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Abstract

With a growing awareness around the importance of the
optimization of building efficiency, being able to make
accurate predictions of building energy demand is an
invaluable asset for practitioners and designers. For this
reason, it is important to continually improve existing
models as well as introduce new methods that can help
reduce the so-called energy performance gap, which
separates predicted from actual consumption values. This
is particularly true for urban scale simulations, where
even small scenes can be very complex and carry the
necessity of finding a reasonable balance between preci-
sion and computational efforts. The scope of this work is
to present two different models that make use of mor-
phological urban-scale parameters to improve their per-
formances, taking into account the interactions between
buildings and their surroundings. In order to do this, two
neighbourhoods in the city of Turin (IT) were taken as
case studies. The buildings studied present similar char-
acteristics but are inserted in a different urban context.
Several urban parameters were extracted using a GIS tool
and used as input, alongside the building-scale features,
for two different models: i) a bottom-up engineering
approach that evaluates the energy balance of residential
buildings and introduces some variables at block-of-
buildings scale, ii) a machine learning approach based on
the bootstrap aggregating (bagging) algorithm, which
takes the same parameters used by the previous model as
inputs and makes an estimation of the hourly energy
consumption of each building. The main results obtained
confirm that the urban context strongly influences the
energy performance of buildings located in high built-up
areas, and that introducing simple morphological urban-
scale parameters in the models to take these effects into
account can improve their performance while having a

very low impact on the computational efforts.

Part of

1. Introduction

One of the key challenges of our century is to alle-
viate human pressure on the environment and par-
ticularly to slow down the climate change that
greenhouse gas emissions are accelerating
(Verbeke and Audenaert, 2018). The buildings sec-
tor accounts for a large share of the total energy-
related CO2 emissions - around 28% in 2018 - and it
will therefore play a central role in the clean energy
transition (IEA, 2019). In particular, the reduction
of energy consumption in buildings, together with
the transition to renewable energies, could be one
of the main drivers of this turnaround (Mutani and
Todeschi, 2018). An important step to achieve this
goal is to develop robust models that allow us to
make reliable estimates of the energy demand of
buildings, which can be used as a base for planning
the city of tomorrow (Streicher et al., 2019). How-
ever, building these models at urban scale is a
complex task, as the energy consumption depends
on several factors at different scales, such as the
dynamic interaction between the outdoor climate
and the specific characteristics of the building's
surroundings, the thermal characteristics of its en-
velope elements and technical systems (Caruso et
al., 2013; Palme et al., 2017; Perera et al., 2018).

In this work, two energy models for residential
buildings that take into account morphological
urban-scale parameters are presented, evaluated
and discussed. Comparable studies include (Hede-
gaard et al., 2019; Mutani and Todeschi, 2019;
Nageler et al., 2017; Sola et al.,, 2018) for energy
models and (Amasyali and El-Gohary, 2018; Bog-
hetti et al., 2019) for data-driven ones.
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2. Materials and Methods

This section describes two different approaches to
create building energy models at neighborhood
scale. The first is a bottom-up engineering model
(hourly thermal balance), while the second one is a
data-driven model based on the Bagging algo-
rithm. Fig. 1 indicates the input data and the
procedure used to compare the models.

DATAINPUT

Building data Neighborhood scale

*  Building geometry *  Microclimate data (air

* Heated volume/net floor temperature, sky
surface temperature, solar

* Period of construction irradiation)

*  Thermal transmittances « Sky View Factor (SVF)

* % of occupied apartments + Canyon effect ‘height-to-

*  Energy efficiency system width” (H/W) ratio

\— GIS database <—‘
I
v
Thermal Machine
Balance Learning

Analysis of the influence of
morphological parameters
in energy consumption

comparison

Fig. 1 — Flowchart of energy models comparison

2.1 Bottom-Up Engineering Model

Starting from previous research (Mutani et al,
2019), a bottom-up engineering hourly energy bal-
ance model for residential buildings was created. To
evaluate the energy balance of buildings in a built-
up urban context, the ISO 52016-1:2017 and ISO
52017-1:2017 standards were used, and the equa-
tions were implemented to consider only the data
available at neighborhood scale and some morpho-
logical urban-scale parameters. The urban parame-
ters used to create the model and to evaluate how
the urban form affects the thermal energy consump-
tion in buildings were: the canyon effect, which was
quantified using the 'height-to-width' (H/W) ratio,
this parameter is able to describe the typical urban
microclimate around the buildings; the obstructions,
the solar exposition and the thermal were evaluated
with the H/W ratio and the Sky View Factor (SVF),
which measures the visible portion of the sky from a
given location (Middela et al., 2018); the climate and

132

microclimate conditions were downloaded from the

nearest weather station.

