
Free University of Bolzano/Bozen
Faculty of Computer Science

Thesis

Combining user and service provider preferences in a
mobile car-rental reservation system

Thomas Schievenin

Submitted in partial fulfillment of the requirements for the degree of Bachelor
in Applied Computer Science at the Free University of Bolzano/Bozen

Thesis advisor: Prof. Dr. Francesco Ricci

July 23, 2010



Abstract
This thesis project aims at developing a software application of the latest gen-
eration and to study the analysis of two completely different car rental systems.
The starting point was to develop a system that took into consideration the
needs of the customer and of the supplier. I implemented a mobile application
with an android operating system also able to give importance to the necessities
of the final user.

The defined architectural system developed an application able to satisfy the
needs of the supplier of the service and that of the final user in a way to offer a
service based on the needs of the consumer.

Once finished the development of the application it was submitted to col-
leagues and friends. The system was evaluated through a questionnaire. The
user sample expressed judgment regards to the usability of the application and
the preferences between the two implemented systems. The results were use-
ful to analyze the two systems, to compare them, to find points of strength
and weakness and to complete conclusions. The results have confirmed our ex-
pectations placed at the beginning of the project, because the merging system
received a positive evaluation from the users.



Riassunto
Questo progetto di tesi mira alla realizzazione di un software per dispositivi
mobili di ultima generazione e allo studio e sucessiva all’analisi di due sistemi di
autonoleggio completamente diversi. Partendo da un sistema dove solo le esi-
genze del gestore del servizio venivano prese in considerazione, ho implementato
un’applicazione per dispositivi mobili con sistema operativo android capace di
dare importanza anche alle necessità dell’utente finale.

Definita l’architettura del sistema è stata sviluppata un’applicazione capace
di soddisfare sia le esigenze del gestore del servizio che quelle dell’utente finale,
in modo tale da offrire un servizio cucito addosso alle esigenze dell’utenza locale
altoatesina.

Non appena terminato lo sviluppo dell’applicazione, questa è stata sotto-
posta a conoscenti e colleghi. Il sistema è stato valutato tramite un questionario
dove il campione d’utenza esprimeva giudizi riguardo l’usabilità dell’applicazione
e la preferenza tra uno dei due sistemi implementati. I dati raccolti sono stati
utili per analizzare i due sistemi, confrontarli, trovare i punti di forza e debolezza
e stilare le relative conclusioni. I risultati hanno confermato le aspettative poste
all’inizio del progetto in quanto il sistema di “fusione” delle preferenze ha rice-
vuto una valutazione positiva dagli utenti.



Kurzfassung
Das Projekt besteht aus einer Anwendung für mobile Geräte neuerster Gener-
ation und dazu auch aus dem Studium und der Analyse von zwei voneinander
unterschiedlichen Autoverleihsystemen.

Ich habe für einer in Bozner Gesellschaft eine interaktive Webseite entwick-
elt, welche mittels einer neuen Technologie als Knotenpunkt für Kunden und
Angestellte dienen sollte. Das Anfangssystem, welches nur auf die Bedürfnisse
des Dienstanbieters achtete, wurde zu einer mobilen Anwendung angepasst, um
auch die Erfordernisse der Kunden des Dienstanbieters zu vollbringen.

Die Architektur des Systems basiert auf meine vorherigen Arbeitserfahrun-
gen bei einem südtiroler Autoverleih, und erlaubt daher eine maßgeschneiderte
Anwendung für Kunden und Anbieter.

Sobald die Realisierung zu Ende war, wurde die Anwendung Kollegen und
Bekannten zum Testen übergeben, welche dazu auch ein Fragebogen ausge-
füllt haben. Die gesammelten Daten sind sehr nützlich gewesen, um die unter-
schiedlichen Systeme zu analysieren, zu vergleichen, und um Stark-und Schwach-
punkte aufzufinden. Das Ergebnis der Umfrage wiederspiegelt im Ganzen meine
am Beginn erläuterten Erwartungen.



Contents
1 Introduction 1

1.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Reservation System . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Online Car Reservation System . . . . . . . . . . . . . . . . . . . 3
2.2 Negotiation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Webs-Based Systems . . . . . . . . . . . . . . . . . . . . 4
2.2.2 On The Move . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Rank Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Case Study 6

3.1 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Required Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3.1 Customer Side . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.2 Service Provider Side . . . . . . . . . . . . . . . . . . . . . 7

4 System Architecture 9

4.1 System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1 Form for booking a car . . . . . . . . . . . . . . . . . . . 10
4.1.2 Web Service Response . . . . . . . . . . . . . . . . . . . . 12
4.1.3 Car Booking List . . . . . . . . . . . . . . . . . . . . . . 12
4.1.4 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Computation of the Suggestion . . . . . . . . . . . . . . . . . . . 14
4.2.1 Customer Preferences . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Service Provider Preferences . . . . . . . . . . . . . . . . 17
4.2.3 Rank Aggregation . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Android Application . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Application Server - Tomcat . . . . . . . . . . . . . . . . 19
4.3.3 DBMS – PostgreSQL . . . . . . . . . . . . . . . . . . . . 20

5 Evaluation 21

5.1 Implemented Systems . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Experiment Strategy . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Conclusions 26

6.1 Discussion and Results . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Appendix: Questionnaire 28



List of Figures
1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Tab navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Car request form . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Selecting the destination . . . . . . . . . . . . . . . . . . . . . . . 11
5 Web service response . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Booking list view . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Booking details view . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Car crash help . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9 User preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10 Entity relationship model . . . . . . . . . . . . . . . . . . . . . . 21
11 Personal section graph . . . . . . . . . . . . . . . . . . . . . . . . 24
12 Results of the usability questionnaire . . . . . . . . . . . . . . . . 25
13 Concluding section graph . . . . . . . . . . . . . . . . . . . . . . 26

