation, it does not guarantee alone
the existence of a domain independent reformulation.

Example 5.17. Let P = {A,B}, PDB = {A}, KB = {∀x.B(x) ↔ A(x)},
Q(x) = ¬B(x). Then Q(x) is implicitly definable from PDB under KB, and
every exact reformulation of Q(x) over PDB under KB is logically equivalent to
¬A(x) and not domain independent.

By looking at the example, it seems that the reason for the non domain independent
reformulation lies in the fact that the ontology, which is domain independent,

75

cannot guarantee existence of an exact domain independent reformulation of the
non domain independent query. However, let us consider the following example:

Example 5.18. Let PDB = {A, C}, KB = {¬A(a), ∀x.A(x) ↔ B(x)} and
let a query Q(x) = ∃y ¬B(y) ∧ C(x). It is easy to see that KB is domain
independent and Q(x) is not. Q(x) is implicitly definable from PDB under KB,
and Q̂(x) = ¬A(a) ∧ C(x) is an exact domain independent reformulation of
Q(x).

If in the example above PDB = {B, C} and original query to be rewritten is
Q̂(x), then Q(x) is an exact reformulation of Q̂(x) under KB over PDB . That
is, even domain independence of an ontology and an original query does not
guarantee domain independence of a reformulation.
It is obvious that in spite of the fact that the query Q(x) form the example above
is not domain independent, it is domain independent with respect to the ontology
KB. In other words, in this case the ontology guarantees the existence of an exact
domain independent reformulation.
With queries that are domain independent with respect to an ontology, the follow-
ing theorem holds, giving the semantic requirements for the existence of an exact
domain independent reformulation.

Theorem 5.19 (Semantic characterisation). Given a set of DBox predicates
PDB. A domain independent ontology KB, and a query Q(x̄), a domain indepen-
dent exact reformulation Q̂(x̄) of Q(x̄) over PDB under KB exists if and only if
Q(x̄) is implicitly definable from PDB under KB and it is domain independent
with respect to KB.

The above theorem shows us the semantic conditions to have an exact domain
independent reformulation of a query, but it does not give us a method to compute
such reformulation and its equivalent safe-range form. The following theorem
gives us sufficient conditions for the existence of an exact safe-range reformu-
lation in any decidable fragment of FOL(C,P) where finite and unrestricted
determinacy coincide (a fragment with finite controllability of determinacy), and
gives us a constructive way to compute it, if it exists.

Theorem 5.20 (Constructive). If:

1. KB ∪ K̃B |= ∀x̄.Q(x̄)↔ Q̃(x̄) (that is, Q(x̄) is implicitly definable),

2. Q(x̄) is safe-range (that is, Q(x̄) is domain independent),

3. KB is safe-range (that is, KB is domain independent),

76

then there exists an exact reformulation Q̂(x̄) of Q(x̄) as a safe-range query in
FOL(C,P) over PDB under KB that can be obtained constructively.

In order to constructively compute the exact safe-range query reformulation we use
the tableau based method to find the Craig’s interpolant (Fitting, 1996) to compute
Q̂(x̄) from a validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄)).
See Section 5.5 for full details.
Let us now consider a fully worked out example, adapted from the paper by Nash
et al. (2010).

Example 5.21. Given: P = {R, V1, V2, V3}, PDB = {V1, V2, V3},

KB = {∀x, y. V1(x, y)↔ ∃z, v.R(z, x) ∧R(z, v) ∧R(v, y),

∀x, y. V2(x, y)↔ ∃z.R(x, z) ∧R(z, y),

∀x, y. V3(x, y)↔ ∃z, v. R(x, z) ∧R(z, v) ∧R(v, y),

Q(x, y) = ∃z, v, u.R(z, x) ∧R(z, v) ∧R(v, u) ∧R(u, y)}.

The conditions of the theorem are satisfied: Q(x, y) is implicitly definable from
PDB under KB; Q(x, y) is safe-range; KB is safe-range. Therefore, with the
tableau method one finds the Craig’s interpolant to compute Q̂(x, y) from a
validity proof of the implication (KB ∧ Q(x̄)) → (K̃B → Q̃(x̄)) and obtain
Q̂(x, y) = ∃z. V1(x, z)∧∀v. (V2(v, z)→ V3(v, y)) – an exact ground safe-range
reformulation.
Since the answer to Q̂(x, y) is in the semantic active domain of the signature
σ(Q̂) ⊆ PDB∪CQ̂ in the DBoxDB (see Lemma 5.37), all fee variables in Q̂(x, y)
can be ”guarded” by some DBox predicates or constants. Note that Q(x, y) =
∃z, v, u.R(z, x)∧R(z, v)∧R(v, u)∧R(u, y)} ≡KB ∃z, v. R(z, x)∧R(z, v)∧
V2(v, y) ≡KB Q(x, y) ∧ V2(v, y) (where ’≡KB’ means ”logically equivalent
with respect to KB”). Then KB |= Q(x, y)↔ Q̂(x, y)∧ ∃v. V2(v, y). Therefore,
Q̂(x, y)∧∃v. V2(v, y) = (∃z. V1(x, z)∧∀v. (V2(v, z)→ V3(v, y)))∧∃v. V2(v, y)
is an exact safe-range reformulation of Q(x, y) from PDB under KB.

5.5 Constructing the Safe-Range Reformulation

In this section we introduce a method to compute a safe-range reformulation of
an implicitly definable query when conditions in Theorem 5.20 are satisfied. The
method is based on the notion of interpolant introduced by Craig (1957).

Definition 5.22 (Interpolant). The sentence χ is an interpolant for the sentence
φ→ ψ in FOL(C,P), if all predicate and constant symbols of χ are in the set of

77

predicate and constant symbols of both φ and ψ, and both φ→ χ and χ→ ψ are
valid sentences in FOL(C,P).

Theorem 5.23 (Craig’s interpolation). If φ→ ψ is a valid sentence in
FOL(C,P), and neither φ nor ψ are valid, then there exists an interpolant.

Note that the Beth definability (Theorem 5.9) and Craig’s interpolation theorem
do not hold for all fragments of FOL(C,P): an interpolant may not always be
expressed in the fragment itself, but obviously it is in FOL(C,P) (because of
Theorem 5.23).
An interpolant is used to find an exact reformulation of a given implicitly definable
query as follows.

Theorem 5.24 (Interpolant as definition). Let Q(x̄) be a query with n ≥ 0 free
variables implicitly definable from the DBox predicates PDB under the ontology
KB. Then, the closed formula with c1, . . . , cn distinct constant symbols in C not
appearing in KB or Q(x̄):

((
∧
KB) ∧Q(x̄/c1, . . . , cn))→ ((

∧
K̃B)→ Q̃(x̄/c1, . . . , cn)) (5.1)

is valid, and its interpolant Q̂[c1,...,cn/x̄] is an exact reformulation of Q(x̄) under
KB over PDB.

Therefore, to find an exact reformulation of an implicitly definable query in terms
of DBox predicates it is enough to find an interpolant of the implication (5.1) and
then to substitute all the constants c1, . . . , cn back with the free variables x̄ of the
original query. An interpolant can be constructed from a validity proof of (5.1)
by using automated theorem proving techniques such as tableau or resolution. In
order to guarantee the safe-range property of the reformulation, we use a tableau
method as in the book by Fitting (1996).

5.5.1 Tableau-based method to compute an interpolant

In this section we recall in our context the tableau based method to compute an
interpolant. This method was described and its correctness was proved in Fitting
(1996).
Assume φ→ ψ is valid, therefore φ ∧ ¬ψ is unsatisfiable. Then there is a closed
tableau corresponding to φ ∧ ¬ψ. In order to compute an interpolant from this
tableau one needs to modify it to a biased tableau.

Definition 5.25 (Biased tableau). A biased tableau for formulas φ∧¬ψ is a tree
T = (V,E) where:

78

– V is a set of nodes, each node is labelled by a set of biased formulas. A biased
formula is an expression in the form of L(ϕ) or R(ϕ) where ϕ is a formula.
For each node n, S(n) denotes the set of biased formulas labelling n.

– The root of the tree is labelled by {L(φ), R(¬ψ)}

– E is a set of edges. Given 2 nodes n1 and n2, (n1, n2) ∈ E iff there is a biased
completion rule from n1 to n2. We say there is a biased completion rule from
n1 to n2 if

– Y (µ) is the result of applying a rule to X(ϕ), where X and Y refer to L or
R (for some rules, there are two possibilities of choosing Y (µ)), and

– S(n2) = (S(n1) \ {X(ϕ)}) ∪ {Y (µ)}.

Let C be the set of all constants in the input formulas of the tableau. Cpar extends
C with an infinite set of new constants. A constant is new if it does not occur
anywhere in the tableau. With these notations, we have the following rules:

Propositional rules

Negation rules:
X(¬¬ϕ)

X(ϕ)

X(¬>)

X(⊥)

X(¬⊥)

X(>)

α−rule:
X(ϕ1 ∧ ϕ2)

X(ϕ1)
X(ϕ2)

β−rule:
X(¬(¬ϕ1 ∧ ¬ϕ2))

X(ϕ1) | X(ϕ2)

First order rules

γ−rule:
X(∀x.ϕ)

X(ϕ(t))
for any t ∈ Cpar

σ−rule:
X(∃x.ϕ)

X(ϕ(c))
for a new constant c

79

Equality rules

reflexivity rule:
X(ϕ)

X(t = t)
t ∈ Cpar occurs in ϕ

replacement rule:
X(t = u)Y (ϕ(t))

Y (ϕ(u))

A node in the tableau is closed if it contains X(ϕ) and Y (¬ϕ). If a node is closed,
no rule is applied. In the other words, it becomes a leaf of the tree. A branch is
closed if it contains a closed node and a tableau is closed if all of its branches are
closed. Obviously, if the standard tableau for first-order logic is closed then so is
the biased tableau and vice versa.
Given a closed biased tableau, the interpolant is computed by applying interpolant
rules. An interpolant rule is written as S int−→ I , where I is a formula and
S = {L(φ1), L(φ2), ..., L(φn), R(ψ1), R(ψ2), ..., R(ψm)}.

