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Abstract 
In building performance simulation, fixed input 

assumptions lead to fixed computed values for building 
performance indicators. This has been suggested to be 

misleading, as it does not express the uncertainty of 
simulation-based performance predictions. A counter-

argument to this position suggests that the empirical 
basis for the determination of the statistical uncertainty 

distribution of occupancy-related input assumptions is 
rather scant. Arbitrary assignment of uncertainty func-

tions (distribution ranges and shapes) to input variables 
can indeed generate corresponding performance result 

distributions. However, this could be even more mislead-
ing than fixed values, as the resulting uncertainty impres-

sion is empirically ungrounded. To address this objec-
tion, it has been suggested that the computed uncertainty 

ranges for performance indicators may be, to a certain 
extent, resistant to the ranges and shapes of associated 

input data distributions and hence still useful. In the 
present contribution, we examine the above suggestion, 

namely the resilience of performance simulation output 
distribution to the assumed model input uncertainties. To 

this end, parametric simulations were conducted and 
processed to explore the implications of different input 

data assumptions for the values of computed perfor-

mance indicator values for a sample building model. 

1. Introduction

A common argument against the use of such fixed 
input assumptions for building performance simu-
lation is the uncertainty challenge. Hence, so goes 
the criticism, the input data uncertainty is not man-
ifest in the results, which can be misleading (Me-
chri, 2009; Tian et al., 2018; Li et al., 2019).  
It has been suggested that replacing single value 
input data assumptions with distributions of input 
data variables is preferable. However, there is a 
paucity of empirical information on the uncertainty 
distributions of occupancy-related simulation 
model input data assumptions. It is of course pos-
sible to select – more or less arbitrarily – some dis-
tribution ranges and shapes of certain input varia-
bles to generate corresponding performance result 
distributions instead of single values. However, 
this approach could be even more misleading as 
the resulting uncertainty ranges are not empirically 
grounded (Mahdavi, 2015; Mahdavi & Tahmasebi, 
2019).  
The present paper examines the suggestion that 
computed uncertainty ranges for performance indi-
cators may be at least partially resistant to the rang-
es and shapes of associated input data distributions. 
We explore the validity of this suggestion via sys-
tematic simulation runs applied to a case study 
building in Italy. This case study model is subjected 
to variation (i.e. different distribution shapes and 
ranges) of input data assumptions for the values of 
computed performance indicators.  

Part of 
Pernigotto, G., Patuzzi, F., Prada, A., Corrado, V., & Gasparella, A. (Eds.). (2020). Building simulation applications BSA 2019. 
bu,press. https://doi.org/10.13124/9788860461766 

1

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Christiane Berger, Elisa Primo, Dawid Wolosiuk, Vincenzo Corrado, Ardeshir Mahdavi 

2. Method

In order to explore the implications of occupancy-
related input data assumptions (i.e. different dis-
tribution shapes and ranges) for the values of key 
performance indicator values, an illustrative case, 
namely a typical apartment in a residential build-
ing in Italy, was selected (Fig. 1). This building is 
located in the Italian climatic zone E (Milano, 2404 
HDD). General information on the building is giv-
en in Table 1 including geometry-related variables 
(Vg: gross volume; Af,net: net floor area; Aw: window 
area) and construction-related variables (U-values 
of external wall Uext,wall, wall adjacent to unheated 
space Uwall,unheated, floor Ufloor, and window Uwindow). 
Within this case study, the aforementioned as-
sumption, namely the resilience of performance 
simulation output distribution in view of input 
data variation, is tested via systematic simulation 
applied to this apartment. 
The building is modelled in EnergyPlus (Ener-
gyPlus, 2019) and parametric simulation runs are 
expressed in RStudio (RStudio, 2019). First, we 
obtained fix-value simulation results for the base 
case (BC), whose simulation model likewise in-
volved only fix values of input variables. Subse-
quently, we considered different distribution 
shapes and ranges and examined the effect of input 
variable distributions on the corresponding distri-
butions of computed performance indicator values. 
In the present contribution, a number of generic 
input data variations, namely three normal distri-
butions with three different widths (labelled as 
N_N, N_S, and N_W) (Fig. 2) as well as one left-
skewed distribution (S_L) and one right-skewed 
distribution (S_R) (Fig. 3) are considered.  
The study considers the following input variables: 
Heating temperature set-point (θsp-h in °C), air 
change rates (ACH in h-1), and internal gains (qint in 
W.m-2). The simulated performance indicator is the
annual heating demand (qa,h in kWh.m-2.a-1). The re-
sponse of simulated performance indicator to input
variable assumptions are captured in two distinct
sets of simulation runs. Whereas in the first set
only one input variable's value is parametrically
varied, in the second set the values of multiple in-
put variables are varied simultaneously.

In the following, the results of both groups of vari-
ation are discussed in detail.  

Fig. 1 – Case study building in Milan, Italy (Top: 3D model. 
Bottom: floor plan of the selected case study apartment) 

Table 1 – Overview of case study apartment data 
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Fig. 2 – Narrow (N_N), standard (N_S), and wide (N_W) normal 
distribution 
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Fig. 3 – Right-skewed (S_R) and left-skewed (S_L) distribution 

3. Results and Discussion

3.1 One-at-a-Time Variation of Model 
Input Variables 

The first set of results concerns the response of the 
simulated performance indicator (i.e. annual 
heating demand) to one-at-a-time variation of the 
model input variables. The distribution of the 
values of one input variable (heating temperature 
set-point) is shaped according to the 
aforementioned distributions. Fig. 4 shows the 
resulting five different heating temperature set-
point distributions.  
A total of 100 simulations are performed to gener-
ate each of the five resulting distribution functions 
of the annual heating demand. The corresponding 
simulation results are shown in Fig. 5. Table 2 
includes a number of basic statistical markers for 
both the distributions of the input variable value 
(namely the heating temperature set-point θsp-h) 
and the corresponding distributions of the com-
puted building performance indicator values (heat-
ing demand qa,h). These include the mean (μ), 
standard deviation (σ), and coefficient of variation 
(CV) for the five aforementioned distribution func-
tions.
These results suggest that the value of a computed
building performance indicator strongly depends
on the assumed distribution of the input variable
value. This means that the usability of a simula-
tion-based generation of output distributions
would be very limited, if no basis or reasoning is
provided concerning the underlying input variable
distribution assumptions.