This section presents an engineering method based

on energy balances with hourly time step by con-

sidering the main components of a building: the

envelope, the glazing and the inside part of a

building with the internal structures, the furniture

and the air. An iterative procedure makes it possi-

ble to calculate the hourly temperatures of the

three thermodynamic systems (Fig. 2). In this

work, the following assumptions were adopted:

- the temperatures of the thermodynamic sys-
tems are uniform;

- heat conduction through the buildings elements
is one-dimensional;

- thermal bridges are neglected;

- latent components of influx or out flux of mois-

ture and the heat flow rates for humidification

and dehumidification were neglected.

aT,
—LEq(1
Ce 0t q(1)

Fig. 2 — The three thermodynamic systems of the engineering
dynamic model: B = internal structures, furniture and air; E =
opaque envelope; G = glass

2.1.1  Thermal balance of the glasses

The hourly temperature of the glasses (G) of a
building were obtained with the balance of the
thermal flows between the glasses and the building

(B) and the glasses and the outdoor environment

(e) (Eq. 1).

CGW=ZaG-1-F-AG—217-

Z-RG-I—RSE

“(Tg —Tg) — 0r (1)

The term on the left side of Equation 1 describes
how the energy stored in windows glasses changes
with the time. The terms on the right side of the

equation describe the absorption of solar irradiance
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(I) and the heat fluxes for transmission between the
glasses and the building and between the glasses
and the external environment. For every hour, a
coefficient is calculated to define the percentage of
sunny surfaces as a function of the height of the
sun and of the urban canyon height to distance
ratio H/W (Mutani et al, 2019). The remaining
terms, listed below, refer to:

- the heat flows by transmission between the

glasses and the external environment:

Zl T = Tee)

‘R + Rse

- the heat flows by transmission between the
glasses and the internal building quota:
—Ts)
Z 1 Rg + RSl ’
The thermal capacity of the glasses Cc was calcu-
lated by considering the specific heat and the mass

of the glasses.

2.1.2 Thermal balance of the envelope
The thermal balance of the heat flows for the build-
ing envelope was calculated using Equation 2.

dry

5 RE +R58

= Ta) = Y T (T~ T3) 0, "
5 Rg + R

Similarly to Equation 1, the term on the left side
describes how the energy stored in the envelope
changes with the time; the terms on the left side
describe the absorption of solar irradiance, the heat
flow by transmission to the building and the exter-
nal environment and the extra heat flow @ due to
thermal radiation to the sky from the envelope. The
@r depends on the shading reduction factor for the
external obstructions Fs and it was calculated with
the SVF (Mutani et al., 2019; Mutani and Todeschi,

under revision).

2.1.3 Thermal balance of the building
The thermal balance of the heat flows of the inter-

nal building components was calculated using

Equation 3:
dTy
Cg—— —QH+®|+ T I-F-A4; — — (T —Tg) —
dt Z Z 1 3R +Ry;
- Z - TG) —Cq Mg - (TB ai — Tae)
1 R; + Rs; ®)

The term on the left side of the Equation 3 de-
scribes how the energy stored inside the building
changes with the time. On the right side, the first
two terms i) ®@u and ii) @1 described respectively 1)
the heat flow released by the heating system,
which can be calculated by multiplying the energy
supplied to the heating system for the system effi-
ciency nu (Mutani and Todeschi, under review) and
ii) the heat flow rate due to internal heat sources
that, for residential buildings, depends on the use-
ful heated floor area and the average floor area per
dwelling. The third term describes the solar trans-
mission through the transparent elements with the
F reduction factor calculated likewise in Equations
1 and 2. The last terms describe the heat flow rates
by transmission and ventilation. For the internal
heat gains and heat flow for ventilation, the hourly
profiles that characterize the users’ behavior in the
Italian Standard UNI/TS 11300-1:2014 were uti-
lized.