Rules for closed branches

r1: S ∪ {L(ϕ), L(¬ϕ)} int−→ ⊥ r2: S ∪ {R(ϕ), R(¬ϕ)} int−→ >

r3: S ∪ {L(⊥)} int−→ ⊥ r4: S ∪ {R(⊥)} int−→ >

r5: S ∪ {L(ϕ), R(¬ϕ)} int−→ ϕ r6: S ∪ {R(ϕ), L(¬ϕ)} int−→ ¬ϕ

Rules for propositional cases

p1:
S ∪ {X(ϕ)} int−→ I

S ∪ {X(¬¬ϕ)} int−→ I
p2:

S ∪ {X(>)} int−→ I

S ∪ {X(¬⊥)} int−→ I

p3:
S ∪ {X(⊥)} int−→ I

S ∪ {X(¬>)} int−→ I
p4:

S ∪ {X(ϕ1), X(ϕ2)} int−→ I

S ∪ {X(ϕ1 ∧ ϕ2)} int−→ I

p5:
S ∪ {L(ϕ1)} int−→ I1 S ∪ {L(ϕ2)} int−→ I2

S ∪ {L(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∨ I2

p6:
S ∪ {R(ϕ1)} int−→ I1 S ∪ {R(ϕ2)} int−→ I2

S ∪ {R(¬(¬ϕ1 ∧ ¬ϕ2))} int−→ I1 ∧ I2

80

Rules for first order case

f1:
S ∪ {X(ϕ(p))} int−→ I

S ∪ {X(∃x.ϕ(x))} int−→ I
where p is a parameter
that does not occur in S or ϕ

f2:
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int→ I
if c occurs in {φ1, ..., φn}

f3:
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ I
if c occurs in {ψ1, ..., ψm}

f4:
S ∪ {L(ϕ(c))} int−→ I

S ∪ {L(∀x.ϕ(x))} int−→ ∀x.I[c/x]
if c does not occur in {φ1, ..., φn}

f5:
S ∪ {R(ϕ(c))} int−→ I

S ∪ {R(∀x.ϕ(x))} int−→ ∃x.I[c/x]
if c does not occur in ψ1, ..., ψm

Rules for equality cases

e1:
S ∪ {X(ϕ(p)), X(t = t)} int−→ I

S ∪ {X(ϕ(p))} int−→ I

e2:
S ∪ {X(ϕ(u)), X(t = u)} int−→ I

S ∪ {X(ϕ(t)), X(t = u)} int−→ I

e3:
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ t = u→ I
if u occurs in
ϕ(t), ψ1, ..., ψm

e4:
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ t = u ∧ I
if u occurs in
ϕ(t), ψ1, ..., ψm

e5:
S ∪ {L(ϕ(u)), R(t = u)} int−→ I

S ∪ {L(ϕ(t)), R(t = u)} int−→ I[u/t]
if u does not occur in
ϕ(t), ψ1, ..., ψm

e6:
S ∪ {R(ϕ(u)), L(t = u)} int−→ I

S ∪ {R(ϕ(t)), L(t = u)} int−→ I[u/t]
if u does not occur in
ϕ(t), ψ1, ..., ψm

81

In summary, in order to compute an interpolant of φ and ψ, one first need to gener-
ate a biased tableaux proof of unsatisfiability of φ ∧ ¬ψ using biased completion
rules and then apply interpolant rules from bottom leaves up to the root. Let us
consider an example to demonstrate how the method works.

Example 5.26. Let P = {S,G,U}, PDB = {S,U},

KB = {∀x(S(x)→ (G(x) ∨ U(x)))

∀x(G(x)→ S(x))

∀x(U(x)→ S(x))

∀x(G(x)→ ¬U(x))}

Q(x) = G(x)

Obviously, Q is implicitly definable from S and U , since the ontology states that
G and U partition S. Now we will follow the tableau method to find its exact
reformulation. For compactness, we use the notation SI instead of S int−→ I .

S0 = {L(∀x(S(x)→ (G(x) ∨ U(x)))), R(∀x(S(x)→ (G1(x) ∨ U(x)))),

L(∀x(G(x)→ S(x))), R(∀x(G1(x)→ S(x))),

L(∀x(U(x)→ S(x))), R(∀x(U(x)→ S(x))),

L(∀x(G(x)→ ¬U(x))), R(∀x(G1(x)→ ¬U(x))),

L(G(c)), R(¬G1(c))}

By applying the rule for ∀ and removing the implication, we have:

S1 = {L(¬S(c) ∨G(c) ∨ U(c)), R(¬S(c) ∨G1(c) ∨ U(c)),

L(¬G(c) ∨ S(c))), R(¬G1(c) ∨ S(c)),

L(¬U(c) ∨ S(c)), R(¬U(c) ∨ S(c)),

L(¬G(c) ∨ ¬U(c)), R(¬G1(c) ∨ ¬U(c)),

L(G(c)), R(¬G1(c))}

and the interpolant of S1 can be computed as in Figure 5.1 below. Therefore,
S(c) ∧ ¬U(c) is the interpolant and Q̂(x) = S(x) ∧ ¬U(x) is an exact reformu-
lation of Q(x).

82

Figure 5.1 – Computation of the interpolant of S1

83

5.5.2 A safe-range reformulation

Now we want to show that the reformulation computed by the above tableau based
method under the condition of Theorem 5.20 generates a ground safe-range query.

Theorem 5.27 (Ground safe-range reformulation). Let KB be an ontology, and
let Q(x̄) be a query which is implicitly definable from PDB. If KB and Q(x̄) are
safe-range then a reformulation Q̂(x̄) obtained using the tableau method described
in Section 5.5.1 is ground safe-range.

In other words, the conditions of Theorem 5.27 guarantee that all quantified
variables in the reformulation are range-restricted. We need to consider now
the still unsafe free variables. The theorem below will help us deal with non-
range-restricted free variables. Let us first define the active domain predicate of a
signature σ′ as the formula:

Adomσ′(x) :=
∨

P∈P∩σ′
(∃x1, . . . , xAR(P)−1. P (x, x1, . . . , xAR(P)−1) ∨ . . .∨

∨P (x1, . . . , xAR(P)−1, x)) ∨
∨

c∈C∩σ′
(x = c).

If σ′ = σ(φ), where φ is a formula, then instead of Adomσ(φ) we simply write
Adomφ and call it active domain predicate of the formula φ.

Theorem 5.28 (Range of the query). LetKB be a domain independent ontology,
and let Q(x1, . . . , xn) be a query which is domain independent with respect to
KB. Then

KB |= ∀x1, . . . , xn.Q(x1, . . . , xn)→ AdomQ(x1) ∧ . . . ∧AdomQ(xn).

Given a safe-range ontology, a safe-range and implicitly definable query is ob-
viously domain independent with respect to the ontology (by definition). In this
case, Theorem 5.28 says that the answer to the reformulation can only include se-
mantic active domain elements of the reformulation. Therefore, the active domain
predicate of the reformulation can be used as a “guard” for free variables which
are not bounded by any positive predicate.
Based on Theorem 5.27 and Theorem 5.28, we propose a complete procedure to
construct a safe-range reformulation in Algorithm 3.

84

Algorithm 3 Safe-range reformulation

Input: a safe-range KB, a safe-range and implicitly definable query Q(x̄).
Output: an exact safe-range reformulation Q̂(x̄).

1: Compute the interpolant Q̂(x̄) as in Theorem 5.24
2: For each free variable x which is not bounded by any positive predicate in
Q̂(x̄) do
Q̂(x̄) := Q̂(x̄) ∧AdomQ̂(x)

3: Return Q̂(x̄)

5.6 The Guarded Negation Fragment of ALCHOI and
Safe-Range Fragment of SHOQ

In this section, we present an application of Theorem 5.20 in the ALCHOIGN

description logic, the guarded negation syntactic fragment of ALCHOI (Fig-
ure 5.2), and SHOQGN+ , the extended guarded negation syntactic fragment
of SHOQ (Figure 5.3) introduced and studied in details in Chapter 4. Each of
these fragments happens to express exactly the domain independent concepts and
TBoxes of the corresponding description logic (see Theorem 4.17 and Theorem
4.24). Recall thatALCHOIGN and SHOQGN+ restrictALCHOI and SHOQ
respectively by just prescribing that negated concepts should be guarded by some
generalised atom – an atomic concept, a nominal, an unqualified existential restric-
tion (for ALCHOI) or an unqualified atleast number restriction (for SHOQ),
i.e., absolute negation is forbidden. ALCHOIGN is actually at the intersection
of the GNFO fragment and ALCHOI (by definition).

R ::= P | P−
B ::= A | {o} | ∃R
C ::= B | ∃R.C | ∃R.¬C | B u ¬C | C uD | C tD

Figure 5.2 – Syntax of ALCHOIGN concepts and roles

B ::= A | {o} | ≥ nP
C ::= B | ≥ nP.C | ≥ nP.¬C | B u ¬C | C uD | C tD

Figure 5.3 – Syntax of SHOQGN+ concepts

Each of these fragments has the very important property of coinciding with (being
equally expressive to) the domain independent and safe-range fragments of the

85

corresponding description logic (Theorem 4.17, Theorem 4.16, Theorem 4.24 and
Theorem 4.23), therefore providing an excellent candidate language for ontologies
and queries satisfying the conditions of Theorem 5.20.
To be precise, Theorem 4.17 says that any domain independent TBox axiom and
any domain independent concept query in ALCHOI is logically equivalent, re-
spectively, to a TBox axiom and a concept query inALCHOIGN , and vice-versa.
And Theorem 4.24 says that any domain independent TBox axiom and any domain
independent concept query in SHOQ is logically equivalent, respectively, to a
TBox axiom and a concept query in SHOQGN+ , and vice-versa. These theorems
state in particular that a database query can be formulated in one language if and
only if it can be expressed in the other.
We argue that non-guarded negation should not appear in a cleanly designed
ontology, and, if present, should be fixed. Indeed, the use of absolute negative
information – such as, e.g., in “a non-male is a female” (¬ male v female) –
should be discouraged by a clean design methodology, since the subsumer would
include all sorts of objects in the universe (but the ones of the subsumee type)
without any obvious control. Only guarded negative information in the subsumee
should be allowed – such as in the axiom “a non-male person is a female”
(person u ¬ male v female).
This observation suggests a fix for non-guarded negations: for every non-guarded
negation users will be asked to replace it by a guarded one, where the guard may
be an arbitrary atomic concept, or nominal, or unqualified existential restriction
(in the case of ALCHOI) or unqualified atleast number restriction (in the case
of SHOQ). Therefore, the user is asked to make explicit the type of that concept,
in a way to make it domain independent (i.e. belonging to ALCHOIGN or
SHOQGN+). Note that the type could be also a fresh new atomic concept. We
believe that the fix we are proposing for ALCHOI and SHOQ is a reasonable
one, and would make all ALCHOI and SHOQ ontologies eligible to be used
with our framework.

5.6.1 Applying the constructive theorem

We want to reformulate concept queries over an ontology with a DBox so that
the reformulated query can be evaluated as an SQL query over the database repre-
sented by the DBox. We consider applications of the Constructive Theorem 5.20
in the fragments ALCHOIGN and SHOQGN+ . In this context, the database
is a DBox, the ontology is an ALCHOIGN (SHOQGN+) TBox, and the query
is an ALCHOIGN (SHOQGN+) concept query. A concept query is either an
ALCHOIGN (SHOQGN+) concept expression denoting an open formula with
one free variable, or an ALCHOIGN (SHOQGN+) ABox concept assertion de-

86

noting a boolean query. As expected, a DBox includes ground atomic statements
of the form A(a) and P (a, b) (where A is an atomic concept and P is an atomic
role). From the Theorem 4.17 and the Theorem 4.24 one can draw the following
corollaries.

Corollary 5.29. ALCHOIGN TBoxes and concept queries are domain indepen-
dent.

Corollary 5.30. SHOQGN+ TBoxes and concept queries are domain indepen-
dent.

We also proved the following theorems.

Theorem 5.31. ALCHOIGN TBoxes have finitely controllable determinacy of
concept queries.

Theorem 5.32. SHOQGN+ TBoxes have finitely controllable determinacy of
concept queries.