List of Tables
1 Cars’ availability . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Parking list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Cars model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Similarity example . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 Rank aggregation example . . . . . . . . . . . . . . . . . . . . . . 18
6 Task A and task B . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Experiment strategy . . . . . . . . . . . . . . . . . . . . . . . . . 24



1 Introduction

1.1 General Information
Nowadays, the use of Internet and mobile devices has become indispensable to
the point that we cannot imagine a single day without them. Technology has
permanently changed the way we live and work[1]. The need to have access to
services at anytime and everywhere seems to be the most important thing in
our lives and it has become part of our routine. At work, at university and even
on the road, people access Internet to download data and consumer services.

In Trento, for example everyone can surf for free from many points of the
city and this is encouraging new users to adopt even more online services.

In the specific business of car rental there are mainly two possible actors.
The first is the service provider that gives the possibility to rent its goods for
a specific period of time, and the second is the customer that is interested in
renting cars for personal purpose. Local car rental services in South Tyrol do
not provide a mobile application for requesting cars, and in most cases they do
not even dispose of a mobile website that offer their services. This is the starting
point of my Thesis Case Study: offering both the customer and the provider a
system implemented on the newest platform for mobile systems, Android, that
helps them to find a compromise between actors’ needs.

1.2 Reservation System
At the beginning of the project an extensive state of the art was conducted to
a local car rental reservation company in order to collect all the data possible
in order to develop a modern and reliable application based on a real car rental
business. After this phase we concluded with a list of requirements set up by
the service provider. In order to get the customer’s requirements we defined
them autonomously.

We have taken into consideration the service offered by two car rental web-
sites (Avis[2] and Eropcar[3]), which are complex systems and give the user
the possibility to have a wide range of solution. Another website we analyzed
was made by me for a local company in Bolzano (Avis[2]), but in this case the
company do not have a large quantity of goods to rent, therefore the website is
simpler than that of Avis and Europcar.

We decided to implement this system on mobile phones because they give the
user the possibility to take advantage of having an available service at anytime.

Since this application belongs to a niche market it has greater possibility to
have success. Both actors in this business have advantages by using this new
application: on one side customers always have a car rental system available, on
the other side the service provider gets the possibility to offer an on the move
systems which can be accessed everywhere.

The decision of making the system runnable on mobile phones is determi-
nated by the fact that we think a mobile application more readable and easier-
to-use than a website based system.

1



1.3 Outcome
The android application implements two different car rental techniques that
offer either rental services considering jointly the customers and suppliers needs
or just the costumer’s. In the first system, only the supplier preferences were
taken into consideration in order to determine which goods had to be rented,
and in the second, the system makes a merge between customer’s and provider’s
preferences. The main aim of my Thesis Project was to demonstrate that the
second system, the one that merges the actors’ needs, is preferred to the one
that takes only the provider’s needs.

The following parts compose the developed application: the Android appli-
cation that implements the car rental reservation system which gives the user the
possibility to interact with the service, the application Server – Tomcat which
contains all kinds of services that costumers can call from their cell phones,
actually it is the bridge between the android application and the PostgreSQL,
and finally the PostgreSQL database where all information about cars, parking
and bookings are stored.

Many available applications such as meta-search engines implements ranking
functions, in order to retrieve documents and data based on different criteria.
These techniques are useful in order to find the best solutions for both costumer
and provider. We want to identify a possible relation between actors’ prefer-
ences. In this way we are able to build merging functions, but this topic will be
discussed in the fourth chapter called “system description”.

After the implementation of the above mentioned car rental reservation sys-
tems, we created a valuation process where users could express their opinion
about the two systems. Our hypothesis is that the system that is capable of
taking the user preferences into consideration should be preferred to the one
that ignore them. Therefore, in order to verify our hypothesis, we created a
questionnaire that was filled-in by the users after having used the car rental
application. The results confirmed our hypothesis: they show that the merging
system is the best rated, therefore a winning approach has been unanimously
declared.

2



2 Background
In a car rental reservation system, as in many other business situations, cus-
tomers and suppliers have distinct roles and their own interests. Generally,
suppliers are businesses actors that sell, or like in this specific case, rent goods,
whereas consumers are the final users of a certain product. Very often the needs
or preferences of customers and suppliers are not the same, and sometimes these
are even conflicting. The most important features of a business transactions for
suppliers are integrity, quality, reliability and lastly but not least make profit.
On the contrary, consumers want a reliable product/service based on their own
needs, constraints and preferences. The fundamental problem of these transac-
tions lies on finding an agreement between the customers and suppliers needs.

2.1 Online Car Reservation System
Nowadays, renting a car has become a routine, in fact who travels for working
purpose or for pleasure requires a suitable car. In this section we are going to
analyze some existing car rental systems provided by the most popular compa-
nies.

Avis[2], is a multinational company that gives their costumers two principle
channels for renting a car. The first approach is made personally, this means
that the customer has to negotiate with an avis clerk in an office. The second,
is possible through Internet, the so called “e-commerce” channel. Here the
negotiation is different: first the user specifies the time constraints, then the
systems shows all available cars regardless users preferences such as car size, car
model, ecc. . . and finally, the user can choose from the displayed cars.