2.2 Bagging Model

The second model uses a machine learning ap-
proach based on the bootstrap aggregating (bag-
ging) algorithm (Breiman, 1996) applied to a deci-
sion tree regressor. This method was chosen over
other possible regression techniques as it provided
better and more consistent results on the available
data. The bagging algorithm works by sampling
the data with replacement, running the prediction
method(s) on the samples and finally aggregating
the results by averaging the outputs. The decision
tree regressor, on the other hand, is a simple learn-
ing algorithm that creates a set of binary rules to
calculate the target value. The model was trained
using real hourly consumption data from buildings
of the two neighbourhoods that are not in the input
database. As the output of a similar model is de-
pendent on the decision trees that are generated for
the bagging algorithm, the results given in this
paper are averaged over the outputs of different

instances of the model.

2.2.1  Model creation

The model was created using Scikit-learn (Pedrego-
sa et al., 2011) and follows a standard workflow for
machine learning applications. In the first phase, the

data from the full database was pre-processed. Cat-
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egorical features were converted into numerical data
and the values of the whole database were scaled.
While scaling is not necessary when using the deci-
sion tree regressor, it allows for efficient comparison
of the results with those of other algorithms within
the same script. The evaluated sample is then split
from the training set as explained in Section 3.2.
Once the data was processed, a first model was cre-
ated and its performance evaluated. At this point, a
backward feature elimination was performed in
order to reduce the number of variables by eliminat-
ing those that were negatively affecting the perfor-
mances of the algorithm. This dimensionality reduc-
tion method works by excluding one feature at a
time and evaluating how the removal affects the
performance of the model. If the precision improves,
the feature is removed. The process continues itera-
tively until no variable can be dropped without a
negative effect on the performances of the model.
Morphological urban-scale parameters were not
included in this step as the evaluation of their im-
portance will be carried out subsequently. At the
end of this process the resulting model was finally
evaluated, and as an acceptable level of precision

was reached no further improvements were made.

3. Case Study

Turin is located in the north-western part of Italy,
in a continental temperate climate. In Turin there
are about 60,000 heated buildings, nearly 45,000 of
which are residential. These are mainly large and
compact condominiums, and 80% of them were
built before 1970 (Amasyali and El-Gohary, 2018;
Hedegaard et al., 2019; Middela et al., 2018). In
order to evaluate the influence of urban morpholo-
gy on the consumption of buildings, two neigh-
bourhoods -with similar building characteristics
but different urban contexts— are taken as case
studies. In the Einaudi (E) neighbourhood the
buildings have a H/W average value of 0.56 and
SVF of 0.63; while in the Sacchi (S) area these urban
parameters have higher values, 0.64 and 0.76, re-
spectively (Fig.s 3 and 4).
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Fig. 3 — Sky View Factor (SVF) calculated with the use of GIS
tool, Relief Visualization Toolbox, and the DSM

characteristics at census section scale

3.1 Data Collection

The urban scale data as well as the geographic in-

formation were elaborated with the support of a

Geographic Information System (GIS) tool, and a

georeferenced database was created using the data

presented below:

- Building data elaborated using: the Municipal
Technical Map'; the Territorial Database of the
Region? and the socio-economic data (ISTAT
census database?).

- Microclimate data elaborated using Politecnico
weather station measurements (heating degree
days, air temperature, relative humidity, direct
solar radiation).

- Morphological urban-scale parameters elaborated
using building data, Satellite Images (Landsat 7
and 8) with a precision of 30 meters available
from the USGS website; and the Digital Sur-
face Model (DSM) of Turin with a precision of
5 meters provided by Piedmont Region.

- Energy consumption data were provided by the
district heating IREN Company of Turin. The

1 http://geoportale.comune.torino.it/web/
http://www.geoportale.piemonte.it/cms/
3 http://datiopen.istat.it/
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hourly space heating energy consumption re-
fer to the season 2014-15.

3.2 Sampling

Among the available data, a representative sample
of buildings was chosen as case study and used as
a testing set for both models. The main reasons for
using only a subset of the whole database were to
save enough buildings to train the machine learn-
ing model and to reduce the high computational
times of the bottom-up approach. The sampling
was carried out on a random basis. Outliers, how-
ever, were excluded from the population before-
hand in order to avoid errors correlated with the
lack of variety in the training data, which would
not have been meaningful for the evaluation of
morphological urban-scale parameters. Fig.s 5 and
6 show the distribution of the values for the SVF
and H/W ratio of the sample compared with those
of the full database.
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Fig. 5 — Distribution of the Sky View Factor values within the full
database (in blue) and the sample (in orange)
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Fig. 6 — Distribution of the Canyon Effect (H/W) values within the
full database (in blue) and the sample (in orange)

An overview of the distribution of these parame-
ters in the sample can be found in Table 1, along
with the period of construction, the S/V ratio and
the thermal transmittances of the buildings.