Therefore, we satisfy the conditions of Theorem 5.20, with a language which is
like the very expressive ALCHOI description logic, but with guarded negation.
And we also satisfy the conditions of Theorem 5.20, with a language which is like
the very expressive SHOQ description logic, but with extended guarded negation
(”extended” here means that cardinality restrictions and transitivity axioms are
allowed in SHOQGN+ in spite of the fact that they are not expressible in GNFO).

5.6.2 A complete procedure

ALCHOIGN and SHOQGN+ are decidable logics (as a fragments ofALCHOI
and SHOQ respectively) and they are feasible applications of our general frame-
work. Given an ALCHOIGN (SHOQGN+) ontology KB and a concept query
Q in ALCHOIGN (SHOQGN+), we can apply the procedure below to gener-
ate a safe-range reformulation over the DBox concepts and roles (based on the
constructive theorem, all the conditions of which are satisfied), if it exists.
Note that the procedure for checking determinacy and computing the reformulation
could be run in offline mode at compile time. Indeed, it could be run for each
atomic concept in the ontology, and store persistently the outcome for each of
them if the reformulation has been successful. This pre-computation may be an
expensive operation, since – as we have seen – it is based on entailment, but the
complexity involves only the size of the ontology and not of the data.
In order to get an idea about the size of the reformulations, for the ALCFI
description logic there is a tableau-based algorithm computing explicit definitions
of at most double exponential size (ten Cate, Franconi, & Seylan, 2011, 2013); this

87

algorithm is optimal because it is also shown that the smallest explicit definition
of an implicitly defined concept may be double exponentially long in the size of
the input TBox.

Input: An ALCHOIGN (SHOQGN+) TBox KB, a concept query Q in
ALCHOIGN (SHOQGN+), and a DBox signature (DBox atomic concepts
and roles).

Output: A safe-range reformulation Q̂ expressed over the DBox signature.

1: Check the implicit definability of the query Q by testing if KB ∪ K̃B |=
Q ≡ Q̃ using a standard OWL2 reasoner (ALCHOIGN and SHOQGN+

are sublanguages of OWL2). Continue if this holds.
2: Compute a safe-range reformulation Q̂ from the tableau proof generated in

step 1 (see Section 5.5). This can be implemented as a simple extension
of a standard description logic reasoner even in the presence of the most
important optimisation techniques such as semantic branching, absorption,
and backjumping as explained by Seylan et al. (2009) and ten Cate et al.
(2011).

Clearly, similarly to DL-Lite reformulations, more research is needed in order to
optimise the reformulation step in order to make it practical. However, note that
the framework presented here has a clear advantage from the point of view of
conceptual modelling since implicit definitions (that is, queries) under general
TBoxes can be double exponentially more succinct than acyclic concept definitions
(that is, explicit queries over the DBox).

5.7 Proofs of Section 5.1

5.7.1 Proposition 5.2

Proof. Let

Asna = {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ I(SNA) ∩M(KB) ∩ E(DB) :

I |= Q[x̄/Θ]}

and

Auna = {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈ I(UNA) ∩M(KB) ∩ E(DB) :

I |= Q[x̄/Θ]}

Since SNA is stricter than UNA, i.e. I(SNA) ⊆ I(UNA), we have: Auna ⊆ Asna
trivially.

88

Let Θ̄ ∈ Asna. If Θ̄ /∈ Auna then there is an interpretation Ī = 〈∆Ī , ·Ī〉
embedding DB and satisfying UNA such that Ī ∈M(KB) and Ī 6|= Q[x̄/Θ̄]. Let
us construct new interpretation J̄ = 〈∆J̄ , ·J̄ 〉 embedding DB as follows:

– ∆J̄ := (∆Ī \ {aĪ | a ∈ C}) ∪ C;

– for each constant a ∈ C, aJ̄ := a;

– for every predicate P ∈ P, PJ̄ is constructed from PĪ by replacing of each
element aĪ ∈ PĪ , where a is some constant, with a.

Obviously, J̄ satisfies SNA and J̄ and Ī are isomorphic. J̄ embeds DB and
J̄ also is a model of KB. Since first-order logic sentences cannot distinguish
two isomorphic structures, J̄ 6|= Q[x̄/Θ̄], which contradicts with the assumption
Θ̄ ∈ Asna. Therefore Θ̄ ∈ Auna.

The proposition is proved.

5.8 Proofs of Section 5.2

5.8.1 Theorem 5.12

Proof. We need to prove that for any GNFO ontology KB, any GNFO query
Q(x̄) that satisfies one of the mentioned conditions, and any set of DBox predicates
PDB, whenever the query is finitely determined by the DBox predicates under the
ontology then it is also determined in unrestricted models.
Suppose that Q(x̄) is finitely determined by PDB under KB. Then from Theorem
5.10 it follows that KB ∪ K̃B |=fin PDB ∀x̄.Q(x̄) → Q̃(x̄), where |=fin PDB
means entailment over models with a finite interpretation of the DBox predicates.
Hence, in particular KB ∪ K̃B |=fin ∀x̄.Q(x̄) → Q̃(x̄), where |=fin means
entailment over finite models. Hereafter let τ be a conjunction of all sentences in
KB. Then from the aforementioned entailment we have:

|=fin (¬τ ∨ ¬τ̃) ∨ (¬∃x̄.Q(x̄) ∧ ¬Q̃(x̄)). (5.2)

Let φ(x̄) := Q(x̄)∧¬Q̃(x̄). Let us prove that in any of the three mentioned cases
φ(x̄) is in GNFO.

– Suppose that Q(x̄) is answer-guarded formula in GNFO. That is Q(x̄) =
Atom(x̄) ∧ ϕ(x̄). Then ϕ(x̄) or ¬ϕ(x̄) is expressed in GNFO by definition of
GNFO fragment. φ(x̄) = Q(x̄)∧¬Q̃(x̄) = Atom(x̄)∧ϕ(x̄)∧¬(Ãtom(x̄)∧

89

ϕ̃(x̄)) = (Atom(x̄) ∧ ϕ(x̄)) ∧ (Atom(x̄) ∧ ¬(Ãtom(x̄) ∧ ϕ̃(x̄))) = Q(x̄) ∧
(Atom(x̄) ∧ ¬Q̃(x̄)) ∈GNFO.

– Suppose that Q(x̄) is boolean query in GNFO. That is x̄ = ∅. Then φ(x̄) is in
GNFO by definition of the fragment.

– Suppose that Q(x̄) is GNFO formula with one free variable (x̄ consists of just
one variable). Then φ(x̄) is in GNFO because any first-order formula with one
free variable is always in GNFO (since x = x can always be considered as a
guard for negated formulas by definition of GNFO).

Since all the sentences in KB are in GNFO, the sentences τ and τ̃ are in GNFO.
Then the sentence ¬τ ∨ ¬τ̃ is in GNFO. Therefore the right hand side of the
entailment (5.2) is in GNFO. Then ¬((¬τ ∨¬τ̃)∨ (¬∃x̄.Q(x̄)∧¬Q̃(x̄)))is also
in GNFO and by the entailment (5.2) does not have a finite model. Then, since
GNFO has the finite model property, ¬((¬τ ∨ ¬τ̃) ∨ (¬∃x̄.Q(x̄) ∧ ¬Q̃(x̄))) is
unsatisfiable. Hence, we have:

|= (¬τ ∨ ¬τ̃) ∨ (¬∃x̄.Q(x̄) ∧ ¬Q̃(x̄)). (5.3)

Then KB ∪ K̃B |= ∀x̄.Q(x̄)→ Q̃(x̄). By Theorem 5.10 it means that the query
Q(x̄) is determined in unrestricted models by the DBox predicates PDB under the
ontology KB.

The theorem is proved.

5.9 Proofs of Section 5.3

5.9.1 Proposition 5.14

Proof. Since Q̂(x̄) is an exact reformulation ofQ(x̄),KB |= ∀x̄.Q(x̄)↔ Q̂(x̄).
Then, for any model I = 〈∆, ·I〉 ∈M(KB) and for any substitution Θ : x̄ 7→ ∆I

we have: I,Θ |= Q(x̄) ↔ Q̂(x̄), which is equivalent to (I,Θ |= Q(x̄) ⇐⇒
I,Θ |= Q̂(x̄)).
Now, let Θ̄ be any substitution from {Θ | dom(Θ) = x̄, rng(Θ) = C, ∀ I ∈
M(KB) ∩ E(DB) : I |= Q(x̄/Θ)}, and I = 〈∆, ·I〉 be any model of the KB
embedding the DB (if there are any). Let Θ̃ := ·I ◦ Θ̄ – a composition of the
substitution Θ̄ and the interpretation function ·I (i.e. Θ̃(x) = a ∈ ∆ if and only if
Θ̄(x) = c ∈ C and cI = a). Then I, Θ̃ |= Q(x̄)⇐⇒ I |= Q(x̄/Θ̄) and I, Θ̃ |=
Q̂(x̄)⇐⇒ I |= Q̂(x̄/Θ̄). Summing up: I |= Q(x̄/Θ̄)⇐⇒ I |= Q̂(x̄/Θ̄).

90

Hence, Θ̄ ∈ {Θ | dom(Θ) = x̄, rng(Θ) = C, ∀ I ∈ M(KB) ∩ E(DB) :

I |= Q̂(x̄/Θ)}. The inverse inclusion can be proved similarly.

The proposition is proved.

5.9.2 Theorem 5.15

Proof. First of all recall that we assume SNA. In order to prove the theorem,
one needs the following two propositions.

Proposition 5.33 (Domain independence). A query Q(x̄) is domain indepen-
dent if and only if for every two interpretations I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉
which agree on the interpretation of the predicates from PQ (and all constants C),
and for every substitution Θ : x̄ 7→ ∆I ∪∆J we have:

rng(Θ) ⊆ ∆I and I,Θ |= Q(x̄) iff

rng(Θ) ⊆ ∆J and J ,Θ |= Q(x̄).

Proof. (⇐) Obviously, if the second part of the proposition holds, then the
query is domain independent.
(⇒) Suppose, the query is domain independent. Let I = 〈∆I , ·I〉 and J =
〈∆J , ·J 〉 be any two interpretations, which agree on the interpretation of all the
predicates from PQ (and all constants C), that is ·I|PQ∪C = ·J |PQ∪C . Let us fix any
substitution Θ : x̄ 7→ ∆I ∪∆J (if the query is closed, we just omit everything
that concerns a substitution below in the proof) such that:

rng(Θ) ⊆ ∆I and I,Θ |= Q(x̄). (5.4)

Let us consider interpretations I ′ = 〈∆I , ·I′〉 and J ′ = 〈∆J , ·J ′〉, such that
·I|PQ∪C = ·I

′|PQ∪C = ·J
′|PQ∪C = ·J |PQ∪C , and ∀P ∈ P \ PQ : P I

′
= ∅ = PJ

′
.

Let us consider now I and I ′. They have the same domain and interpret all the
predicates and constants, occurring in Q(x̄) equally. Therefore, since I,Θ |=
Q(x̄) (by (5.4)), I ′,Θ |= Q(x̄).
Let us consider interpretations I ′ and J ′. By construction, they agree on interpre-
tation of all predicates and constants. Therefore, we can apply the definition of
domain independence to them. Then, since

rng(Θ) ⊆ ∆I and I ′,Θ |= Q(x̄), (5.5)

we have that

rng(Θ) ⊆ ∆J and J ′,Θ |= Q(x̄). (5.6)

91

Then again interpretations J and J ′ have the same domain and interpret all the
predicates and constants, occurring in Q(x̄) equally. Thus, because of (5.6),

rng(Θ) ⊆ ∆J and J ,Θ |= Q(x̄). (5.7)

Therefore, (5.4) =⇒ (5.7). Similarly (5.7) =⇒ (5.4), and the proposition is proved.