A second example is provided by EuropCar[3]. They give the customer the
possibility to rent cars only through the Internet channel. As before, the user
gets a long list of available cars from which it must choose the preferred car. In
addition to what is provided by Avis, Europcar also has a mobile website for
customers that want access to their services everywhere.

The last car rental service we decided to take in consideration is a website I
developed in 2006 named GestioneFlotta[4] for the above mentioned Avis com-
pany. This is a service only available for public-administration employees of the
Province of Bolzano. In this scenario the user requests a specific car, if the car
is available it is assigned to him, otherwise the user must make another request.
All requests are managed manually, therefore the query is approved as soon as
the avis employee decides to do so. In the first two mentioned examples the user
gets a long list of available cars. None of the previous websites has a mobile
application that interact with the system, perhaps because they are local com-
panies and suppliers do not see a possible future on the mobile market. On the
other hand, we must say that the systems taken into consideration have both
a well-made graphical user interface, and are extremely easy to use even at the
first approach. In the online reservation systems I have given examples of the
companies that rent cars to consumers, therefore it is a “business to consumer”
strategy[4], where costumers request a specific good and obtain it. On the con-

3



trary, in the last example GestioneFlotta they have an internal organization, no
money is made in these transactions, they are “business to business”and here the
process automation is different from the previous scenario. Since the costumer
does not make any money, its aim is to distribute goods equally.

2.2 Negotiation Phase
2.2.1 Webs-Based Systems

Car rental reservation websites act more or less in the same way. Negotiation
is made one step at the time. For example, the user must first set the time
constraint, then select the preferred car type, and so on.

There are no differences between the first two analyzed systems, Avis and
Europcar. Both systems have a wide range of available cars, therefore these
websites are more complex and complete. The costumer gets the opportunity
to choose the preferred car from a big set, unlike in the third system that the
small cars quantity changes negotiation in a stipulated procedure in a such way
that only one form has to be filled-in, in order to make a car reservation.

2.2.2 On The Move

Why the need of a mobile application? The fact that in June 2007 the total
number of mobile phone connections in the world reached 3.25 billion proves
that mobiles are not only used for telephone calls and text messaging[5]. In
addition, none of the previous systems described in paragraph 2.1 “online car
reservation systems” offers such a mobile application that implements these fea-
tures, probably because a website running on mobile devices is not based on a
specific mobile operating system. On the other hand, a mobile application opti-
mizes the screen features, in fact most of the time, surfing in Internet through a
mobile phone can be problematic because the screen dimension does not allow
to read small formatted texts.

2.3 Rank Integration
In this Thesis Project we consider the problem of combining ranking[6] results
from different sources. Generally, many applications include building meta-
search engines, combining ranking functions, selecting documents based on dif-
ferent criteria. These techniques are useful in order to solve the rank aggregation
problem. In fact, we tried to calculate differences between the two lists: the cus-
tomer’s and the supplier’s. How can we calculate such a distance?

Methods such as, “Borda’s method”, “Footrule and scaled footrule” and
“Markov chain methods” already exist. We decided to adopt a linear sum
method with sum weight equal to one. As soon as we obtained these two lists
we saw their similarity.

The Kandall tau distance counts the number of pair wise disagreements
between two lists; therefore thanks to it we can obtain a single resulting list
that shows how much the two previuos lists have in common. The obtained list

4



is a normalized version of the Kandall distance, which can be computed in nlogn
time using simple data structures. Once the Kandall tau distance is computed,
we have to declare which pairs of the two lists are better. In the generic context
of rank integration, the notion of “better” depends on what distance measure we
try to optimize. In this specific case we do not optimize the distance measure,
but we only take into consideration the pairs that got the highest marks.

5



3 Case Study

3.1 Project Description
The main goal of this project is to develop a car-rental mobile application avail-
able 24 hours a day, 7 days at week able to offer rental services considering
jointly the customers and suppliers needs. One of the most important aspect
is that the supplier will try to merge the customer preferences with his own
in order to suggest solutions that will enable him to use the resources in an
effective way and still satisfy as much as possible the customer needs. In order
to prove whether this system is useful or not, this application has two mainly
features: the first feature tries to compute the above mentioned merge between
the different preferences, the second takes into consideration only the provider
needs. The final user does not know when the system does the merge or not,
and in order to verify if he is able to recognize these two different scenarios a
questionnaire has to be filled after the application utilization.

3.2 Historical Data
With the help of historical data and with help of employees that work for a car
rental company, we ended up with the following “winter”/”summer” paragraphs
in order to have a clearer idea of the request of cars during the different periods
of time throughout the year. This kind of analysis is crucial in order to develop
a new application service based on an already existing car rental reservation
system. It is helpful in order to have a clearer idea of what the problems in
this business are. Once understood all possible scenarios that might occur the
application development can start.

Winter Cars get more damaged because of the weather, snow, icy roads and
tourism around the city make transport more difficult than usual.

Summer Cars do not get damaged as in wintry months, but there is a higher
number of requests because of conventions, exhibitions and conferences. This
period is characterized by a huge car request, but the resources available are
nevertheless of a small amount.

3.3 Required Functions
3.3.1 Customer Side

Unlike the ordinary car rental reservation system where the user specify first
the time constraint like in the Avis and Europcar website, here the customer
would like also to set a list of requirements that his/her hypothetical must car
have but he does not know if its preferences are taken into consideration. The
request must fill in the provider’s best-car-usage criteria. It is not trivial to find
out what are the most important functions to fulfill from the customer’s point

6



Small Medium Large
Manual
City car (4 pass) Compact (5 pass) Premium (5 pass)
Economy (5 pass) Compact SW (5 pass) Station Wagon (5 pass)
Economy (5 pass) Cabio (4 pass) 4x4 (4 pass)
Automatic
Economy (4 pass) Compact Carrier (5 pass) Luxury (5 pass)

Table 1: Cars’ availability

of view: the customer wants to be part of the deal and see his/her preferences
taken into consideration. The most important functionality for the customer
refers to the possibility of making a car request. We have listed all the possible
requirements that the user should be able to set in order to book a car in table
1.