Fig. 4 – Assumed heating temperature set-point distributions 
toward computation of annual heating demand (see Fig. 5) 

Fig. 5 – Computed annual heating demand distributions as a 
consequence of assumed input variable distributions (see Fig. 4) 

Table 2 – Statistical data regarding the first set of simulation runs 
(consequences of assumed heating temperature set-point 
assumptions for computed distributions of annual heating 
demand) 

θsp-h [°C] qa,h [kWh.m-2.a-1] 

μ σ cv μ σ cv 

BC 20.00 - - 24.15 - - 

N_S 19.89 0.89 4.46 23.86 2.74 11.48 

N_N 20.02 0.50 2.52 24.24 1.57 6.50 

N_W 19.91 1.40 7.05 24.00 4.39 18.29 

S_R 19.99 0.98 4.88 24.19 3.10 12.81 

S_L 20.12 0.94 4.66 24.59 2.89 11.75 
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3.2 Concurrent Manipulation of Multiple 
Input Variables 

As mentioned previously, the second set of para-
metric simulations explore the response of simula-
tion results to concurrent manipulation of multiple 
input variables in terms of distribution functions. 
To illustrate this point, Fig.s 6 and 7 show the 
concurrent parametric variation of two input vari-
able values, namely heating temperature set-points 
[θsp-h] and air change rates [ACH]. Thereby, three 
different combinations of distribution functions are 
considered (Fig. 6): 
A. Right-skewed distribution of θsp-h and ACH
B. Standard normal distribution of θsp-h and ACH
C. Right-skewed distribution of ACH and left-

skewed distribution of θsp-h

The set of input values for the heating temperature 
set-points [θsp-h] and air change rates [ACH] are 
generated according to the aforementioned three 
different combinations of distribution functions. A 
total of 100 simulations are performed to generate 
the resulting distribution functions for annual heat-
ing demand for each of the three combinations (see 
A, B, and C above). 
Fig. 7 displays the resulting three different dis-
tributions of the computed heating demand of the 
aforementioned case study apartment.  
According to the results of this second set of simu-
lation runs, there is no evidence that arbitrary vari-
ations of input data distributions necessarily result 
in reproducible and consistent distributions of 
computed building performance indicator values.  

Fig. 6 – Selected distributions of input variables θsp-h and ACH 
toward computation of annual heating demand (see Fig. 7) 

Fig. 7 – Computed distributions of annual heating demand as a 
consequence of assumed input variable distributions (see Fig.6) 

To further pursue this point, we varied (concur-
rently and randomly) three different input data 
variables, namely the heating temperature set-
point [θsp-h], the air change rate [ACH], and the 
internal gain [qint] (see Fig.s 8 to 10 for the corre-
sponding distributions).  
For each of the three input variables (θsp-h, ACH, 
and qint) the distribution functions are randomly 
selected. Subsequently, the values of each of the 
three input variables are randomly selected from a 
set of 100 values that constitute each of the distri-
bution functions.  
In total, 10000 simulations are performed to generate 
the distribution function of the annual heating de-
mand. The resulting distribution of the computed 
overall annual heating demand is shown in Fig. 11. 
An overview of the statistical markers pertaining to 
distributions of the input variables and the distri-
bution of the results is given in Table 3. 

Fig. 8 – Selected distributions for heating temperature set-point  
[θsp-h] toward computation of annual heating demand (see Fig. 11) 
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Fig. 9 – Selected distributions for air change rate [ACH] toward 
computation of annual heating demand (see Fig. 11) 

Fig. 10 – Selected distributions for internal gains [qint] toward 
computation of annual heating demand (see Fig. 11) 

Fig. 11 – Computed distribution of annual heating demand as a 
consequence of assumed input variable distributions (see Fig.s 8 
to 10) 

Table 3 – Statistical data regarding the assumed distributions of 
concurrently varied input variables (θsp-h, ACH, and qint) as well 
as the resulting distribution of the output variable (qa,h) 

μ σ cv 

θsp-h 20.00 1.50 0.08 

ACH 1.00 0.24 0.24 

qint  5.55 1.86 0.34 

qa,h  54.84 18.58 0.34 

These last results imply that a fairly stable distribu-
tion of the simulated values of a performance indi-
cator may emerge, if we conduct extensive Monte 
Carlo simulations involving both multiple input 
variables and multiple distribution shapes of those 
variables. For a given group of such variable sets 
and distributions sets, we may even be able to pro-
pose default uncertainty ranges. However, this 
approach would not resolve the problem stated at 
the outset. As long as the combination of input 
variable sets and corresponding distribution 
shapes involve arbitrary choices, the resulting out-
put distributions and corresponding uncertainty 
ranges remain likewise arbitrary. Provision of 
standardized uncertainty ranges (for instance, 
standard deviations) for simulation results may be 
a possible option, assuming the availability of pre-
defined input variable distribution shape cata-
logues. The question is, however, whether conduct-
ing an extensive set of parametric simulation runs 
is not a rather prohibitive expenditure of time and 
effort, given the fairly limited meaning and utility 
of the provided uncertainty information. 
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