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Abstract

The availability of data on open source projects increased dramatically throughout the last
decade. This tendency attracts the attention of many researchers who focus their attention
on different software attributes and on how these affect each other. Commonly, such research
involves the analysis of individual or small groups of projects and thus provides results that
are strongly biased by the choice of these projects. To exploit the full value of the available
information, it is necessary to consider at least a representative proportion of the universe of
open source software. Such a universal set would allow us to draw generalizable conclusions
about software development and the development process. These can both serve as a bench-
mark to re-evaluate current beliefs as well as build new knowledge valuable to both industry
and academia.
A quantitative investigation of open source software requires the automated collection and
examination of large amounts of data. Such automation is fraught with problems, though.
Project data such as source code, versioning history, bug data, and descriptive information
is scattered around heterogeneous sources and thus differs in form and content. Moreover,
much information originating from abandoned, incomplete, or small projects is inconsistent
and can thus lead to unreliable results. Finally, it is difficult to support investigations con-
cerning general software attributes as Size or Quality since such analyses require a high level
of abstraction.
In this thesis, we present OSSQuery, a data mining system that indexes, collects, cleans,
updates, and analyzes publicly available project data to allow quantitative research on open
source software. An efficient, extensible, and reliable design allows our system to construct
a representative data set and to analyze a variety of questions on open source software on
demand. In spite of primarily addressing cause – effect relations, the modular architecture
can readily accommodate several types of analysis.
OSSQuery indexes over 143,000 open source projects to date, it stores both historical and
recent information on more than 2,500 projects. We performed a number of investigations
to test our system. The outcomes confirm our primary hypothesis, namely that research on
a limited set of projects might not be valid for all open source software. While our results
commonly agree with outcomes of other studies, they also show that a significant proportion
of projects do not fit these findings, yet.
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1 Introduction

1.1 Background and Motivation

Open Source Software (OSS) has become a phenomenon of real interest to a large range of
people and organizations [18], and is still rapidly evolving. The collaborative nature of OSS
endorses its fast diffusion and the development of high quality products [41]. Consequently, the
availability of information regarding OSS on the web increased dramatically. Huge so-called
forges, e.g. SourceForge, GitHub, and Google Code, provide hosting facilities for hundreds of
thousands of projects each and act as a centralized location for developers to control, manage,
and release their software. Besides storing the source code, such forges commonly provide an
infrastructure for publishing information on bugs, collaborators, versioning history, releases,
and descriptive data.
While literature has investigated characteristics of proprietary software since decades, the
rapid growth in the availability of information attracts many researchers to study open source
software. Thus, in recent years, experts extensively investigated individual projects or small
groups of projects on different attributes, e.g. [1] [2] [3] [6]. To improve the quality of
software and of software processes, researchers are particularly interested in studying and
revealing relations among different software attributes.
Such research and studies produced useful outcomes and models concerning particular OSS
projects and phenomena. Producing results that are project independent and thus of general
validity however, is only possible by considering and measuring at least a significant proportion
of the universe of available open source data. We present two major considerations on this
behalf. First, analyzing a large proportion of OSS prevents results to be affected and distorted
by the choice of projects. Second, conducting certain kinds of analyses is not feasible on a
constrained data set, because important elements may be outside the boundaries of a project.
For example, it is only possible to measure the isolation of a developer community while
considering all other projects, to which the community under analysis might have contributed.
A quantitative analysis on open source data requires an automated identification, collection,
cleaning, and analysis of open source projects from the web.
The development of a tool to automate this complex research process is thus motivated by
the availability of an invaluable amount of OSS data and by the lack of quantitative research
on these data. Such a tool allows the discovery of results with general validity, and the
description of the OSS universe through a representative data set.

1.2 Major Problems

Although online forges provide abundant information on open source projects, the automation
of both retrieving and analyzing data is fraught with conceptual complexities and practical
problems [5], some of these are listed in the following.

1. Project information has to be identified and located in each forge.

2. Such information differs both in form and in content from project to project and must
for instance be extracted from a web interface, i.e. HTML site, or through an analysis
of the source code.

3. Forges commonly contain a large number of abandoned, incomplete, and unmaintained
projects which provide inconsistent information.

4. The automated research process should be able to answer to a variety of different and
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possibly complex queries regarding OSS. These queries may regard abstract project
attributes and relations, e.g. Size or Quality.

5. Both large-scale data retrieval and analysis are resource–consuming processes. We aim
for an efficient implementation to achieve the task of automating such processes with
with limited resources.

Thus, the availability of OSS project information allows collecting and analyzing a significant
set of open source projects. The automation of this task is challenging since it includes a
number of problems from the fields of information retrieval and data mining, though.