The user should also state from which parking he prefers to take the required
car from. As soon as all preferences are set by the user, the request can be send.
The system responds with maximum 2 possible choices from which the user
must pick the preferred one. Once the transaction is made, the car is booked
and the system saves the booking information. When the booking phase is
completed, the user has the possibility to have a nice car-booking list where the
information of every journey is shown. Bookings are put in order with respect
to the start date and hour of the trip and are graphically marked by the car
type. In case of a car accident, it should be possible to send a message to the
service provider. This feature is available only within the booking reservation
period plus 15 minutes after the end, because most of the car accidents were
done at the end of the trip. While the user makes the request it should consider
this aspect and be less accurate specifying the trip end date in order to prevent
problems to the service provider. The system keeps track of the user’s position
every kilometer, and if the user requires this service, the system sends the last
known position saved during the trip.

3.3.2 Service Provider Side

From the service provider point of view it is extremely important to accurately
follow his business strategy, since it is a B2B and no profit is made. Since the
service provider does not make money, it must administrate resources in an
optimal way, otherwise it will end up with worn goods. First of all, a good
renting strategy should not allow to waste resources. Every time a request is
made the car availability situation is not always the same. Resources must be
equally used. In other words, one should avoid the situation where there are
overused cars and maintenance costs should be drastically reduced. Secondly,
the system must not treat users all in the same way, for those who often have
car accidents the newest cars on the market should not made available. A lot
of the time users are not careful using the property of others because of the low

7



insurance costs. Keeping the newest resources only for reliable users increases
the customer’s attention while driving, therefore vehicle and repair costs are
lowered. Finally, every journey has an appropriate car for its distance. As we
mentioned before there are different types of cars from which the customer can
express preferences. The service provider makes a distinction between the cars,
based on the travel distance: those who want to travel within the province (A
maximum of 10 kilometers) are given a small to medium size car. On the other
hand, customers who want to go out of the province are given a medium to large
size car.

8



Figure 1: System architecture

4 System Architecture
The system architecture is designed to give to the final user complete access to
the car rental reservation system. Communication between the different parts
act is as shown in figure 1.

• Cell phone: must be based on the open source platform for mobile sys-
tems Android[7] in order to run carDroid applications; CarDroid is the
developed application that implements the car rental reservation system;

• Gps sensor: every kilometer, the system keeps track of the current user’s
position and in case of an emergency the last known position is sent to
the web service;

• Application Server - Tomcat[8]: contains all kinds of services that users can
call from their cell phones. It communicates with the android application
through Soap protocol and also with the PostgreSQL Database[9];

• Database: object-relational database management system (PostgreSQL[9])
where all information about cars, parking and bookings are stored.

4.1 System Functions
The system menu is easy to use. Four tabs are available (figure 2):

• Book a Car: this page is used for making the car request, here the user
specifies all of the required characteristics in the car to be hired;

• Booking List: on this page the user can find the list of all accepted book-
ings and can view all the details of each booking;

• Preferences: in order to use this application the user must specify user-
name and password in order to be used, otherwise the program will not
allow any further usage;

9



Figure 2: Tab navigation

Figure 3: Car request form

• Db40[10]: this tab is useful for developing time in order to modify the
open source database for object content. From this tab it is also possible
to launch the testing unit.

4.1.1 Form for booking a car

The first tab contains the functions needed for making a car request (figure 3).
Every field must be filled- in, in order to make a request, otherwise the system
informs the user that some fields are empty.

The following steps show how to make a car request and how the system
reacts to the user input. Just few clicks are needed to request the car wanted.

Destination this field acts differently to the others (figure 4). Using this is
possible to select the travel destination wanted:

• The user will write the destination, for instance “Laives”;

10



Figure 4: Selecting the destination

Parking List
Cassa di Risparmio Street

Del Ronco Street
Amba Alagi Street

Andreas Hofer Street

Table 2: Parking list

• The application will search for all existing locations named “Laives” and
prompt maximum three possible locations. The more specific the loca-
tion, the more specific the result. Finally, the user must select one of the
retrieved results;

Start/End Date In order to specify the amount of time the car is required
the user must click on the date and hour buttons. If the start date and end
date are not coherent, the application alerts the user when the request is sent
off, and gives the possibility to change the time and hour fields

Parking By clicking on the parking field the system shows a list of all the
possible car parks from where the car can be rented. The user has to choose
one from the table 2:

Car Type the most important car characteristic is the car type. A car can
be manual or automatic and this feature is the most important aspect when it

11



Car Model
Small

Medium
Large

Luxury

Table 3: Cars model

comes to driving a car. By clicking on the button, the user specifies whether
the car should be manual or automatic.

Model in this field the user can choose the size of the car, depending on the
size preferred. The program allows the user to choose the car size from a custom
popup dialog. Possible car models are displayed in table 3.

Participants this field must be filled-in accurately because the number of
participants includes the driver.

4.1.2 Web Service Response

Once all the previous fields are filled-in, the last thing that remains to do is to
press the “Send Request” button. After that, the system sends the form to the
web system, that takes the request, considers the service provider preferences,
combines them and sends the result back. Figure 5 shows a possible result to a
query.