Proposition 5.34. If Q(x̄) is domain independent, then for any interpretation
I = 〈∆, ·I〉 and any substitution Θ : x̄ 7→ ∆, such that I,Θ |= Q(x̄), the
following holds:

rng(Θ) ⊆ adom(σ(Q(x̄)), I).

Proof. Assume that x̄ = {x}, that is Q has one free variable x (the proof can be
easily extended then to the general case).
Let us prove by contradiction. Suppose, there exists a substitution {x → b}
such that I, {x→ b} |= Q(x) and b ∈ ∆ \ adom(σ(Q(x)), I). Let us consider
interpretation I ′ = 〈∆ ∪ {a}, ·I〉, where a is any brand-new element that does
not appear in ∆. Then I ′, {x → b} |= Q(x) because of domain independence
of Q(x). Consider then another interpretation I ′′ = 〈∆ ∪ {a}, ·I′′〉 such that
occurrence of b in interpretation of any predicate is replaced with the element a.
In other words, for any n-ary predicate P ∈ P \ σ(Q(x)), (. . . , a, . . .) ∈ P I′′

iff (. . . , b, . . .) ∈ P I′ (since by supposition b does not appear in interpretations
of predicates in the query). Interpretations of all the other predicates and all the
constants are the same. Then I ′′ satisfies SNA (even if b ∈ C). Then, since
I ′, {x → b} |= Q(x̄), by construction of I ′′ we have: I ′′, {x → a} |= Q(x),
because we changed just interpretations of predicates that do not appear in the
query. Then since I ′ and I ′′ have the same domain and agree on interpretations of
all the predicates in Q(x) and all constants, the following holds: I ′, {x→ a} |=
Q(x).
Let us now consider interpretations I = 〈∆, ·I〉 and I ′ = 〈∆ ∪ {a}, ·I〉. They
have the same interpretation function (are compatible). Therefore, since Q(x) is
domain independent and I ′, {x → a} |= Q(x), we have: rng({x → a}) ⊆ ∆.
That is a ∈ ∆. It is a contradiction, because by supposition a 6∈ ∆.
The proposition is proved.

Now we prove the theorem itself.

L := {Θ | dom(Θ) = x̄, rng(Θ) ⊆ C, ∀ I ∈M(KB) ∩ E(DB) :

I |= Q(x̄/Θ)};

R := {Θ | dom(Θ) = x̄, rng(Θ) ⊆ adom(σ(Q̂),DB),

∀I = 〈C, ·I〉 ∈ E(DB) : I|PDB∪C |= Q̂(x̄/Θ)}

92

Let Θ̄ ∈ L. Then for any I ∈ M(KB) ∩ E(DB) we have: I |= Q(x̄/Θ̄) and
I |= Q̂(x̄/Θ̄), because of Proposition 5.14.
Consider any J = 〈C, ·I〉 embedding DB. I and J agree on interpretations of
C (since we have SNA) and predicates from the set σ(Q̂) ∩ P which is a subset
of PDB. Then, since Q̂(x̄) is domain independent, by Proposition 5.33 we have:
J |= Q̂(x̄/Θ̄). Since σ(Q̂(x̄)) ⊆ PDB ∪ C, J |PDB∪C |= Q̂(x̄/Θ̄). Since Q̂(x̄)
is domain independent, by Proposition 5.34 we have:
rng(Θ̄) ⊆ adom(σ(Q̂(x̄)),J). adom(σ(Q̂(x̄)),J) = adom(σ(Q̂(x̄)),DB),
because we assume SNA and σ(Q̂(x̄)) ⊆ PDB ∪ C. Therefore,

rng(Θ̄) ⊆ adom(σ(Q̂(x̄)),DB).

Then Θ̄ ∈ R and, hence, L ⊆ R.
Let Θ̄ ∈ R. That is, rng(Θ̄) ⊆ adom(σ(Q̂(x̄)),DB). Then for any J = 〈C, ·I〉
embedding DB we have: J |PDB∪C |= Q̂(x̄/Θ̄). Then J |= Q̂(x̄/Θ̄). Consider
any I ∈M(KB) ∩ E(DB). Then J and I agree on interpretations of C (since
we have SNA) and PDB. Since σ(Q̂(x̄/Θ̄)) ⊆ PDB ∪ C and Q̂(x̄) is domain
independent, by Proposition 5.33 we have: I |= Q̂(x̄/Θ̄). Since Q̂(x̄) is exact
reformulation of Q(x̄) under KB over PDB, by Proposition 5.14 we have: I |=
Q(x̄/Θ̄). Then Θ̄ ∈ L and, hence, R ⊆ L.
Note that if DB is not legal for KB, that is M(KB) ∩ E(DB = ∅, then L =
{Θ | dom(Θ) = x̄, rng(Θ) ⊆ C} 6= R, because for any substitution Θ̄ from R,
rng(Θ̄) ⊆ adom(σ(Q̂), which, in general, is not the case for substitutions from
L.
The theorem is proved.

5.10 Definitions and Proofs of Section 5.4

First we need to prove some auxiliary propositions and lemmas.

Proposition 5.35. Let KB be a domain independent ontology. If interpretation
I = 〈∆I , ·I〉 is a model of KB, then any J = 〈∆J , ·J 〉, such that ·I = ·J , is
also a model of KB.

Proof. Let α be any sentence from KB. Then, since I is a model of KB,
I |= α. α is domain independent, because KB is domain independent. Hence,
since ·I = ·J , J |= α. Thus, J is a model of any sentence from KB. It means
that J is a model of KB.

The proposition is proved.

93

Proposition 5.36. Let KB be an ontology, and let Q(x̄) be a query which is
domain independent with respect to KB. Any exact reformulation of Q(x̄) under
KB (over any set of predicates) is also domain independent with respect to KB.

Proof. Let Q̂(x̄) be any exact reformulation of Q(x̄) under KB (over some
set of predicates), I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉 be any two models of
KB such that ·I = ·J , and Θ : x̄ 7→ ∆I ∪ ∆J be any substitution such that
rng(Θ) ⊆ ∆I and I,Θ |= Q̂(x̄). Then, since Q̂(x̄) is exact reformulation of
Q(x̄), we have: I,Θ |= Q(x̄). Then, since Q(x̄) is domain independent with
respect to KB, we have: rng(Θ) ⊆ ∆J and J ,Θ |= Q(x̄). And again, since
Q̂(x̄) is exact reformulation of Q(x̄), we have: J ,Θ |= Q̂(x̄). Thus, Q̂(x̄) is
domain independent with respect to KB by definition.

The proposition is proved.

Lemma 5.37. LetKB be a domain independent ontology, and letQ(x̄) be a query
which is domain independent with respect to KB. Then for any I = 〈∆, ·I〉
which is a model of KB and any substitution Θ : x̄ 7→ ∆ such that I,Θ |= Q(x̄)
the following holds:

rng(Θ) ⊆ adom(σ(Q(x̄)), I).

Proof. Without loss of generality assume that x̄ = {x}, that is Q has one free
variable x (the proof can be easily extended then to the general case).
Let us prove by contradiction. Suppose that I, {x→ b} |= Q(x), where b ∈ ∆ \
adom(σ(Q(x̄)), I). SinceKB is domain independent, for any brand-new element
a that does not appear in ∆, interpretation Ī = 〈∆ ∪ {a}, ·I〉 is also a model of
KB by Proposition 5.35. Then, since Q(x) is domain independent with respect to
KB and I and Ī have the same interpretation function, Ī, {x→ b} |= Q(x).
Consider a new interpretation I1 = 〈∆ ∪ {a}, ·I1〉 constructed from Ī such
that occurrence of b in interpretation of any predicate is replaced by element
a. In other words, for any n-ary predicate P ∈ P \ PQ, (. . . , a, . . .) ∈ P I1 iff
(. . . , b, . . .) ∈ P I (since by supposition b does not appear in interpretations of
predicates in the query). Then, since Ī, {x → b} |= Q(x) and by construction
of I1 we have: I1, {x → a} |= Q(x) (since we simply replace b that does not
appear neither as a constant in Q(x) nor in interpretations of predicates in Q(x),
with a). Then, since Ī and I1 have the same domain ∆ ∪ {a} and agree on
interpretations of all the predicates from Q(x) and all the constants (since we
assume SNA), we have: Ī, {x→ a} |= Q(x).
Let us now consider interpretations I = 〈∆, ·I〉 and Ī = 〈∆ ∪ {a}, ·I〉. They
are both models of KB and have the same interpretation function ·I . So, since
Q(x) is domain independent with respect to KB and Ī, {x → a} |= Q(x), we

94

have: a ∈ ∆ and I, {x → a} |= Q(x) by definition of domain independence
with respect to an ontology. It is a contradiction, because by supposition a 6∈ ∆.

The lemma is proved.

Recall the definition of the active domain predicate of a formula (Subsection 5.5.2).

Observation 5.38.

1. For any query Q(x̄) and any interpretation I = 〈∆, ·I〉 the following holds:

AdomIQ = adom(σ(Q(x̄)), I).

2. AdomQ(x) is safe-range.

Let us denote for the sake of readability: AdomKB∪Q := Adomσ(KB)∪σ(Q).

Lemma 5.39. LetKB be a domain independent ontology, and letQ(x̄) be a query
which is domain independent with respect to KB. Then the following holds:

KB |= ∀x̄.Q(x̄)↔ Q(x̄)|AdomKB∪Q ,

where Q(x̄)|AdomKB∪Q is a relativisation of the query Q(x̄) to AdomKB∪Q.

Proof. The lemma is proved analogously to Theorem 3.25.

5.10.1 Theorem 5.19

Proof. The theorem can be proved after Theorem 5.20.

– The “if” direction.
Based on Lemma 5.39, one can see that exact reformulations of Q(x̄) are also
exact reformulations of Q(x̄)|AdomKB∪Q . Since by Theorem 3.23
Q(x̄)|AdomKB∪Q is safe-range andKB can always be transformed to a logically
equivalent safe-range ontology KB′, obviously the exact safe-range reformula-
tion Q̂(x̄) found in Theorem 5.20 which takes KB′ and Q(x̄)|AdomKB∪Q as its
input is the exact domain independent reformulation of Q(x̄).

– The “only if” direction.
Suppose that there exists an exact domain independent reformulation Q̂(x̄) of
Q(x̄) over PDB under KB. Then it is domain independent with respect to KB.
Hence, by Proposition 5.36, Q(x̄) is domain independent with respect to KB.
Since there exists an exact reformulation of Q(x̄), Q(x̄) is implicitly definable
from PDB under KB by the Theorem 5.9.

The theorem is proved.

95

5.10.2 Theorem 5.20

Proof. The theorem can be proved after Theorem 5.27 and Theorem 5.28.
We will use the following lemma in the proof.

