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Abstract 
With a growing awareness around the importance of the 
optimization of building efficiency, being able to make 

accurate predictions of building energy demand is an 
invaluable asset for practitioners and designers. For this 

reason, it is important to continually improve existing 
models as well as introduce new methods that can help 

reduce the so-called energy performance gap, which 
separates predicted from actual consumption values. This 

is particularly true for urban scale simulations, where 
even small scenes can be very complex and carry the 

necessity of finding a reasonable balance between preci-
sion and computational efforts. The scope of this work is 

to present two different models that make use of mor-
phological urban-scale parameters to improve their per-

formances, taking into account the interactions between 
buildings and their surroundings. In order to do this, two 

neighbourhoods in the city of Turin (IT) were taken as 
case studies. The buildings studied present similar char-

acteristics but are inserted in a different urban context. 
Several urban parameters were extracted using a GIS tool 

and used as input, alongside the building-scale features, 
for two different models: i) a bottom-up engineering 

approach that evaluates the energy balance of residential 
buildings and introduces some variables at block-of-

buildings scale, ii) a machine learning approach based on 
the bootstrap aggregating (bagging) algorithm, which 

takes the same parameters used by the previous model as 
inputs and makes an estimation of the hourly energy 

consumption of each building. The main results obtained 
confirm that the urban context strongly influences the 

energy performance of buildings located in high built-up 
areas, and that introducing simple morphological urban-

scale parameters in the models to take these effects into 
account can improve their performance while having a 

very low impact on the computational efforts. 

1. Introduction

One of the key challenges of our century is to alle-
viate human pressure on the environment and par-
ticularly to slow down the climate change that 
greenhouse gas emissions are accelerating 
(Verbeke and Audenaert, 2018). The buildings sec-
tor accounts for a large share of the total energy-
related CO2 emissions - around 28% in 2018 - and it 
will therefore play a central role in the clean energy 
transition (IEA, 2019). In particular, the reduction 
of energy consumption in buildings, together with 
the transition to renewable energies, could be one 
of the main drivers of this turnaround (Mutani and 
Todeschi, 2018). An important step to achieve this 
goal is to develop robust models that allow us to 
make reliable estimates of the energy demand of 
buildings, which can be used as a base for planning 
the city of tomorrow (Streicher et al., 2019). How-
ever, building these models at urban scale is a 
complex task, as the energy consumption depends 
on several factors at different scales, such as the 
dynamic interaction between the outdoor climate 
and the specific characteristics of the building's 
surroundings, the thermal characteristics of its en-
velope elements and technical systems (Caruso et 
al., 2013; Palme et al., 2017; Perera et al., 2018). 
In this work, two energy models for residential 
buildings that take into account morphological 
urban-scale parameters are presented, evaluated 
and discussed. Comparable studies include (Hede-
gaard et al., 2019; Mutani and Todeschi, 2019; 
Nageler et al., 2017; Sola et al., 2018) for energy 
models and (Amasyali and El-Gohary, 2018; Bog-
hetti et al., 2019) for data-driven ones. 
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2. Materials and Methods

This section describes two different approaches to 
create building energy models at neighborhood 
scale. The first is a bottom-up engineering model 
(hourly thermal balance), while the second one is a 
data-driven model based on the Bagging algo-
rithm. Fig. 1 indicates the input data and the 
procedure used to compare the models. 

Fig. 1 – Flowchart of energy models comparison 

2.1 Bottom-Up Engineering Model 

 Starting from previous research (Mutani et al., 
2019), a bottom-up engineering hourly energy bal-
ance model for residential buildings was created. To 
evaluate the energy balance of buildings in a built-
up urban context, the ISO 52016-1:2017 and ISO 
52017-1:2017 standards were used, and the equa-
tions were implemented to consider only the data 
available at neighborhood scale and some morpho-
logical urban-scale parameters. The urban parame-
ters used to create the model and to evaluate how 
the urban form affects the thermal energy consump-
tion in buildings were: the canyon effect, which was 
quantified using the 'height-to-width' (H/W) ratio, 
this parameter is able to describe the typical urban 
microclimate around the buildings; the obstructions, 
the solar exposition and the thermal were evaluated 
with the H/W ratio and the Sky View Factor (SVF), 
which measures the visible portion of the sky from a 
given location (Middela et al., 2018); the climate and 

microclimate conditions were downloaded from the 
nearest weather station. 
This section presents an engineering method based 
on energy balances with hourly time step by con-
sidering the main components of a building: the 
envelope, the glazing and the inside part of a 
building with the internal structures, the furniture 
and the air. An iterative procedure makes it possi-
ble to calculate the hourly temperatures of the 
three thermodynamic systems (Fig. 2). In this 
work, the following assumptions were adopted: 
- the temperatures of the thermodynamic sys-

tems are uniform;
- heat conduction through the buildings elements

is one-dimensional;
- thermal bridges are neglected;
- latent components of influx or out flux of mois-

ture and the heat flow rates for humidification
and dehumidification were neglected.