1.3 OSSQuery

Through this work, we present our approach to the problem of automating the identification,
collection, cleaning, and analysis of open source projects from the web: OSSQuery, a data
mining system for investigation on cause–effect relations in OSS. OSSQuery is a system that
automates such a research process by building and updating a large and consistent set of
project information and by performing different analyses to answer research queries related
to OSS. More precisely, our contribution is a system that:

• Identifies and locates a large amount of projects on different project hosting facilities,
i.e. forges

• Retrieves different, descriptive project information regarding the projects it located

• Downloads and analyzes the source- and byte code of an open source project to retrieve
different metrics

• Analyzes the versioning system and the bug tracker to retrieve information on the
development history and the defects of a project

• Builds a centralized, large-scale, and consistent data set containing information on
projects with different characteristics

• Iteratively updates the data set to store both historical and current information on the
projects

• Performs a wide range of analyses and data mining tasks on the collected data

• Provides a simple structured web interface that allows performing analysis with few
clicks for an easy interaction

Since providing trustworthy results on such a large-scale is on the one side a complex, resource
consuming and on the other side a delicate task, OSSQuery has the following qualities.

Extensibility, to embrace the continuous change in the world of open source and to permit
a variety of different kinds of analyses on a diverse data set. The modular architecture
of our system can readily accommodate new types of projects and analyses (Chapter 3).

Abstraction, to support and analyze heterogeneous data from different sources. OSSQuery
transforms and converges data to a unified, abstract, data model that fits the data of
different forges.
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Performance/Efficiency, to allow the collection of a large data set in reasonable time.
Through testing and measuring the processes of data collection and data mining in
OSSQuery, we show that the system is (1) performing because collecting and analyzing
>100,000 of projects and (2) efficient because processing a project within 2 minutes and
a data mining task within 40 seconds on average (Chapter 4,5).

Reliability, to provide trustworthy results. The validation of our methods through manual
testing demonstrates soundness of our approach. Only a negligible amount of projects
is e.g. not being collected due to exceptional circumstances.

Precision, to provide exact and comparable results. OSSQuery delegates delicate tasks, e.g.
the source code analysis to commonly used and approved tools. Moreover, the collected
data set is validated through comparison with findings of other collection tools [22] [23].

Although there exist tools that collect data from online forges [4] [22], we found no other
system that allows performing automated analyses on a consistent, unified data set for quan-
titative investigations on OSS.
This thesis is structured as follows: In Chapter 2 we investigate on related research to outline
major contributions in the field of automated data collection and analysis on OSS. We present
our approach, method, and thus the design of OSSQuery in Chapter 3. Chapter 4 and 5 are
dedicated to the realization, and thus to implementation details, major problems, and results
regarding the data collection and data mining, respectively. Chapter 6 discusses limitations,
results, and directions for future work.
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2 Related Work

Our aim is to create a system that automates the open source research process to facilitate
quantitative analyses on public OSS data. Commonly, this research process [4] involves two
major steps: the collection and the interpretation of that data. This Section starts by pre-
senting how software and software projects can be measured to give a clear picture of what
data we are processing. Then we investigate different methods and techniques concerning the
automation of both steps. Finally, we explore the background of some queries our system can
address.

2.1 Measuring Software

There is no precise or unique picture of what information a practitioner needs to describe and
measure a project [24]. Literature proposes a variety of different methods and approaches to
measure software, depending on which software attribute is examined.

• Code is measured in terms of size and structure [7]. There exist four concepts of size:
length, functionality (function points), computational complexity, and reuse. Structure,
instead, is measured with respect to control flow structure e.g. cyclomatic complexity
[7], to information flow e.g. CK metrics [8], and to data structure e.g. database size.

• Defects are an important indicator for software quality and can be tracked on most OSS
repositories. Defects might be faults, bugs, failures, or anomalies in the functionality of
software.

• Communities are analyzed extensively in research. Literature [6] [25] is particularly
interested in how properties of developer communities such as size, connectivity, or
evolution affect the software produced. A developer community is defined as the set of
all active collaborators or maintainers of a project.

• Project activity and maturity is an abstract concept studied in different ways [2] [6].
Forges commonly provide historical information of software development through ver-
sioning systems.

We will briefly introduce the CK metrics suite [8], since it is of particular relevance to under-
stand the outcomes of our work (Section 6). The suite proposes six measures for the structural
quality of object oriented software.

1. WMC: Weighted Methods per Class, the sum of the number of methods of a class
weighted with respect to the cyclomatic complexity

2. DIT Depth of Inheritance Tree, the longest path from a class to the most remote ancestor

3. NOC: Number of Children, the count of all the direct children of a class

4. CBO: Coupling Between Objects, a measure of the dependencies than an object has with
other objects

5. RFC: Response For a Class, the number of methods of a class than can be invoked in
response of a call to a method of a class

6. LCOM: Lack of Cohesion in Methods, the absence of cohesion among the methods of a
given class
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2.2 Data Collection

There exists a huge amount of sources providing OSS data over the Internet. These data
differ in type and form and are partially “raw”, i.e. they have to be analyzed and combined
to be useful [5]. In the following, we will report major techniques for gathering data from the
Web.
Research proposes various solutions to how information can be located and retrieved from
the Internet. Web crawling is the automated process of discovering and indexing web pages
on the World Wide Web. Most of the problems in retrieving OSS project information are
similar to the standard problems in web – crawling. Those are scale, content selection, social
obligations, and adversaries, i.e. misleading or useless information [9]. However, a number
of major differences make a general web-crawler [10] not suitable for retrieving OSS project
information.