Lemma 5.40. If KB is an ontology, Q(x̄) (x̄ = {x1, . . . , xn}) is ground safe-
range query and

KB |= ∀X.Q(x̄)→ ψ1(x1) ∧ . . . ∧ ψn(xn), (5.8)

where ψ1, . . . , ψn are n safe-range formulas, then the query Q̂(x̄) := Q(x̄) ∧
ψ1(x1) ∧ . . . ∧ ψn(xn) is safe-range and KB |= ∀x̄.Q(x̄)↔ Q̂(x̄).

Proof. Let Q′(x̄) be a safe-range normal form of the query Q(x̄), i.e. Q′(x̄) :=
SRNF(Q(x̄)) = ∃ȳ. φ(x̄ ∪ ȳ), where φ(x̄ ∪ ȳ) is in conjunctive normal form (the
safe-range normal form of the query is in prenex normal form). Then Q′(x̄) is
ground safe-range, and KB |= Q′(x̄) ↔ Q(x̄). Hence, KB |= ∀x̄.Q′(x̄) →
ψ1(x1) ∧ . . . ∧ ψn(xn). Let Q′′(x̄) := Q′(x̄) ∧ ψ′1(x1) ∧ . . . ∧ ψ′n(xn), where
each ψ′i(xi) = SRNF(ψi(xi)). Then by 5.8, KB |= Q′(x̄) ↔ Q′′(x̄). On the
other hand KB |= ∀x̄. Q̂(x̄)↔ Q′′(x̄) by construction. Summing up everything,
we have: KB |= Q̂(x̄)↔ Q(x̄) and the only thing we need to prove is that Q̂(x̄)
is safe-range.
One can see thatQ′′(x̄) ≡ ∃ȳ. (φ(x̄∪ ȳ)∧ψ′1(x1)∧ . . .∧ψ′n(xn)) which is a safe-
range normal form of Q̂(x̄). Since Q′(x̄) = ∃ȳ. φ(x̄ ∪ ȳ) is ground safe-range,
then rr(φ(x̄ ∪ ȳ)) \ x̄ = ȳ′ ⊆ ȳ, where for any y ∈ ȳ \ ȳ′ there exists a conjunct
x = y in φ(x̄ ∪ ȳ), for some x ∈ x̄. Then, since each ψ′i(xi) is safe-range, by
definition of range restriction rr(φ(x̄ ∪ ȳ) ∧ ψ′1(x1) ∧ . . . ∧ ψ′n(xn)) = x̄ ∪ ȳ,
and then rr(∃ȳ. (φ(x̄ ∪ ȳ) ∧ ψ′1(x1) ∧ . . . ∧ ψ′n(xn))) = x̄ = FREE(Q′′(x̄)).
Therefore, ∃ȳ. (φ(x̄ ∪ ȳ) ∧ ψ′1(x1) ∧ . . . ∧ ψ′n(xn)) is safe-range by definition,
and hence Q̂(x̄) is safe-range.

The lemma is proved.

Let us continue to prove the theorem.
If x̄ = ∅, (Q is closed) then we build an exact safe-range reformulation Q̂ by
using Theorem 5.27.
Suppose now, x̄ = {x1, . . . , xn}. Since Q(x̄) is safe-range and implicitly defin-
able from PDB, we apply Theorem 5.27 for Q(x̄) and construct a ground safe-
range rewriting Q′(x̄) expressed over PDB such that KB |= ∀x̄.Q(x̄)↔ Q′(x̄).
Since Q(x̄) is domain independent (since it is safe-range), it is also domain inde-
pendent with respect to KB. Hence, by Proposition 5.36, Q′(x̄) is also domain

96

independent with respect to KB. Moreover, KB is safe-range and, hence, domain
independent. Then by Theorem 5.28:

KB |= ∀x̄.Q′(x̄)→ AdomQ(x1) ∧ . . . ∧AdomQ(xn).

By the second item of Observation 5.38 AdomQ(x) is a safe-range formula. Then
by Lemma 5.40 the query Q̂(x̄) := Q′(x̄) ∧AdomQ′(x1) ∧ . . . ∧AdomQ′(xn)

is safe-range and KB |= ∀x̄.Q′(x̄) ↔ Q̂(x̄). Since KB |= ∀x̄.Q(x̄) ↔ Q′(x̄),
we have: KB |= ∀x̄.Q(x̄)↔ Q̂(x̄). Therefore, the constructed query Q̂(x̄) is the
one we were looking for.

The theorem is proved.

5.11 Proofs of Section 5.5

5.11.1 Theorem 5.24

Proof. First we will prove that if Q(x̄) is implicitly definable then the following
formula is valid:

((
∧
KB) ∧Q(x̄/c1, . . . , cn))→ ((

∧
K̃B)→ Q̃(x̄/c1, . . . , cn)) (5.9)

Applying syntactic definition of implicit definability (Theorem 5.10), we have:
KB ∪ K̃B |= ∀x̄.Q(x̄) ↔ Q̃(x̄). Therefore, when we replace x̄ by a set of
constants c1, . . . , cn, the following formula is valid:

(
∧
KB ∧

∧
K̃B)→ (Q(x̄/c1, . . . , cn)→ Q̃(x̄/c1, . . . , cn)).

That is, ¬(
∧
KB) ∨ ¬(

∧
K̃B) ∨ ¬Q(x̄/c1, . . . , cn) ∨ Q̃(x̄/c1, . . . , cn) is valid.

As a consequence, (5.9) is valid.
Next, we have to prove KB |= Q(c1, . . . , cn/x̄) ↔ Q̂(c1, . . . , cn/x̄) where
Q̂(c1, . . . , cn/x̄) is a Craig interpolant of (5.9). Since Q̂(x̄/c1, . . . , cn) is an
interpolant:

1. ((
∧
KB) ∧Q(x̄/c1, . . . , cn))→ Q̂(x̄/c1, . . . , cn).

Then : KB |= Q(x̄/c1, . . . , cn)→ Q̂(x̄/c1, . . . , cn).

2. Q̂(x̄/c1, . . . , cn)→ ((
∧
K̃B)→ Q̃(x̄/c1, . . . , cn)).

Then : K̃B |= Q̂(x̄/c1, . . . , cn)→ Q̃(x̄/c1, . . . , cn).

Since σ(Q̂(x̄/c1, . . . , cn)) ⊆ PDB, the entailment
KB |= (Q̂(x̄/c1, . . . , cn)→ Q(x̄/c1, . . . , cn)) holds as well by construction
of K̃B and Q̃.

97

From the items 1 and 2 we have the expected statement.
Last but not least, since σ(Q̂(x̄/c1, . . . , cn)) ⊆ PDB then σ(Q̂(c1, . . . , cn/x̄)) ⊆
PDB.
With above statements, Q̂[c1,...,cn/x̄] is really an exact reformulation of Q(x̄)
under KB over PDB.

The theorem is proved.

5.11.2 Theorem 5.27

Proof. We need the following propositions to prove the theorem.

Proposition 5.41. ϕ1 ∧ ϕ2 is safe-range and closed iff ϕ1 and ϕ2 are safe-range
and closed.

Proof. We have:

– rr(ϕ1 ∧ ϕ2) = rr(ϕ1) ∪ rr(ϕ2)

– FREE(ϕ1 ∧ ϕ2) = FREE(ϕ1) ∪ FREE(ϕ2)

– rr(ϕ1) = ⊥ or rr(ϕ1) ⊆ FREE(ϕ1)

– rr(ϕ2) = ⊥ or rr(ϕ2) ⊆ FREE(ϕ2)

– ϕ1 ∧ ϕ2 is closed iff free(ϕ1) = FREE(ϕ2) = ∅

– ϕ1 is closed iff FREE(ϕ1) = ∅

– ϕ2 is closed iff FREE(ϕ2) = ∅

– ϕ1 ∧ ϕ2 is safe-range iff rr(ϕ1 ∧ ϕ2) = FREE(ϕ1 ∧ ϕ2)

– ϕ1 is safe-range iff rr(ϕ1) = FREE(ϕ1)

– ϕ1 is safe-range iff rr(ϕ2) = FREE(ϕ2)

Therefore:

– ϕ1 ∧ ϕ2 is closed iff ϕ1 and ϕ2 are closed

– ϕ1 ∧ ϕ2 is closed, safe-range iff ϕ1 and ϕ2 are closed, safe-range.

The proposition is proved.

Proposition 5.42. ϕ1 ∨ ϕ2 is safe-range and closed iff ϕ1 and ϕ2 are safe-range
and closed.

98

Proof. We have:

– rr(ϕ1 ∨ ϕ2) = rr(ϕ1) ∩ rr(ϕ2)

– FREE(ϕ1 ∨ ϕ2) = FREE(ϕ1) ∪ FREE(ϕ2)

– rr(ϕ1) = ⊥ or rr(ϕ1) ⊆ FREE(ϕ1)

– rr(ϕ2) = ⊥ or rr(ϕ2) ⊆ FREE(ϕ2)

– ϕ1 ∨ ϕ2 is closed iff FREE(ϕ1) = FREE(ϕ2) = ∅

– ϕ1 is closed iff FREE(ϕ1) = ∅

– ϕ2 is closed iff FREE(ϕ2) = ∅

– ϕ1 ∨ ϕ2 is safe-range iff rr(ϕ1 ∨ ϕ2) = FREE(ϕ1 ∨ ϕ2)

– ϕ1 is safe-range iff rr(ϕ1) = FREE(ϕ1)

– ϕ1 is safe-range iff rr(ϕ2) = FREE(ϕ2)

Therefore:

– ϕ1 ∨ ϕ2 is closed iff ϕ1 and ϕ2 are closed

– ϕ1 ∨ ϕ2 is closed, safe-range iff ϕ1 and ϕ2 are closed, safe-range.

The proposition is proved.

Proposition 5.43. ∀x̄ϕ(x̄) is closed and safe-range then ϕ(t̄) is closed and safe-
range where t̄ are constants.

Proof. Obviously, if ∀x̄ϕ(x̄) is closed then ϕ(t̄) is closed. Let us prove by
contradiction. Assume that ϕ(t̄) is not safe-range. Since it is closed,
rr(SRNF(ϕ(t̄))) = ⊥. Then SRNF(ϕ(t̄)) must contain a subformula which is in
the form ∃z̄ϕ′(t̄, z̄), where z̄ 6⊆ rr(SRNF(ϕ′(t̄, z̄))). Hence, SRNF(ϕ(x̄)) must
contain a subformula which is in the form ∃z̄ϕ′(x̄, z̄), where
z̄ 6⊆ rr(SRNF(ϕ′(x̄, z̄))). Then SRNF(¬ϕ(x̄)) must contain a subformula which is
in the form ∃z̄ϕ′(x̄, z̄), where z̄ 6⊆ rr(SRNF(ϕ′(x̄, z̄))) because pushing negation
does not effect the formula under ∃. Hence, rr(SRNF(¬ϕ(x̄))) = ⊥. Hence,
rr(SRNF(¬∃x̄¬ϕ(x̄))) = ⊥. Hence, rr(SRNF(∀x̄ϕ(x̄))) = ⊥. And, hence,
∀x̄ϕ(x̄) is not safe-range. Contradiction.

The proposition is proved.

99

Proposition 5.44. ∃x̄ϕ(x̄) is closed and safe-range then ϕ(t̄) is closed and safe-
range where t̄ are constants.