Fig. 2 – The three thermodynamic systems of the engineering 
dynamic model: B = internal structures, furniture and air; E = 
opaque envelope; G = glass 

2.1.1 Thermal balance of the glasses 
The hourly temperature of the glasses (G) of a 
building were obtained with the balance of the 
thermal flows between the glasses and the building 
(B) and the glasses and the outdoor environment
(e) (Eq. 1).

  (1) 

The term on the left side of Equation 1 describes 
how the energy stored in windows glasses changes 
with the time. The terms on the right side of the 
equation describe the absorption of solar irradiance 
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(I) and the heat fluxes for transmission between the 
glasses and the building and between the glasses 
and the external environment. For every hour, a 
coefficient is calculated to define the percentage of 
sunny surfaces as a function of the height of the 
sun and of the urban canyon height to distance 
ratio H/W (Mutani et al., 2019). The remaining 
terms, listed below, refer to: 
- the heat flows by transmission between the 

glasses and the external environment:  

  

- the heat flows by transmission between the 
glasses and the internal building quota:  

-  

The thermal capacity of the glasses CG was calcu-
lated by considering the specific heat and the mass 
of the glasses. 

2.1.2 Thermal balance of the envelope 
The thermal balance of the heat flows for the build-
ing envelope was calculated using Equation 2. 

 

         (2) 

Similarly to Equation 1, the term on the left side 
describes how the energy stored in the envelope 
changes with the time; the terms on the left side 
describe the absorption of solar irradiance, the heat 
flow by transmission to the building and the exter-
nal environment and the extra heat flow Фr due to 
thermal radiation to the sky from the envelope. The 
Фr depends on the shading reduction factor for the 
external obstructions Fsh and it was calculated with 
the SVF (Mutani et al., 2019; Mutani and Todeschi, 
under revision). 

2.1.3 Thermal balance of the building 
The thermal balance of the heat flows of the inter-
nal building components was calculated using 
Equation 3: 

        (3) 

The term on the left side of the Equation 3 de-
scribes how the energy stored inside the building 
changes with the time. On the right side, the first 
two terms i) ФH and ii) ФI described respectively i) 
the heat flow released by the heating system, 
which can be calculated by multiplying the energy 
supplied to the heating system for the system effi-
ciency ηH (Mutani and Todeschi, under review) and 
ii) the heat flow rate due to internal heat sources 
that, for residential buildings, depends on the use-
ful heated floor area and the average floor area per 
dwelling. The third term describes the solar trans-
mission through the transparent elements with the 
F reduction factor calculated likewise in Equations 
1 and 2. The last terms describe the heat flow rates 
by transmission and ventilation. For the internal 
heat gains and heat flow for ventilation, the hourly 
profiles that characterize the users’ behavior in the 
Italian Standard UNI/TS 11300-1:2014 were uti-
lized. 

2.2 Bagging Model 

The second model uses a machine learning ap-
proach based on the bootstrap aggregating (bag-
ging) algorithm (Breiman, 1996) applied to a deci-
sion tree regressor. This method was chosen over 
other possible regression techniques as it provided 
better and more consistent results on the available 
data. The bagging algorithm works by sampling 
the data with replacement, running the prediction 
method(s) on the samples and finally aggregating 
the results by averaging the outputs. The decision 
tree regressor, on the other hand, is a simple learn-
ing algorithm that creates a set of binary rules to 
calculate the target value. The model was trained 
using real hourly consumption data from buildings 
of the two neighbourhoods that are not in the input 
database. As the output of a similar model is de-
pendent on the decision trees that are generated for 
the bagging algorithm, the results given in this 
paper are averaged over the outputs of different 
instances of the model. 