At this point the user can either go back and restart the process or choose
one of the proposed solutions. Once the car has been chosen, the system sends
the acceptance message to the web service in order to save the booking. The
application also saves the booking in a customized booking list, but more infor-
mation will be given on this argument in the following section.

4.1.3 Car Booking List

The system keeps track of all accepted requests made by the user in a local
database. This is useful in order to look-up information on car reservations
whenever it is necessary. To access this functions the user must click on the
“booking list” tab and the system lists the most the past bookings (figure 6)
with their important details: plate number, car name ,travel destination and
the start date of the booking. This is helpful to have a quick general overview.
In order to have a simple user interface, every booking has a different icon type
with respect to the car type.

If the user wants a more detailed view he can click on a single row, and an
information popup shows all the details for that trip (figure 7).

The systems records the user’s position in every kilometer and in case of an
emergency the user can send the last known position recorded by the application

12



Figure 5: Web service response

Figure 6: Booking list view

13



Figure 7: Booking details view

back to the web server to be rescued. This feature is available by clicking on
the related booking from the “booking list” view, and press the “car crash help”
button. Note that, this button is only available during the travel period plus
15 minutes after the end in order to avoid car parking problems (figure 8).

4.1.4 Preferences

The preferences tab is very easy to use and intuitive. Here the user has to insert
its username and password (figure 9). On the “save button” pressure the system
checks if the data is present on the service provider database. Make sure to have
an internet connection available, otherwise a popup dialog will inform the user
to switch it on.

4.2 Computation of the Suggestion
The computation of the suggestion is the most important topic of this thesis
project. How is it possible to achieve an integration between costumer and
service provider needs? This question will be answered in this chapter. Through
the customer request automatically a preferences list is made. Every car is
graded and the most preferred cars are the highest rated ones. On the other
hand, the supplier rates the cars and automatically makes a list of the best
rated cars. The difficulty is making a list to merge both the customer’s and
supplier’s needs, although not impossible. The solution is in finding a suitable
mathematical method capable of merging both the actors’ needs. In order to

14



Figure 8: Car crash help

Figure 9: User preferences

15



unify the two lists to make an optimal rank integration, we must give to both
actors’ needs the same weight. Only then, we will achieve the perfect merge.

4.2.1 Customer Preferences

The customer sets its own preferences through the car request. Using these
preferences the application server generates an ordered list of cars. The highest
scored cars are at the top of the list. It acts like the information search engine
retrieval. Given a certain input, the output must be ordered with respect to
the relevance of the items to the searched information. The following aspects
are rated within the interval 0,1 and they will be multiply by a specific ration
in order to get a rated list (table 4).

• Car size: available cars have different sizes: small 1, medium 3, large 5,
luxury 6. If the customer requires a medium size car, and there is not one
available, the system responses with a suitable replacement; this function
takes as input two cars and returns as a result their similarity, therefore
if both cars are of the same type the function returns value 1, otherwise a
number within the interval 0-1. In order to retrieve such value we simply
calculate the absolute difference between the requested size and the size
of the considered item;

• Car type: cars can be manual or automatic, this feature drastically influ-
ences the way one drives. If the customer asks for an automatic car, all
cars with that characteristic get a higher score; this method takes as input
two cars and if they are both either manual or automatic the score is 1,
otherwise it is 0;

• Passenger requirements: in order to optimize the car usage, the system
takes into consideration the number of participants for each trip. The
closer the number of participants to the seats available in the car, the
higher the score for this aspect; The distance between the number of seats
available in the car and the number of passengers is transferred in a value
of 1 if both numbers are compatible. The formula is shown in table 4.

1−(availableseats−passengers)
avaiableseats

• Parking requirements: when the customer specifies from which parking it
wants to take the car, the system looks at which cars are available in that
specific parking. If the cars are not available in the requested car park ,
the nearest available cars are rated 0 to 1. The nearer the car, the higher
the value. Table 4 shows how the computation is made.

We multiply each similarity score by its weight and sum up the obtained
results (0.66*0.2+0.3+0.8*0.2+0.3), therefore the similarity value between car
A and car B is equal to 0.892.

16



Car A Car B Formula Similarity Weight
Model Medium(3) Small(1) 1− idModela−idModelb

maxIdModel() 0.66 0.2
Type Manual(1) Manual(1) typea ∧ typeb 1 0.3
Seats 5 4 1− passa−passb

max(passa,passb)
0.80 0.2

Parking Del Ronco Del Ronco 1− distance(parka,parkb)
maxDistance() 1 0.3

Table 4: Similarity example

4.2.2 Service Provider Preferences

Like for the customer, also the service provider sets its own preferences that the
system takes into account, in order to build-up a recommendation list. At the
top are the most desirable cars for the service provider to rent in that specific
case. Clearly, the service provider needs are different from the customer’s needs
as explained before.

• Trip rating: for trips outside the province the system assigns a higher score
to medium/large cars. On the contrary, for short trips the system assigns
small cars. All these computations are done by the application server
side. We use the “Spherical law of Cosines”[12] that is faster in execution
time. The spherical law of cosines formula gives well-conditioned results
down to distances as small as around 1 metre, R is the world surface
approximation. If the trip is short and the size of the car is small the
function returns a value of 1, instead if the trip is long the car should
be large in order to have the same value of 1. In all the other cases the
returned value is equal to 0. Table 5 shows the formula.

d = arccos(sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(long2 − long1))R

• Good driver rate: if the user ability ratio is high, the system gives a prize
to the user by assigning the newest cars available; this function takes as
parameters the user’s ability and the value of the car usage. If the driver
does not damage the car and the car is in good order the returned value is
closer to 1. If the driver is careless and the car is not new the same value
is returned. In all the other cases the returned value is closer to 0; this
method takes as input the result of the following methods;

• Car usage: the same set of cars are not always available. This system
gives a high rate to an unused car in order to have an even usage for each
car. Using the following formula, we can obtain the value of car usage
within the interval 0-1. The closer is to 1, the newer the car.