Table 1 — Characteristics of a selected buildings in the Einaudi
and Sacchi neighborhoods

IDbz Period S/V Us Uc Uz U: H/W SVF
E-129 19-45 0.280 1.35 4.75 0.79 1.76 0.589 0.627
E-132 46-60 0.290 1.18 4.4 0.615 1.35 0.569 0.621
E-187 46-60 0.286 1.18 4.4 0.615 1.35 0.522 0.650
E-202 61-70 0.285 1.13 49 0.65 1.49 0.569 0.621
E-227 61-70 0413 1.13 49 0.65 1.49 0.589 0.627
S-46 19-45 0.344 1.35 4.75 0.79 1.76 0.533 0.722
S5-202 19-45 0336 1.354.75 0.79 1.76 0.675 0.747
S5-262 19-45 0.346 1.35 4.75 0.79 1.76 0.600 0.782
S5-268 46-60 0.404 1.18 4.4 0.615 1.35 0.686 0.765
5-97 61-70 0323 1.13 49 0.65 1.49 0.686 0.765

4. Results and Discussion

In this section, the performances of the two models
are compared and discussed, along with the im-
provements that urban parameters have brought in
each case. From this work it emerges that urban
parameters have a positive impact on the precision
of both tested models: the solar exposure and heat
exchanges with the external environment signifi-
cantly influence energy consumption. In particular,
in favourable conditions, with high values of SVF
and good orientation, energy consumption is lower
than in unfavourable conditions (low values of SVF
and orientation). Moreover, the shape of the build-
ing is fundamental in its heat exchange, and the
canyon effect H/W was used to describe the built
environment compactness and the type of the sur-
rounding open spaces. In terms of the two models,
the following sections detail the results. In general,
using a machine learning approach leads to better
performances in terms of time and precision. On
the other hand, its reliance on the availability of a
comprehensive dataset for the training phase
makes it less flexible and undermines its per-
formances on heavily heterogeneous case studies.

4.1 Bottom-Up Engineering Model

This section reports the results obtained from the
application of the hourly thermal balance model.
To present the results, some buildings were select-
ed based on the period of construction, the charac-
teristics of urban context and the type of adjacent
street, the consumption of buildings located on a
large tree-lined street are influenced by this posi-
tion (Amasyali and El-Gohary, 2018). In particular,
the following figures refer to a number of buildings
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located in the Einaudi area, distinguishing different
periods of construction. Figure 7 shows an example
of measured and calculated monthly space heating
consumption of a residential building built in
1919-45.
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Fig. 7 — Monthly energy consumption for the season 2014-15:
building ‘E-129’, bottom-up model
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Fig. 8 — Daily consumption and relative error (E;): building ‘E-
132, bottom-up model

Figure 8 describes the daily trends for the 2014-15
season of measured and calculated consumption
and the daily relative error (E:). The data refer to
the building ‘E-132’ built in 1946-60. In general, the
daily value of E: varies between + 20%. Figure 9
shows the cumulative frequency of the ‘E-227
building (period 1961-70). It is possible to observe
that the model is quite accurate (the greatest inac-
curacy occurs in the months of October and April
due to the imprecision of measured data at the be-
ginning and the end of the heating season).

In future research, by improving the model with
the introduction of other urban parameters (for
example, considering the presence of vegetation), it
will be possible to optimize the trend of energy
consumption (high and low values). Considering
the results obtained from the comparison between
the Einaudi and Sacchi neighbourhoods (Fig. 10), it
is possible to confirm that the canyon effect is very
important in the simulation of energy consumption
because it creates a microclimate around buildings
by increasing the air temperature and, consequent-
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ly a lower consumption will occur. Figure 10 shows
that when H/ W decreases, the SVF increases and
therefore the consumption also increases. Further-
more, the canyon effect and the extra flow are more
significant than the solar gains in an urban envi-
ronment (Mutani et al., 2019).
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Fig. 9 — Cumulative curves: ‘E-227’, bottom-up model
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Fig. 10 — Comparison between energy consumption (measured
and calculated) and urban parameters for buildings located in
Einaudi and Sacchi neighborhoods