2.2.1 Model creation 
The model was created using Scikit-learn (Pedrego-
sa et al., 2011) and follows a standard workflow for 
machine learning applications. In the first phase, the 
data from the full database was pre-processed. Cat-
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egorical features were converted into numerical data 
and the values of the whole database were scaled. 
While scaling is not necessary when using the deci-
sion tree regressor, it allows for efficient comparison 
of the results with those of other algorithms within 
the same script. The evaluated sample is then split 
from the training set as explained in Section 3.2. 
Once the data was processed, a first model was cre-
ated and its performance evaluated. At this point, a 
backward feature elimination was performed in 
order to reduce the number of variables by eliminat-
ing those that were negatively affecting the perfor-
mances of the algorithm. This dimensionality reduc-
tion method works by excluding one feature at a 
time and evaluating how the removal affects the 
performance of the model. If the precision improves, 
the feature is removed. The process continues itera-
tively until no variable can be dropped without a 
negative effect on the performances of the model. 
Morphological urban-scale parameters were not 
included in this step as the evaluation of their im-
portance will be carried out subsequently. At the 
end of this process the resulting model was finally 
evaluated, and as an acceptable level of precision 
was reached no further improvements were made. 

3. Case Study 

Turin is located in the north-western part of Italy, 
in a continental temperate climate. In Turin there 
are about 60,000 heated buildings, nearly 45,000 of 
which are residential. These are mainly large and 
compact condominiums, and 80% of them were 
built before 1970 (Amasyali and El-Gohary, 2018; 
Hedegaard et al., 2019; Middela et al., 2018). In 
order to evaluate the influence of urban morpholo-
gy on the consumption of buildings, two neigh-
bourhoods –with similar building characteristics 
but different urban contexts– are taken as case 
studies. In the Einaudi (E) neighbourhood the 
buildings have a H/W average value of 0.56 and 
SVF of 0.63; while in the Sacchi (S) area these urban 
parameters have higher values, 0.64 and 0.76, re-
spectively (Fig.s 3 and 4). 

 

 

Fig. 3 – Sky View Factor (SVF) calculated with the use of GIS 
tool, Relief Visualization Toolbox, and the DSM 

 

 

Fig. 4 – The canyon effect H/W calculated with the use of building 
characteristics at census section scale 

3.1 Data Collection 

The urban scale data as well as the geographic in-
formation were elaborated with the support of a 
Geographic Information System (GIS) tool, and a 
georeferenced database was created using the data 
presented below: 
- Building data elaborated using: the Municipal 

Technical Map1; the Territorial Database of the 
Region2; and the socio-economic data (ISTAT 
census database3). 

- Microclimate data elaborated using Politecnico 
weather station measurements (heating degree 
days, air temperature, relative humidity, direct 
solar radiation). 

- Morphological urban-scale parameters elaborated 
using building data, Satellite Images (Landsat 7 
and 8) with a precision of 30 meters available 
from the USGS website; and the Digital Sur-
face Model (DSM) of Turin with a precision of 
5 meters provided by Piedmont Region. 

- Energy consumption data were provided by the 
district heating IREN Company of Turin. The 

 
1  http://geoportale.comune.torino.it/web/ 
2  http://www.geoportale.piemonte.it/cms/ 
3  http://datiopen.istat.it/ 
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hourly space heating energy consumption re-
fer to the season 2014-15. 

3.2 Sampling 

Among the available data, a representative sample 
of buildings was chosen as case study and used as 
a testing set for both models. The main reasons for 
using only a subset of the whole database were to 
save enough buildings to train the machine learn-
ing model and to reduce the high computational 
times of the bottom-up approach. The sampling 
was carried out on a random basis. Outliers, how-
ever, were excluded from the population before-
hand in order to avoid errors correlated with the 
lack of variety in the training data, which would 
not have been meaningful for the evaluation of 
morphological urban-scale parameters. Fig.s 5 and 
6 show the distribution of the values for the SVF 
and H/W ratio of the sample compared with those 
of the full database. 

 

Fig. 5 – Distribution of the Sky View Factor values within the full 
database (in blue) and the sample (in orange) 

 

Fig. 6 – Distribution of the Canyon Effect (H/W) values within the 
full database (in blue) and the sample (in orange) 

An overview of the distribution of these parame-
ters in the sample can be found in Table 1, along 
with the period of construction, the S/V ratio and 
the thermal transmittances of the buildings. 