(maxhours−usagehours)
maxhours

• User ability: the system keeps track of users behavior, in fact he gets a
low rate as soon as they ruin cars or have car accidents. The lower the
number of car accidents, the higher the user rate; The more skilled the
driver, the higher the value. The formula is the following:

17



Before the merge:
Customer Supplier

Car 1 0.75 Car 1 0.10
Car 2 0.51 Car 2 0.39
Car 3 0.31 Car 3 0.40
Car 4 0.50 Car 4 0.20

After the merge:
Customer and Supplier
Car 2 0.45
Car 1 0.43
Car 3 0.36
Car 4 0.35

Table 5: Rank aggregation example

(totbookings−chrashes)
totbooking

4.2.3 Rank Aggregation

Using the above mentioned procedure we can obtain two ranked lists, ordering
the available cars according to the customer and service preferences. Then to
aggregate[6] these two ranked list we reorder the items according to the the linear
combination of the two scores using weight that sums one. At the beginning
we have two different ranked lists, then the score of each item in one list is
multiplied by a specific weight that model the importance given to that order in
the final integrated order. If for instance the two weights are equal (1/2) then
this means that the customer and the service provider have equal importance.
The example in table 5 shows how to calculate the above mentioned: costumer
and supplier have rated two different lists. In order to obtain the final rate for
car 1 the following formula is needed: 0.75*0.5+0.1*0.5. The result is shown it
the table named “after the merge”.

4.3 Architectures
4.3.1 Android Application

The android application has been split up in several packages and each of them
has its own specific purpose. A description of each package follows in order to
understand the role of each better:

Models In the most general sense models are used to represent in a more
abstract way all data. The model is the data representation used by the appli-
cation in order to compute calculations. In this specific case the models are:

• Booking: represent all information about the trip

• User: represent all information about the user

18



Persistency The persistency package is in charge to save and retrieve data
from a local database located within the android applications. Android develop-
ers are typically used to adopt SQLite, an embedded relational database man-
agement system, but I preferred to use an open source object oriented database
named db4o.

Whoever would like to modify my project thesis, and does not fit in with
the db4o library, is free to build its own persistency package adopting its own
preferred database manager.

Service This package contains the connection to the application server Tom-
cat 5.5 and all the different methods called from the application, from which
the computation is made, from the outside android phone.

Exception In runtime environments is it helpful to have a class that handles
any kind of exception that can occur. Exceptions are special conditions that
change the normal flow of the program. The class I have implemented extends
the normal java exception class and prompts possible errors in a customized
popup dialog.

Test This package checks the efficiency and security of all called methods
within the android application. All kinds of database operations such as insert,
update, select, and delete are checked here, and also the methods that are
connected with the application server.

4.3.2 Application Server - Tomcat

As mentioned before, the application server has been split up in several pack-
ages in order to represent every kind of information related to the car rental
reservation system world. The packages are the following:

Models The database on the application server side must be more detailed
and complex than the small version located into the android device. In fact,
below I have shown several models used by the service package in order to
compute the merging between customer and service provider preferences. The
models are:

• Booking: contains all information about one single booking;

• Car Crash: contains the latitude and longitude of one single car crash;

• Car: describes all car characteristics;

• Parking: contains the location and the name of the parking;

• User: contains all information about the user;

19



Persistency The package named persistency, contains an extended version
of all models defined in the previous package and the class in charge of making
the connection between PostgreSQL and the application server itself. Having
a different package in charge of communicating with the database management
system, is really helpful for those who will work with this kind of system and
makes trivial a possible change of database manager. Instead of modifying the
entire server application, this kind of structure allows to change the persistency
package and still have a working platform.

Service This package contains all methods that join the package “service”,
in the android application, the user calls for it as it is requested. Its purpose is
that when a specific method is called to retrieve information from the database
management system (PostgreSQL), it applies specific calculations, and sends
the result back to the android application.

4.3.3 DBMS – PostgreSQL

The database structure is the final argument of the architecture chapter. The
adopted technology for implementing the database structure is PostgreSQL.
This object-relational database management system is easy to use but at the
same time powerful and reliable. The system structure is easy to understand.
The relational scheme and the entity-relationship[11] model (picture 10) follow
in order to get a clearer idea of the database structure:

CarCrash(id_booking, latitude, longitude, timestamp)

User(username, password, merge_technique)

Booking(id, plate_nr, start_date, end_date, latitude, longitude, username)

Car(plate_nr, model, manual, type, max_passenger, latitude, longitude)

Parking(latitude, longitude, name)

20



Figure 10: Entity relationship model

5 Evaluation

5.1 Implemented Systems
Before entering into the evaluation process structure we have to describe the
characteristics of the two implemented systems. The first system is in charge of
retrieving the user’s preferences and combine them with the supplier’s priority.
The outcome will be a set where both user and supplier have equal weight. In
the second implemented system only the customer’s preferences are taken into
consideration, therefore the output will be completely different from the user
expectation.