4.2 Bagging Model

With a MAPE of 14.12 % and a R?2 of 0.71, the data-
driven model showed good precision on the sam-
ple. It was able to reproduce the hourly energy
profiles of the buildings with an acceptable degree
of error despite the low number of available obser-
vations compared to the complexity of the prob-
lem. A first comparison with the previous model is
given in Figure 11, where the monthly energy de-
mand of building “E-129" is estimated again. The
estimations of the bagging algorithm in this case
were slightly more precise, and the tendency was
to underestimate the energy consumption, as op-
posed to the bottom-up model where the errors

were mostly on the positive side.
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Fig. 11 — Monthly energy consumption for the season 2014-15:
building ‘E-129’, bagging model
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Fig. 13 — Cumulative curves: ‘E-227’, bagging model

With respect to daily energy demand, Figure 12
shows the performances of the model on building
‘E-132". Again, the error is generally contained
within +20% and -20%, which is in line with litera-
ture values given the lack of information needed to
characterize the human behavior. Both models
were therefore able to output a good estimation
without notable discrepancies with the real values.
Similar to what happened with monthly values, the
daily charts show that the two models tend to re-
spectively overestimate and underestimate the real
energy consumption.

As previously done with the bottom-up model,
Figure 13 finally shows the cumulative frequency
of the “E-227’ building. Again, the highest inaccu-
racy occurred in the months of October and April.
While the total error at the end of the heating sea-

son was similar for the two models, their short-
term behaviours were very different. The bagging
algorithm accumulated its error gradually, as op-
posed to the bottom-up model where the error
spiked to its final value mostly during the last
month.

Table 2 — Comparison between results of two building energy
models

Bottom-up model Bagging model
IDv: Er |E:| Calc. Meas. Er I|Erl Calc. Meas.

% kWh/m?/y % kWh/m?/y
E-129 1 17 2799 2730 -11 9 2489 2730
E-132 -6 15 2426 2523 O 0 2538 25.23
E-187 -13 17 29.26 33.18 -10 14 28.57 33.18
E-202 -1 19 2591 2485 0 13 2812 24.85
E-227 -7 20 17.07 1874 19 30 2436 18.74
S-46 -5 17 2957 3228 -6 6 3048 32.28
S-202 -15 24 3244 37.87 12 13 40.76 37.87
S-262 2 19 3787 3715 -12 16 31.19 37.15
S-268 3 17 2816 2752 2 2 2818 2752
S-97 4 16 2454 2375 16 25 29.65 23.75

4.3 Energy Models Comparison

An overview of the performances of the two mod-
els is given in Table 2. Overall, both models
showed good performances and their errors were
in line with the typical values of the energy per-
formance gap. The precision of the data driven
model, however, was less stable, ranging from an
absolute error of 30% to less than 1% depending on
the building. This behavior is possibly due to the
lack of representative buildings of all kinds in the
training set, which is a common problem of this

approach.

5. Conclusions

Improving the precision of urban-scale energy
simulations is an important step to achieve a more
efficient use of energy resources. In this work, two
simple energy models, which make use of morpho-
logical urban-scale parameters in order to take into
account the effect of building-to-building interac-
tions, were presented and studied.

The two models were i) a bottom-up engineering
approach, ii) a machine learning approach based
on the bootstrap aggregating (bagging) algorithm.
Both models were able to estimate the hourly con-
sumption of buildings with a low error compared
to the expected performance gap that characterize
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the problem. The precision of the bagging model,
however, was more dependent on the building’s
characteristics: this behaviour is caused by the lack
of representative datapoints in the training set.
This reliance on having a good amount of compre-
hensive data, and the resulting poor generalizabil-
ity of the model, are the main weaknesses of this
approach. On the other hand, the bottom-up model
requires longer times and human efforts to pro-
duce the output, while also lacking flexibility if one
or more building features are missing.

Future work will aim at lessening the weaknesses
of both models, for example by smoothing the
workflow of the first model and by gathering more
data for the second one; and at introducing more
morphological parameters as well as properly
studying their importance and their impact on the
two models.

Nomenclature

A area

c specific heat capacity

C thermal capacity

F reduction factor

H/W canyon height-to-distance ratio
ID identification code

I solar irradiance

m mass-related

R thermal resistance

S/V surface-to-volume ratio

SVF sky view factor

t time

T temperature

U thermal transmittance

A% volume

T total solar energy transmittance
o solar radiation absorption coefficient
n system efficiency

() heat flow rate, thermal power
Subscripts

a air

B building

bz building zone

e external

E opaque envelope

G glass

H Heating

I internal heat gains

i internal

p opaque

r radiative (extra flux)

s surface

sh shading
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