Proof. Undoubtedly, if ∃x̄ϕ(x̄) is closed then ϕ(t̄) is closed. Let us prove by
contradiction. Assume that ϕ(t̄) is not safe-range. Since it is closed,
rr(SRNF(ϕ(t̄))) = ⊥. Then SRNF(ϕ(t̄)) must contain a subformula which is in
the form ∃z̄ϕ′(t̄, z̄), where z̄ 6⊆ rr(SRNF(ϕ′(t̄, z̄))). Hence, SRNF(ϕ(x̄)) must
contain a subformula which is in the form ∃z̄ϕ′(x̄, z̄), where
z̄ 6⊆ rr(SRNF(ϕ′(x̄, z̄))). Then rr(SRNF(ϕ(x̄))) = ⊥. Hence,
rr(SRNF(∃x̄ϕ(x̄))) = ⊥. Hence, ∃x̄ϕ(x̄) is not safe-range. Contradiction.

The proposition is proved.

Based on these propositions, we prove Theorem 5.27 as follows.
First, we will show that if φ and ψ are closed and safe-range and φ → ψ is
valid then so is their interpolant. Assume T is a biased tableau of of φ ∧ ¬ψ.
Therefore the root node of T is S = {L(φ), R(¬ψ)}. Based on all the tableau
expansion rules and above propositions, at every expansion step where S =
{L(ϕ1), ..., L(ϕn), R(ψ1), ..., R(ψm)}, ϕ1, ..., ϕn and ψ1, ..., ψm are safe-range
and closed(*) .
Now we need to prove that the interpolant at each step is safe-range and closed
(**) by induction on the shape of proof and the set of rules in Section 5.5.

– Rules for closed branches: It’s trivial because ϕ and ¬ϕ are safe-range and
closed because of (*)

– Rules for propositional case:

– For the rule (p1)(p2)(p3)(p4) nothing changes, so one does not need to prove.

– For the rule (p5), apply the Proposition 5.42, (**) holds.

– For the rule (p6), apply the Proposition 5.41,(**) holds.

– Rules for first order case:

– For the rule (f1) (f2) (f3) nothing changes, so one does not need to prove.

– For the rule (f4), since c does not occur in {ϕ1, ..., ϕn} then the only case to
have c in I is that S contains R(¬ϕ(c)). Therefore S ∪ {L(ϕ(c))} int→ I =
ϕ(c). Since ∀x.ϕ(x) is safe-range (due to (*)) then ∀x.I[c/x] is safe-range
too.

100

– For the rule (f5), since c does not occur in {ψ1, ..., ψm} then the only case
to have c in I is that S contains L(¬ϕ(c)). Therefore S ∪ {R(ϕ(c))} int→
I = ¬ϕ(c). Since ∀x.ϕ(x) is safe-range (due to (*)) then ∃x.¬I[c/x] is
safe-range too.

– Rules for equality: Because all the input formulas are closed and do not contain
function symbols, all equations are ground. Therefore, they do not influence
the safe-range property of interpolant in each step.

As a consequence, becauseQ(c̄), KB, KB′,¬Q′(c̄) are closed and safe-range then
so is the interpolant Q̂(c̄) of KB ∧Q(c̄) and KB′ → Q′(c̄).

The theorem is proved.

5.11.3 Theorem 5.28

Proof. As a consequence of Lemma 5.37 and the first item of Observation 5.38,
Theorem 5.28 holds.

5.12 Definitions and Proofs of Section 5.6

5.12.1 Theorem 5.31

Proof. We need to prove that for any ALCHOIGN TBox T (ontology), any
concept queryQ inALCHOIGN and any set of DBox predicates PDB, whenever
the query is finitely determined by the DBox predicates under the ontology then it
is also determined in unrestricted models. We can consider T as a set of sentences
in GNFO and Q as a GNFO formula with one free variable. Then the theorem
immediately follows from the third item of Theorem 5.12.

5.12.2 Theorem 5.32

Proof. We need to prove that for any SHOQ TBox T (ontology), any concept
query Q in SHOQ and any set of DBox predicates PDB, whenever the query is
finitely determined by the DBox predicates under this ontology, then it is also
determined in unrestricted models.
Suppose that Q is finitely determined by PDB under T . Then from Theorem 5.10
it follows that T ∪ T̃ |=fin PDB Q v Q̃, where |=fin PDB means entailment over
models with a finite interpretation of the DBox predicates. Hence, in particular
T ∪ T̃ |=fin Q v Q̃, where |=fin means entailment over finite models. This
entailment can be reduced in SHOQ to a concept unsatisfiability problem over
finite models for an empty TBox. Then, since SHOQ has the finite model

101

property (Lutz, Areces, Horrocks, & Sattler, 2005), this problem over finite
models is equivalent to the same problem over unrestricted models and, hence,
the entailment T ∪ T̃ |= Q v Q̃ holds (over unrestricted models). By Theorem
5.10 it means, that the query Q is determined in unrestricted models by the DBox
predicates PDB under the ontology T .

The theorem is proved.

5.13 Related Work

Nash et al. (2010) addressed the question as to whether a query can be answered
using a set of exact view definitions by means of a rewriting over the views.
The authors defined and investigated the notions of determinacy of a query by
a set of views and its connection to (exact) rewriting. Nash et al. (2010) also
studied several combinations of query and view languages trying to understand
the expressivity of the language required to express the exact rewriting, and, thus,
they obtained results in completeness of rewriting languages. They investigated
languages ranging from full first-order logic to conjunctive queries. The set-
ting Nash et al. (2010) considered is weaker than ours, since they only use a set
of view definitions as an ontology, while we allow any theory with a signature
containing view predicates – what we call DBox predicates. Another important
difference is that their definition of determinacy and rewriting is based on different
semantics for the underlying logical framework. In our definitions we use classical
first-order logic interpretations (with arbitrary non-empty domains), while their
definitions are based on what they call database instances (Nash et al., 2010),
where a database instance is a (possibly finite) relational structure (interpretation)
whose universe (domain) is the active domain of the database instance itself (the
set of all elements occurring in the database instance plus constant values appear-
ing in the query). This is called active domain semantics in the standard database
theory literature (Abiteboul et al., 1995). The most interesting theorem for us
is Theorem 3.1 (Nash et al., 2010), saying that first-order logic is complete for
FO-to-FO rewritings under exact views. The proof is based on the Relativised
Craig’s Interpolation theorem proved by Otto (2000). As we mentioned already in
Section 3.1 (the last paragraph), considering formulas under active domain seman-
tics is equivalent to considering a domain independent fragment under classical
semantics. So, it is possible to show that the theorem 3.1 in Nash et al. (2010) is a
special case of our theorem 5.20 for the restricted case of exact view definitions
(taking into account that the safe-range and domain independent fragments are
equally expressive).
Bárány, Benedikt, and ten Cate (2013) show that Craig Interpolation and Projective

102

Beth Definability fail for the Guarded and the Packed fragments, contradicting
earlier results in Marx (2007). By adapting the ideas of Marx (2007), they also
proved that Craig Interpolation and Projective Beth Definability hold in GNFO.
These results, which are useful and interesting by themselves, are used later in the
paper by the authors in order to obtain results for determinacy and rewriting in the
GNFO fragment. This part of the paper is the most relevant for our work, and we
paid the most attention to it (especially to Theorem 9). Here for determinacy and
rewriting, the authors assumed a setting similar to the one in Nash et al. (2010).
In order to understand the difference between our setting and the setting of Bárány
et al. (2013), let us summarise their setting using our notation. They assume
having a finite set V of relation names (view predicates) V = {Vi, . . . , Vn} and
a set of view definitions (a restricted form of ontology) T = {∀x̄1. V1(x̄1) ↔
φ1(x̄1), . . . , ∀x̄n. Vn(x̄n) ↔ φn(x̄n)}, where each φi is a first-order formula
over a signature σ that is disjoint from V. A query Q is a first-order formula over
σ. They say that the views V determine the query Q if for any two models of T ,
I = 〈∆I , ·I〉 and J = 〈∆J , ·J 〉, such that V Ii = V Ji for all i, Q(I) = Q(J).
In our case the definition of determinacy simply coincides with the definition of
implicit definability. The main difference between these definitions is that Bárány
et al. (2013) do not assume ∆I = ∆J . In terms of Bárány et al. (2013), a
rewriting of Q over V is a formula ρ expressed over the signature V if for any
model I of T , I = 〈∆I , ·I〉, the following holds: Q(I) = ρ(IV), where IV is

an interpretation whose domain is
n⋃
i=1

V Ii and V IVi = V Ii for all i. We consider a

rewriting to be simply a formula that is logically equivalent to the original query
with respect to the ontology. We call such rewritings exact reformulations. The
main difference here is that rewritings in terms of Bárány et al. (2013) require
the answer to the query in any model of T to be equal not to the answer to the
rewriting in the model itself (as it is for exact reformulations in our setting), but
to the answer to the rewriting in a ”relativisation” of the model over the union of
extensions of all view predicates. If there is a rewriting, then there is a domain
independent rewriting (one can obtain it by some kind of relativisation). We
can observe that if a rewriting is domain independent, then these two definitions
coincide.

Example 5.45. Consider a very simple example. Let T = {∀x. V (x)↔ A(x)}
be view definitions and Q = ∀x.A(x) be a query. Note that the query is not
domain independent. Let us check if the query is determined in the sense of Bárány
et al. (2013) by the set of views. Let I = 〈{a, b}, ·I〉 and J = 〈{a}, ·J 〉 be
two interpretations such that AI = AJ = V I = V J = {a}. Then I and J are
models of T . But Q(I) = ∀x.A(x)(I) = false while Q(J) = ∀x.A(x)(J) =

103

true. So, the views do not determine the query and there is not a rewriting of the
query over the views; on the other hand, the query is determined in our sense, and
there exists a formula expressed over view predicates that is logically equivalent
to Q with respect to T — an exact reformulation of Q: ∀x. V (x).

Example 5.46. Consider another simple example. Let T = {∀x. V (x) ↔
¬A(x)} be view definitions and Q(x) = A(x) be a query. Note that the only
view, expressed by the formula ¬A(x), is not domain independent. Let us check
whether the query is determined in the sense of Bárány et al. (2013) by the set of
views. Let I = 〈{a, b, c}, ·I〉 and J = 〈{a, b}, ·J 〉 be two interpretations such
that AI = {b, c}, AJ = {b}, V I = V J = {a}. Then I and J are models of T .
But Q(x)(I) = A(x)(I) = {b, c} while Q(x)(J) = A(x)(J) = {b}. So, the
views do not determine the query and there is not a rewriting of the query over
the views; on the other hand, the query is determined in our sense and there exists
a formula expressed over view predicates that is logically equivalent to Q with
respect to T — an exact reformulation of Q: ¬V (x).