5.2 Experiment Design
In order to test CarDroid, the android application that implements a car rental
reservation system, we built a structured survey. The survey we have made
includes different areas with its own purpose. These sections are:

Different Scenario The questionnarie starts by describing two different tasks.
These were made because the users are to evaluate the two systems, if the same
task is assign for both evaluation it is obvious that the second system will get
a higher score. This is called "learning". In order to avoid this learning effect
we must use the two tasks. These two tasks must be similar otherwise we will
not achieve our aim. But since they cannot be completely similar then we must
randomize the order and the task so that a times a task is used with one system
or the other. The two tasks are shown in table 6.

21



Task A (working on System 1) Task 2 (working ok System 2)
Start Date: 23-06-2010 8:00 Start Date: 23-06-2010 8:00
End Date: 24-06-2010 14:00 End Date: 24-06-2010 14:00
Parking: Cassa di Risparmio Street Parking: Del Ronco Street
Car Type: Manual Car Type: manual
Model: medium Model: small
Partecipant: 4 Partecipant: 2

Table 6: Task A and task B

Personal Questions In order to retrieve some information about the user
and the its personal taste in the technology, he/she is asked to specify age and
if he/she is using a classic mobile phone or a smart phone.

Usability Evaluation There are several questionnaires for evaluating sys-
tem usability. We choose to adopt the CSUQ (Computer System Usability
Questionnaire) in order to evaluate the application CarDroid, because they are
standard questions for evaluating the system usability. These questions are gen-
eral and they can be used for all different type of systems. CSUQ is composed
of 19 questions, equal for both the two experimental condition, because the us-
ability does not change, only the system output. We preferred to adopt only
the following questions because they are more relevant for the outcome of this
study:

• Q1: Overall, I am satisfied with how easy it is to use this system

• Q2: It was simple to use this system

• Q3: I feel comfortable using this system

• Q4: It was easy to learn to use this system

• Q5: The system gives error messages that clearly tell me how to fix prob-
lems

• Q6: Whenever I make a mistake using the system, I recover easily and
quickly

• Q7: It is easy to find the information I needed

• Q8: The information is effective in helping me complete the tasks and
scenarios

• Q9: The organization of information on the system screens is clear

• Q10: The interface of this system is pleasant

• Q11: I like using the interface of this system

22



• Q12: This system has all the functions and capabilities I expect it to have

• Q13: Overall, I am satisfied with this system

Additional Comments If the user wants to express its feelings about the
CarDroid application, we have added some space where positive and negative
aspects can be written.

• Most positive aspects (if any)

• Most negative aspects (if any)

Concluding Information The information expressed in this section of the
questionnaire are the most important. On the base of this section we will be
able to understand what, among the two developed systems, is more useful. The
user does not know in supporting which task the system is taking into account
her preferences. The provided questions are the following:

• Q14: Which system do you prefer?

• Q15: Which system is the best one?

• Q16: Which system is more useful?

• Q17: Which system is easier to use?

• Q18: Have you noticed differences between the two systems?

5.3 Experiment Strategy
Our hypothesis is that the system that is capable of taking the user preferences
into consideration should be preferred to the one that ignore them. In order to
prove this hypothesis, the user is asked to perform two similar tasks using the
two systems. In one case the system takes into consideration only the supplier
preferences and in the other case the system does the merge between user’s and
supplier’s needs. The user does not know in which task/system his preferences
are going to be taken into consideration and in order to submit different scenarios
we end up with the following solution. Task A, and task B are the previous
mentioned tasks, system 1 is in charge of merging the preferences, instead of
system 2 that only counts the provider’s preferences.

At this point we have four different scenarios (table 7) that help us to avoid
the above mentioned learning effects. We have also followed the “within group
design”[14], which is a type of experimental design where we observe changes in
behavior across different treatments.

23



Experiment Strategy
Scenario 1 Task A (system 1) Task B (system 2)
Scenario 2 Task A (system 2) Task B (system 1)
Scenario 3 Task B (system 1) Task A (system 2)
Scenario 4 Task B (system 2) Task A (system 1)

Table 7: Experiment strategy

Figure 11: Personal section graph

5.4 Results
This section shows the results we have obtained. The 26 test participants were
divided in four groups, around 5 people each. They tested the CarDroid appli-
cation on the newest Google smart phone: the Nexus One. The obtained results
are divided in tree major category: personal, usability and concluding section.

The personal sections shows us the habitual technology used by the sam-
ple users. This aspect is really important to analyze, because we wanted to
provide an innovative but at the same easy-to-use technology for those who do
not adopt usually a smart phone, therefore if the questionnaire outcome shows
that the system has a good usability it means that we implemented a simply
user interface. Figure 11, shows that the 39% of users that tested the android
application, usually make use of classic mobile phones. So from this one can see
that there is a good proportion of the users that never used a phone like that
used for our experiments.

Usability[13] is all about making things easy and enjoyable to use. According
to figure 12, the application had been well evaluated. The user could chose a
value between 1 and 5. The higher the rate, the more the usability. All averaged
values are grater or equal to 4.1, therefore the application has a good system
usability. We can say that good structure, graphical interface and navigability
are the bases on which our application CarDroid relies.

Finally figure 13 shows which of the two systems was the preferred one.
Question 14 asked the preferred system and as you can see the results are

24



Figure 12: Results of the usability questionnaire

stunning: 98% of users preferred the systems that used the merging technique,
the other 2% had no preferences and they specified in the “most positive aspects
section” that the systems provided more powerful cars than those requested.
Questions number 15 and 16 show that the merging technique had been well
rated. Finally, question 17 shows that users did not realize, as expected, any
difference in the usability of the system.