Table 1 – Characteristics of a selected buildings in the Einaudi 
and Sacchi neighborhoods   

IDbz Period S/V UE UG Ug Ur H/W SVF 
E-129 19 - 45 0.280 1.35 4.75 0.79 1.76 0.589 0.627 
E-132 46 - 60 0.290 1.18 4.4 0.615 1.35 0.569 0.621 
E-187 46 - 60 0.286 1.18 4.4 0.615 1.35 0.522 0.650 
E-202 61 - 70 0.285 1.13 4.9 0.65 1.49 0.569 0.621 
E-227 61 - 70 0.413 1.13 4.9 0.65 1.49 0.589 0.627 
S-46 19 - 45 0.344 1.35 4.75 0.79 1.76 0.533 0.722 
S-202 19 - 45 0.336 1.35 4.75 0.79 1.76 0.675 0.747 
S-262 19 - 45 0.346 1.35 4.75 0.79 1.76 0.600 0.782 
S-268 46 - 60 0.404 1.18 4.4 0.615 1.35 0.686 0.765 
S-97 61 - 70 0.323 1.13 4.9 0.65 1.49 0.686 0.765 

4. Results and Discussion 

In this section, the performances of the two models 
are compared and discussed, along with the im-
provements that urban parameters have brought in 
each case. From this work it emerges that urban 
parameters have a positive impact on the precision 
of both tested models: the solar exposure and heat 
exchanges with the external environment signifi-
cantly influence energy consumption. In particular, 
in favourable conditions, with high values of SVF 
and good orientation, energy consumption is lower 
than in unfavourable conditions (low values of SVF 
and orientation). Moreover, the shape of the build-
ing is fundamental in its heat exchange, and the 
canyon effect H/W was used to describe the built 
environment compactness and the type of the sur-
rounding open spaces. In terms of the two models, 
the following sections detail the results. In general, 
using a machine learning approach leads to better 
performances in terms of time and precision. On 
the other hand, its reliance on the availability of a 
comprehensive dataset for the training phase 
makes it less flexible and undermines its per-
formances on heavily heterogeneous case studies. 

4.1 Bottom-Up Engineering Model 

This section reports the results obtained from the 
application of the hourly thermal balance model. 
To present the results, some buildings were select-
ed based on the period of construction, the charac-
teristics of urban context and the type of adjacent 
street, the consumption of buildings located on a 
large tree-lined street are influenced by this posi-
tion (Amasyali and El-Gohary, 2018). In particular, 
the following figures refer to a number of buildings 
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located in the Einaudi area, distinguishing different 
periods of construction. Figure 7 shows an example 
of measured and calculated monthly space heating 
consumption of a residential building built in 
1919-45.  

 

Fig. 7 – Monthly energy consumption for the season 2014-15: 
building ‘E-129’, bottom-up model 

 

Fig. 8 – Daily consumption and relative error (Er): building ‘E-
132’, bottom-up model 

Figure 8 describes the daily trends for the 2014-15 
season of measured and calculated consumption 
and the daily relative error (Er). The data refer to 
the building ‘E-132’ built in 1946-60. In general, the 
daily value of Er varies between ± 20%. Figure 9 
shows the cumulative frequency of the ‘E-227’ 
building (period 1961-70). It is possible to observe 
that the model is quite accurate (the greatest inac-
curacy occurs in the months of October and April 
due to the imprecision of measured data at the be-
ginning and the end of the heating season). 
In future research, by improving the model with 
the introduction of other urban parameters (for 
example, considering the presence of vegetation), it 
will be possible to optimize the trend of energy 
consumption (high and low values). Considering 
the results obtained from the comparison between 
the Einaudi and Sacchi neighbourhoods (Fig. 10), it 
is possible to confirm that the canyon effect is very 
important in the simulation of energy consumption 
because it creates a microclimate around buildings 
by increasing the air temperature and, consequent-

ly a lower consumption will occur. Figure 10 shows 
that when H/ W decreases, the SVF increases and 
therefore the consumption also increases. Further-
more, the canyon effect and the extra flow are more 
significant than the solar gains in an urban envi-
ronment (Mutani et al., 2019). 

 

Fig. 9 – Cumulative curves: ‘E-227’, bottom-up model 

 

Fig. 10 – Comparison between energy consumption (measured 
and calculated) and urban parameters for buildings located in 
Einaudi and Sacchi neighborhoods 

4.2 Bagging Model 

With a MAPE of 14.12 % and a R2 of 0.71, the data-
driven model showed good precision on the sam-
ple. It was able to reproduce the hourly energy 
profiles of the buildings with an acceptable degree 
of error despite the low number of available obser-
vations compared to the complexity of the prob-
lem. A first comparison with the previous model is 
given in Figure 11, where the monthly energy de-
mand of building ‘E-129’ is estimated again. The 
estimations of the bagging algorithm in this case 
were slightly more precise, and the tendency was 
to underestimate the energy consumption, as op-
posed to the bottom-up model where the errors 
were mostly on the positive side. 
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Fig. 11 – Monthly energy consumption for the season 2014-15: 
building ‘E-129’, bagging model 