The examples above show that the definition of determinacy given in Bárány et al.
(2013) for GNFO and our definition of determinacy coincide if we restrict ourself
to a domain independent fragment.
Bárány et al. (2013) also proved that under the additional assumption that the
free variables in all the view definitions φi and in the query are guarded by
some atom — namely whenever the views and the query are answer-guarded
— if the views determine the query then it is possible to find a rewriting of the
query over a set of views expressed in GNFO. Note also that, in addition to view
definitions, the ontology may include arbitrary GNFO sentences. Determinacy
and rewritings then are considered with respect to the whole ontology: the models
considered are models of both the view definitions and of the sentences in the
ontology. This makes their framework closer to ours. Using the finite model
property of GNFO the authors show that the result in GNFO holds also if the
query is determined by the views over finite models only. In this case, determinacy
over finite and unrestricted models coincide, and this is similar to our notion of
finite controllability of determinacy.
The paper by Benedikt, ten Cate, and Tsamoura (2014) is the most recent and
relevant paper for us, appearing after we published our main results in Franconi
et al. (2013). Benedikt et al. (2014) work on generating plans to answer queries
completely in the presence of arbitrary first-order integrity constraints. Their
technique is based on interpolation – they proposed a new interpolation theorem
for their setting. Relations in a schema may have limited access (called access
restrictions or binding patterns). The authors are also interested in finding the
lowest cost plans, but this is not relevant for us. Our setting can be considered as

104

a special case of their setting. Indeed, our DBox predicates are relations in the
schema that are fully accessible, while all the other predicates are not accessible
at all. The important difference is again, that similarly to Nash et al. (2010), they
assume the active domain semantics for relational structures (interpretations).
They extend the work by Nash et al. (2010) by considering arbitrary first-order
constraints. Benedikt et al. (2014) proved theorems that guarantee the existence
of a plan (reformulation for us) for a query, if the query has a certain preservation
property (a kind of determinacy). In particular, the most important and relevant
results for us are Theorem 2 and Claim 1. In our setting the theorem together
with the claim may be summarised in the following statement: a query has a
reformulation over DBox predicates under constraints if and only if it is determined
by DBox predicates under constraints. Taking into account that the authors
use active domain semantics one can see that this result is equivalent to our
constructive theorem.
The paper also gives conditions to obtain positive existential and existential
rewritings respectively. Each of these conditions represent also a variant of
determinacy.
The main theorem in Benedikt et al. (2014) (Theorem 2) in general does not work
for the finite case. That is, it may be the case that there is a plan (reformulation) that
works over finite structures only, but there is no plan that works over unrestricted
structures. In order to regain completeness, Benedikt et al. (2014) proposed
considering “finitely controllable” fragments, similar to our idea. As an example,
one can consider in our setting the GNFO fragment that is finitely controllable for
queries (in our definitions) from the answer-guarded subfragment of GNFO (see
Subsection 5.2.1).
Toman and Weddell have long advocated the use of exact reformulations based
on interpolation for automatic generation of plans that implement user queries,
which they call query compilation (2011). Their published work focuses on
additional extra-logical considerations, such as satisfaction of binding patterns,
considerations of inherent ordering of data and the influence of plans on such
orderings, and the estimated cost of alternative query plans.
In our analysis of the related literature concerning query rewritability, we noticed
that the domain independence of a query and of the constraints is assumed in
many cases “implicitly”, i.e. by imposing the active domain semantics (Nash et
al., 2010; Benedikt et al., 2014) or ”encoding” it in the definitions of determi-
nacy (Bárány et al., 2013). In our approach, we require it explicitly, revealing the
influence and importance of this property and keeping a classical semantics for
the language. This is important in order to be able to relate our results with more
classical branches of knowledge representation – in this work we have considered
description logics.

105

Regarding the complexity of reasoning with DBoxes in description logics, it has
been shown that it is not the same as with ABoxes. Complexity of conjunctive
query answering with DBoxes in description logics was studied in Franconi et al.
(2011). Queries are evaluated over a DBox with respect to an ontology represented
by a TBox. It was proved that conjunctive query answering in the quite expressive
description logic ALCFI extended with DBoxes is polynomially reducible to
the same problem in ALCFIO and vice versa. As a consequence of these
reductions, conjunctive query answering for ALCFI with DBoxes (combined
complexity) is strictly harder (CON2EXPTIME-hard (Glimm, Kazakov, & Lutz,
2011)) than conjunctive query answering with ABoxes (2-EXPTIME-complete
(Glimm, Lutz, Horrocks, & Sattler, 2008)). Regarding data complexity, the
lightweight description logic DL-LiteF (Calvanese, Giacomo, Lembo, Lenzerini,
& Rosati, 2007) with DBoxes that is closely related to ALCFIO has been
considered. Data complexity of conjunctive query answering in DL-LiteF with
ABoxes is tractable (AC0) since it can be reduced to query answering in relational
databases. But this problem becomes CONP-complete with DBoxes. The exact
combined complexity of conjunctive query answering in DL-LiteF with DBoxes
remains open. Query answering with DBoxes for another inexpressive logic EL
(Baader, Brandt, & Lutz, 2005) which enjoys polynomial time data reasoning
(with ABoxes) (Krisnadhi & Lutz, 2007) was also studied. The following results
have been obtained: conjunctive query answering in EL with DBoxes is CONP-
hard for data complexity (Lutz, Seylan, & Wolter, 2012) and EXPTIME-hard for
combined complexity.
We can conclude that query answering with DBoxes in general is really hard.
Both definability for ALC and its extensions with transitive roles, inverse roles,
and/or functionality restrictions was studied in Seylan et al. (2009) and ten Cate et
al. (2011). It can be considered as an instantiation of our general framework when
the ontology is a description logic TBox and query is a concept query. InALC and
its extensions with constructors from {S, I,F}, checking implicit definability is
EXPTIME-complete. The algorithm that computes explicit definitions (concepts)
runs in 2-EXPTIME and computes in the worst case an explicit definition of double
exponential size, which is also a lower bound. The case when explicit definitions
are allowed to be expressed in first-order logic was also considered. In this case,
the algorithm computes a first-order explicit definition of an implicitly defined
concept in single EXPTIME and its size is proved to be at most single exponential.

106

6. Conclusions and Future Work

In the first part of the thesis we proposed a method that allows to reduce the
problem of checking domain independence of a formula to checking standard first-
order logic entailment: a formula φ(x̄) from FOL(C,P) is domain independent
whenever the entailment (3.2) holds. We considered applications of the method in
a two-variable fragment of first-order logic and in prefix-vocabulary fragments
[∃∗∀∗, all, (0)]C= and [all, (w), (0)]C,free

= .
We studied domain independent fragments of expressive description logics
SHOIQ, SHOQ and ALCHOI and proved variants of Codd’s theorem for
them. We also give recursive definitions of domain independent concepts of
ALCHOI and SHOQ and thus provide convenient syntactic characterizations
of domain independent fragments of these logics.
In the second part of the thesis we have introduced a framework to compute the
exact reformulation of first-order queries to a database (DBox) under constraints.
We have found the exact conditions which guarantee that a safe-range reformu-
lation exists, and we show that it can be evaluated as a relational algebra query
over the DBox to give the same answer as the original query under the constraints.
Non-trivial case studies have been presented in the field of description logics, with
the ALCHOI and SHOQ languages.
This framework is useful in data exchange-like scenarios, where the target database
(made by determined relations) should be materialised as a proper database, over
which arbitrary queries should be performed. This is not achieved in a context
with non-exact reformulations preserving the certain answers. In our scenario with
description logics ontologies, reformulations of concept queries are pre-computed
offline once. We have shown that our framework works in theory also in the case
of arbitrary safe-range first-order queries.
Next, we would like to study optimisations of reformulations. From the practical
perspective, since there might be many rewritten queries from one original query,
the problem of selecting an optimised query in terms of query evaluation is very
important. In fact, one has to take into account which criteria should be used to
optimise, such as: the size of the reformulations, the numbers of used predicates,
the priority of predicates, the number of relational operators, and clever usage of
duplicates. In this context one may also want to control the process of formula
proving to make it produce an optimal reformulation. For instance, using the
tableau method, one may prefer one order of expansion rules application to another
and, hence, build another interpolant.
Concurrently, our research group is exploring the problem of fixing real ontologies
in order to enforce definability when it is known it should be the case (Franconi,

107

Ngo, & Sherkhonov, 2012). This happens when it is intuitively obvious that
the answer to a query can be found from the available data (that is, the query
is definable from the database), but the mediating ontology does not entail the
definability. Our group introduced the novel problem of definability abduction
and solved it completely in the data exchange scenario.
There is also another interesting open problem about checking that a given DBox
is legal with respect to a given ontology. Remember that a DBoxDB is legal for an
ontology KB if there exists a model of KB embedding DB. This check involves
heavy computations for which an optimised algorithm is still unknown: as a matter
of fact, the only known method today is to reduce the problem to a satisfiability
problem where the DBox is embedded in a TBox using nominals (Franconi et al.,
2011). More research is needed in order to optimise the reasoning with nominals
in this special case.
In the case of description logics, we would like to work on extending the theoretical
framework with conjunctive queries: we need finitely controllable determinacy
with conjunctive queries, which for some description logics seems to follow from
the works by Bárány, Gottlob, and Otto (2010) and Rosati (2011).

108

109

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of databases. Boston,
MA: Addison-Wesley.

Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2009). The
DL-Lite family and relations. Journal of Artificial Intelligence Research,
36, 1–69.

Avron, A. (2008, April). Constructibility and decidability versus domain inde-
pendence and absoluteness. Theoretical Computer Science, 394(3),
144–158. https://doi.org/10.1016/j.tcs.2007.12.008

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In L. P.
Kaelbling & A. Saffiotti (Eds.), Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, IJCAI05, (pp.
364–369). Edinburgh, UK: Morgan Kaufman.

Bárány, V., Benedikt, M., & ten Cate, B. (2013). Rewriting guarded negation
queries. In K. Chatterjee & J. Sgall (Eds.), Lecture Notes in Computer
Science: Vol. 8087. Mathematical Foundations of Computer Science,
MFCS 2013 (pp. 98–110). Retrieved from https://link.springer.com/
content/pdf/10.1007%2F978-3-642-40313-2_11.pdf

Bárány, V., Gottlob, G., & Otto, M. (2010). Querying the guarded fragment. In
F. V. Fomin, R. Freivalds, M. Kwiatkowska, & D. Peleg (Eds.), Sympo-
sium on Logics in Computer Science, LICS2010, (pp. 1–10). Edinburgh,
UK: IEEE Computer Society Press.

Bárány, V., ten Cate, B., & Otto, M. (2012). Queries with guarded negation.
Proceedings of the VLDB Endowment, 5(11), 1328–1339.

Bárány, V., ten Cate, B., & Segoufin, L. (2011). Guarded negation. In L. Aceto,
M. Henzinger, & J. Sgall (Eds.), Lecture Notes in Computer Science, 6756.
International Colloquium on Automata, Languages, and Programming,
ICALP 2011, Automata, Languages and Programming (pp. 356–367).
https://doi.org/10.1007/978-3-642-22012-8_28

Benedikt, M., ten Cate, B., & Tsamoura, E. (2014). Generating low-cost plans
from proofs. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems PODS14 (pp. 200–211).
http://doi.acm.org/10.1145/2594538.2594550

Beth, E. (1953). On Padoa’s method in the theory of definition. Indagationes
Mathematicae, 15, 330–339.

Börger, E., Grädel, E., & Gurevich, Y. (1997). The classical decision problem.
Berlin: Springer.

110

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., & Rosati, R. (2007).
Tractable reasoning and efficient query answering in description logics:
The DL-Lite family. Journal of Automated Reasoning, 39(3), 385–429.