Concluding, we can assure that there is a winning technique: 100% of users
specified (Q18) that they noticed a non-working properly system. This means
that while they were running under the system which was taking into consid-
eration their preferences, no complaints were made. On the on the other hand
the users were doubtful about the system output under the second system.

25



Figure 13: Concluding section graph

6 Conclusions

6.1 Discussion and Results
In this project we provided a new mobile application named CarDroid, that
implements a car rental reservation system. It implements two systems where
in the first the customer has the possibility to retrieve cars based on its needs
merged with the suppliers’s and, in the second only the supplier can manage
its goods advantagesly. This distinction is useful in order to prove whether the
user prefers the system that takes into consideration its preferences. In order
to analyze the user’s reaction to those systems we created a questionnaire that
was submitted to the sample users after the CarDroid utilization. This ques-
tionnaire is divided in 5 areas of interest: the first part describes the two tasks
that the user must perform; the second part collects information about the per-
sonal user preferences and the type of mobile phones used; the third refers to
the computer system usability; the fourth refers to the user judgment of the
two above mentioned car rental systems and finally, the fifth, where the user
is free to express its opinion. In order to have different scenarios, we created
a multi factor controlled experiment[14] as described in chapter 5. In this ex-
periment the independent variables are the two different systems. At random
we assigned a combination of the variable tasks to the sample users, because
we did not want that one particular task or order could bias the outcome of
this study. The survey was submitted to a heterogeneous sample of people re-
gardless if they felt comfortable with new mobile technologies or not. The more
heterogeneous the users, the better the outcome of the survey. The outcome of
this study confermed our hypothesis. Users preferred the system that took their
preferences into consideration rather than the one that only took into consider-
ation the one of the supplier’s. The outcome of this study completely satisfies

26



the expectations that we had at the beginning of this Thesis Project. Finally,
we can assure that this study has been well evaluated from the final user’s point
of view.

6.2 Future Work
The CarDroid application implements the basic features on the final user’s side.
It could be implemented for other mobile platforms such as Iphone or Nokia.
Since the application has only been tested by possible costumers, it would be
useful to repeat the same experiment strategy where the user samples are the
car rental companies of Bolzano.

A missing application is one that gives the supplier the possibility to verify
the state of its goods. We think that would be useful to have a website that
implements the following features:

Vehicle Situation The supplier must be able to verify the situation of the
cars at any time, vehicles available and those in use. At the end of each month
the supplier can print-out reports on car usage.

Car Management The supplier can add, edit or erase cars. He can also put
a car out of order for a specific period of time for maintenance problems and
move a car from a parking to another.

Car-Crash Issue In case of a car accident, the user has the possibility to
send an acknowledgement to ask for help and inform the supplier of what is
happening. If the car is greatly damaged and the user is no longer able to drive
it, a large problem arises. It could be that the car has been booked by other
users. In order to solve this problem the website should:

• Extract the all the bookings that overlap with the period in which the car
is out of order from the PostgreSQL database;

• Find the most similar and available cars with the functions already imple-
mented on the application server – Tomcat;

• Modify all old values with the new ones in the PosgreSQL database;

• Inform the user with a message displayed on its mobile phone.

At the beginning of the Thesis Project we thought that this feature should also
be implemented on the Android application when the user asks for help when a
car accident occurs, but this would mean that every user can drastically change
the content of the PostgreSQL database, therefore would change all the other
bookings made by other users. This feature could also occur due to an error of
distraction. On the base of this statement we decided that it would be more
adequate to only have this feature available for the supplier.

27



A Appendix: Questionnaire

28



29



References
[1] Itbusiness, “itBusiness.ca”, “http://www.itbusiness.ca/it/client/en/Tech-

Government/News.asp?id=45753”, (Accessed July 6, 2010)

[2] Avis, “Avis Autonoleggio”, “http://www.avisautonoleggio.it”, (Accessed
June 20, 2010)

[3] EuropCar, “EuropCar”, “http://www.europcar.it”, (Accessed June 20,
2010)

[4] Avis, “GesioneFlotta”, “http://www.gestioneflotta.com”, (Accessed June
20, 2010)

[5] Francesco Ricci, “Introduction to Internet and WWW”,
“http://www.inf.unibz.it/~ricci/IT/slides/1-www.pdf”, (Accessed June
20, 2010)

[6] Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar, “Rank Aggre-
gation Methods for the Web”, Proceedings of the 10th International Con-
ference on the World Wide Web (WWW 2001), Hong Kong, pp. 613-622,
2001.

[7] Sayed Y. Hashimi and Satya Komatineni, Pro Andoid, Apress 2009

[8] Jason Brittain, Ian F. Darwin, Tomcat: The Definitive Guide, O’Reilly
Media June 2003

[9] Peter Eisentraut, Bernd Helmle, PostgreSQL-Administration, O’Reilly Oc-
tober 30, 2008)

[10] Stefan Edlich, Henrik Hörning, Reidar Hörning, Jim Paterson, The Defini-
tive Guide to db4o, Apress, 1 edition (June 15, 2006)

[11] Google app Engine, http://gaesql.appspot.com/, (Accessed June 20, 2010)

[12] Sperical Law of Cosines, http://www.movable-
type.co.uk/scripts/latlong.html , (accessed June 20, 2010)

[13] [Brehob, 2001] Brehob, K., et al. “Usability Glossary”,
“http://www.usabilityfirst.com”, 2001 (Accessed June 25, 2010)

[14] Liz Atwater, Letan Babaria, “Controlled Experiments”,
“http://otal.umd.edu/hci-rm/cntlexp.html”, (Accessed June 25, 2010)



Dedicated to my dad.