 

Fig. 12 – Daily consumption and relative error (Er): building ‘E-
132’, bagging model 

 

 

Fig. 13 – Cumulative curves: ‘E-227’, bagging model 

With respect to daily energy demand, Figure 12 
shows the performances of the model on building 
‘E-132’. Again, the error is generally contained 
within +20% and -20%, which is in line with litera-
ture values given the lack of information needed to 
characterize the human behavior. Both models 
were therefore able to output a good estimation 
without notable discrepancies with the real values. 
Similar to what happened with monthly values, the 
daily charts show that the two models tend to re-
spectively overestimate and underestimate the real 
energy consumption. 
As previously done with the bottom-up model, 
Figure 13 finally shows the cumulative frequency 
of the ‘E-227’ building. Again, the highest inaccu-
racy occurred in the months of October and April. 
While the total error at the end of the heating sea-

son was similar for the two models, their short-
term behaviours were very different. The bagging 
algorithm accumulated its error gradually, as op-
posed to the bottom-up model where the error 
spiked to its final value mostly during the last 
month. 

Table 2 – Comparison between results of two building energy 
models  

IDbz 
Bottom-up model Bagging model 

Er |Er| Calc. Meas. Er |Er| Calc. Meas. 
% kWh/m3/y % kWh/m3/y 

E-129 1 17 27.99 27.30 -11 9 24.89 27.30 
E-132 -6 15 24.26 25.23 0 0 25.38 25.23 
E-187 -13 17 29.26 33.18 -10 14 28.57 33.18 
E-202 -1 19 25.91 24.85 0 13 28.12 24.85 
E-227 -7 20 17.07 18.74 19 30 24.36 18.74 
S-46 -5 17 29.57 32.28 -6 6 30.48 32.28 

S-202 -15 24 32.44 37.87 12 13 40.76 37.87 
S-262 2 19 37.87 37.15 -12 16 31.19 37.15 
S-268 3 17 28.16 27.52 2 2 28.18 27.52 
S-97 4 16 24.54 23.75 16 25 29.65 23.75 

4.3 Energy Models Comparison  

An overview of the performances of the two mod-
els is given in Table 2. Overall, both models 
showed good performances and their errors were 
in line with the typical values of the energy per-
formance gap. The precision of the data driven 
model, however, was less stable, ranging from an 
absolute error of 30% to less than 1% depending on 
the building. This behavior is possibly due to the 
lack of representative buildings of all kinds in the 
training set, which is a common problem of this 
approach. 

5. Conclusions 

Improving the precision of urban-scale energy 
simulations is an important step to achieve a more 
efficient use of energy resources. In this work, two 
simple energy models, which make use of morpho-
logical urban-scale parameters in order to take into 
account the effect of building-to-building interac-
tions, were presented and studied.  
The two models were i) a bottom-up engineering 
approach, ii) a machine learning approach based 
on the bootstrap aggregating (bagging) algorithm. 
Both models were able to estimate the hourly con-
sumption of buildings with a low error compared 
to the expected performance gap that characterize 
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the problem. The precision of the bagging model, 
however, was more dependent on the building’s 
characteristics: this behaviour is caused by the lack 
of representative datapoints in the training set. 
This reliance on having a good amount of compre-
hensive data, and the resulting poor generalizabil-
ity of the model, are the main weaknesses of this 
approach. On the other hand, the bottom-up model 
requires longer times and human efforts to pro-
duce the output, while also lacking flexibility if one 
or more building features are missing.  
Future work will aim at lessening the weaknesses 
of both models, for example by smoothing the 
workflow of the first model and by gathering more 
data for the second one; and at introducing more 
morphological parameters as well as properly 
studying their importance and their impact on the 
two models. 

Nomenclature 
A area 
c specific heat capacity 
C thermal capacity 
F reduction factor 
H/W canyon height-to-distance ratio 
ID identification code 
I solar irradiance 
m mass-related 
R thermal resistance 
S/V surface-to-volume ratio 
SVF sky view factor 
t time 
T temperature 
U thermal transmittance 
V volume 
τ total solar energy transmittance 
α solar radiation absorption coefficient 
η system efficiency 
Φ heat flow rate, thermal power 

Subscripts 
a air 
B building 
bz building zone 
e external 
E opaque envelope 
G glass 
H Heating 
I internal heat gains 
i internal 
p opaque 
r radiative (extra flux) 
s surface 
sh shading 
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