Codd, E. F. (1972). Relational completeness of data base sublanguages. In R.
Rustin (Ed.), Data base systems (pp. 65–98). Englewood Cliffs, NJ:
Prentice-Hall.

Craig, W. (1957). Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic, 22(3),
269–285.

Demolombe, R. (1992, January). Syntactical characterization of a subset
of domain-independent formulas. Journal of the ACM, 39(1), 71–94.
doi:10.1145/147508.147520

Di Paola, R. A. (1969, April). The recursive unsolvability of the decision
problem for the class of definite formulas. Journal of the ACM, 16(2),
324–327. Retrieved from http://dl.acm.org/citation.cfm?id=321524

Etzioni, O., Golden, K., & Weld, D. (1997). Sound and efficient closed-world
reasoning for planning. Artificial Intelligence, 89, 113–148. https://doi.
org/10.1016/S0004-3702(96)00026-4

Fan, W., Geerts, F., & Zheng, L. (2012). View determinacy for preserving select-
ed information in data transformations. Information Systems, 37, 1–12.
http://dx.doi.org/10.1016/j.is.2011.09.001

Feinerer, I., Franconi, E., & Guagliardo, P. (2015). Lossless selection views
under conditional domain constraints. IEEE Transactions on Knowledge
and Data Engineering, 27(2), 504–517. doi:10.1109/TKDE.2014.2334327

Feinerer, I., Guagliardo, P., & Franconi, E. (2014). Lossless selection views
under constraints. In G. Gottlob & J. Pérez (Eds.), Proceedings of the 8th
Alberto Mendelzon International Workshop on Foundations of Data
Management, AMW 2014. CEUR Workshop Proceedings, 1189. Retrieved
from http://ceur-ws.org/Vol-1189/paper_1.pdf

Fitting, M. (1996). First-order logic and automated theorem proving (2nd ed.).
Berlin: Springer.

Franconi, E., & Guagliardo, P. (2012). On the translatability of view updates. In
J. Freire & D. Suciu (Eds.), Proceedings of the 6th Alberto Mendelzon
International Workshop on Foundations of Data Management, AMW
2012. CEUR Workshop Proceedings, 866. Retrieved from http://ceur-
ws.org/Vol-866/paper11.pdf

Franconi, E., & Guagliardo, P. (2013). Effectively updatable conjunctive
views.In L. Bravo & M. Lenzerini (Eds.), Proceedings of the 7th Alberto
Mendelzon International Workshop on Foundations of Data Management,

http://www.dis.uniroma1.it/%7Elenzerin/

111

AMW 2013. CEUR Workshop Proceedings, 1087. Retrieved from
http://ceur-ws.org/Vol-1087/paper7.pdf

Franconi, E., Ibáñez-Garcia, Y. A., & Seylan, I. (2011). Query answering with
DBoxes is hard. Electronic Notes in Theoretical Computer Science, 278,
71–84.

Franconi, E., Kerhet, V., & Ngo, N. (2012). Exact query reformulation over
SHOQ DBoxes. In Y. Kazakov, D. Lembo, & F. Wolter (Eds.), Proceed-
ings of the 2012 International Workshop on Description Logics, DL2012.
CEUR Workshop Proceedings, 846. Retrieved from http://ceur-ws.org/Vol-
846/paper_64.pdf

Franconi, E., Kerhet, V., & Ngo, N. (2013). Exact query reformulation over
databases with first-order and description logics ontologies. Journal of
Artificial Intelligence Research (JAIR), 48, 885-922. doi:10.1613/
jair.4058

Franconi, E., Ngo, N., & Sherkhonov, E. (2012). The definability abduction
problem for data exchange. In M. Krötzsch & U. Straccia (Eds.), Lecture
Notes in Computer Science: Vol. 7497. Proceedings of the 6th international
conference on Web Reasoning and Rule Systems, RR2012 (pp. 217–220).
https://doi.org/10.1007/978-3-642-33203-6_18

Franconi, E., Kerhet, V., & Ngo, N. (2012). Exact query reformulation with first-
order ontologies and databases. In L. Fariñas del Cerro, A. Herzig, & J.
Mengin (Eds.), Lecture Notes in Computer Science: Vol. 7519. Logics in
artificial intelligence (pp. 202–214). https://doi.org/10.1007/978-3-642-
33353-8_16

Gelder, A. V., & Topor, W. (1991). Safety and translation of relational calculus
queries. ACM Transactions on Database Systems, TODS, 16(2), 235–
278. doi:10.1145/114325.103712

Glimm, B., Kazakov, Y., & Lutz, C. (2011). Status QIO: An update. In R.
Rosati, S. Rudolph, & M. Zakharyaschev (Eds.), Proceedings of the 2011
International Workshop on Description Logics, DL2011. CEUR Workshop
Proceedings, 745. Retrieved from http://ceur-ws.org/Vol-745/paper_44.pdf

Glimm, B., Lutz, C., Horrocks, I., & Sattler, U. (2008). Conjunctive query
answering for the description logic SHIQ. Journal of Artificial
Intelligence Research, 31, 157–204. http://dx.doi.org/10.1613/jair.2372

Grädel, E., Kolaitis, P. G., Libkin, L., Marx, M., Spencer, J., Vardi, M. Y., …
Weinstein, S. (2005). Finite model theory and its applications. doi:
10.1007/3-540-68804-8

Grädel, E., Kolaitis, P. G., & Vardi, M. Y. (1997). On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1), 53–69.
doi:10.2307/421196

112

Gurevich, Y. (1984). Toward logic tailored for computational complexity. In E.
Börger, W. Oberschelp, M.M. Richter, B. Schinzel, W. Thomas (Eds.)
Lecture Notes in Mathematics: Vol. 1104. Computation and Proof Theory
(pp. 175-216). https://doi.org/10.1007/BFb0099486

Gyssens, M. (2009). Database dependencies. In L. Liu & M. Özsu (Eds.),
Encyclopedia of database systems (pp. 704–708). doi:10.1007/978-0-387-
39940-9

Halevy, A. Y. (2001). Answering queries using views: A survey. The VLDB
Journal – The International Journal on Very Large Data Bases, 10(4),
270–294. http://dx.doi.org/10.1007/s007780100054

Horrocks, I., & Sattler, U. (2001). Ontology reasoning in the SHOQ (D) descrip-
tion logic. In Proceedings of the 17th International Joint Conference on
Artificial Intelligence, IJCAI01, (Vol. 1, pp. 199–204). San Francisco,CA:
Morgan Kaufmann.

Kerhet, V., & Franconi, E. (2012). On checking domain independence. In F. A.
Lisi (Eds.): Proceedings of the 9th Italian Convention on Computational
Logic, CILC2012. CEUR Workshop Proceedings, 857. Retrieved from
http://ceur-ws.org/Vol-857/paper_s03.pdf

Kleene, S. C. (2002). Mathematical logic. New York: Dover.
Krisnadhi, A., & Lutz, C. (2007). Data complexity in the EL family of

description logics. In N. Dershowitz & A. Voronkov (Eds.), Lecture Notes
in Artificial Intelligence: Vol. 4790 Proceedings of the 14th
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR2007 (pp. 333–347). Retrieved from
https://iccl.inf.tu-dresden.de/w/images/b/b7/Krisnadhi-Lutz-LPAR07.pdf

Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2005). Keys, nominals,and con-
crete domains. Journal of Artificial Intelligence Research, 23, 667–726.
Retrieved from https://www.jair.org/media/1542/live-1542-2375-jair.pdf

Lutz, C., Seylan, I., & Wolter, F. (2012). Mixing open and closed world assump-
tion in ontology-based data access: Non-uniform data complexity. In Y.
Kazakov, D. Lembo, & F. Wolter (Eds.), Proceedings of the 2012 Interna-
tional Workshop on Description Logics, DL2012. CEUR Workshop Pro-
ceedings, 846. Retrieved from http://ceur-ws.org/Vol-846/paper_17.pdf

Marx, M. (2007). Queries determined by views: pack your views. In PODS’07
Proceedings of the 26rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems PODS07 (pp. 23–30). http://doi.acm.org/
10.1145/1265530.1265534

Mortimer, M. (1975). On language with two variables. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 21, 135–140.

113

Nash, A., Segoufin, L., & Vianu, V. (2010). Views and queries: Determinacy
and rewriting. ACM Transactions on Database Systems (TODS), 35(3),
21:1–21:41. http://doi.acm.org/10.1145/1806907.1806913

Nicolas, J.-M. (1982). Logic for improving integrity checking in relational data
bases. Acta Informatica, 18(3), 227–253. https://doi.org/10.1007/
BF00263192

Otto, M. (2000). An interpolation theorem. Bulletin of Symbolic Logic, 6(4),
447–462. doi:10.2307/420966

Rosati, R. (2011). On the finite controllability of conjunctive query answering in
databases under open-world assumption. Journal of Computer and System
Sciences, 77(3), 572–594. https://doi.org/10.1016/j.jcss.2010.04.011

Scott, D. (1962). A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27, 377.

Seylan, I., Franconi, E., & de Bruijn, J. (2009). Effective query rewriting with
ontologies over DBoxes. In C. Boutilier (Ed.), Proceedings of the 21st
International Joint Conference on Artifical intelligence, IJCAI09 (pp.
923-925). San Francisco, CA: Morgan Kaufmann.

ten Cate, B., Franconi, E., & Seylan, I. (2013). Beth definability in expressive
description logics. Journal of Artificial Intelligence Research, 48, 347–
414. http://dx.doi.org/10.1613/jair.4057

ten Cate, B., Franconi, E., & Seylan, I.. (2011). Beth definability in expressive
description logics. In Proceedings of the 22nd International Joint Con-
ference on Artifical intelligence, IJCAI11 (p. 1099-1106).
doi:10.5591/978-1-57735-516-8/IJCAI11-188

Toman, D., & Weddell, G. (2011). Fundamentals of physical design and query
compilation. https://doi.org/10.2200/S00363ED1V01Y201105DTM018

Topor, R.W. (1987). Domain-independent formulas and databases. Theoretical
Computer Science, 52(3), 281–306. https://doi.org/10.1016/0304-3975
(87)90113-7

Van Heigenoort, J. (1977). From Frege to Gödel: A source book in mathematical
logic, 1879–1931. Cambridge, MA: Harvard University Press.

115

The Author

Volha Kerhet received her MSc in Mathematics from the Belarusian State
University in 2007. As a junior researcher she has been involved into the
YourWay! project at the Fondazione Bruno Kessler in Trento, Italy and the
ONTORULE project at the Free University of Bozen-Bolzano, Italy. In 2015 she
received her PhD in Computer Science from the Free University of Bozen-
Bolzano. Volha Kerhet is currently doing research at the KRDB Research Centre
at the Faculty of Computer Science of the Free University of Bozen-Bolzano
focusing on ontology-based data access (OBDA) and bag semantics.

	Domain Independence and Query Reformulations Under Constraints / Volha Kerhet
	Colophon
	Contents
	The unibz junior researcher series
	Acknowledgements
	Preface
	1. Introduction
	2. Preliminaries
	3. Domain Independence
	4. Domain Independent Fragments of DescriptionLogics
	5. Query Reformulation
	6. Conclusions and Future Work
	References
	The Author