1. Limited search domain, i.e. only very specific sites are interesting

2. There is no updated and reliable public index of all project web pages in a forge.

3. Many links are self-referential or redundant, i.e. they point to a page that contains
the same structured information. This may lead a general crawler to index the same
information several times.

Thus, a general web-crawler indexing all reachable links is too expensive, crawling for OSS
information needs a more precise and focused approach.
Previous research has also proposed various solutions for the problem of updating retrieved
information. In theory, information should be updated only when it changed. In practice,
a web-crawler cannot know when a referenced resource is changed. Clustering methods can
address this problem by grouping resources according to their recent update frequency. The
crawler can then decide to re-crawl an entire cluster by looking whether a few samples from
that cluster where updated [11]. This technique however, requires deeper investigation and is
out of the scope of this work.
OSS project forges are inevitably full of missing, noisy, and inconsistent data due to their
huge size and their multiple heterogeneous sources of data. Since low data quality data leads
to low quality results, data mining systems preprocess the data before analyzing it [12].
First, data cleaning is applied to remove noise and inconsistency. Literature proposes various
methods to handle inconsistent data e.g. ignore tuple, use the attribute mean (by category), or
use a Bayesian formalism to calculate the most probable value [13]. Applying such a method
to OSS information would make not be appropriate since we are talking about source code,
byte code, and project details which cannot be omitted or inferred. The problem of noisy
data is task-specific and therefore addressed in the following Section.
Second, data from different, heterogeneous sources is integrated and combined to form a
homogenous data store, as in data warehousing. This task requires a general, unified data
model fitting the data models of the sources. Moreover, it can be tricky to correctly match
the same information from different sources. This problem is called the entity identification
problem; literature [14] suggests general solutions which are less suitable for domain specific
data.
Recently, Howison, Conklin, and Crowston (2006) introduced “FLOSSMole, a collaborative
project designed to gather, share and store comparable data and analyses of free and open
source software development for academic research” [4]. Their idea is to gather huge amounts
of data from several forges through web crawling or database dumps. FLOSSMole made
significant contributions in the field of collecting OSS data; therefore, some tasks are similar
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to the tasks of OSSQuery. The purpose however, is different: FLOSSMole aims to provide
comparable and clean data to researchers, whereas OSSQuery aims to provide a data mining
system which, based on a comparable and clean data set, answers research questions to cause
– effect relations between OSS attributes. In spite of collecting a huge amount of data,
FLOSSMole is not suitable as data source for OSSQuery.

• There is no easy access to the data; one must either download the whole database
manually or request an account to have limited access to their database.

• FLOSSMole provides no efficient update facility. Thus, an update requires re-downloading
the whole database.

• FLOSSMole does not provide any source code and only few software metrics, it is
therefore not adequate for our purpose.

• Due to the high number of forges and information types FLOSSMole addresses, it uses a
different data model for each forge. This fact leads to difficulties in data interpretation
and to inconsistency.

Another, research project [22], collects data from SourceForge only. Similar to FLOSSMole,
this project is limited to the bulk-download of general project information. In conclusion,
research has shown that data collection includes the steps of data identification, cleaning,
retrieval, transformation, and storage. Thus, literature proposes a variety of solutions that
we analyzed in this Section.

2.3 Data Mining

Han and Kamber state that “data mining refers to extracting or mining knowledge from
large amounts of data” [12]. Commonly, data mining includes the automatic discovery of
relations among data. Our goal, however, is not the discovery but proving the existence or
non-existence of assumed relations. To achieve this goal, we apply the steps of the process of
knowledge discovery (Figure 1) and perform guided data mining [12]. This Section touches
data mining techniques most relevant to the purpose of OSSQuery.

Figure 1: The Process of Knowledge Discovery
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A data set must be clean and homogeneous before it can be mined. For this purpose, we
first need to remove inconsistent and erroneous data. Literature presents different approaches
for data cleansing [12], among others techniques to identify or remove outliers. Since we are
interested in cause-effect relations among OSS data though, outlier projects are a potential
source of knowledge (Section 6). Thus, we limit ourselves to setting a number of empirical
thresholds [21] to filter out small, abandoned, and inconsistent projects. In the following, we
present a number of data mining techniques that are relevant to our purposes.

Correlation Analysis

Correlation measures the dependence and thus describes a relationship between two variables
X and Y. Although dependence is neither directional nor sufficient to infer causality, it is a
valid instrument to reveal potential cause-effect relations. A hypothesis test can then indi-
cate whether the calculated correlation corresponds to the true correlation with a significant
confidence. The most common correlation measure for large, normally distributed samples is
Pearson’s correlation coefficient (1).

rXY =

�n
i=1(Xi − X̄)(Yi − Ȳ )

��n
i=1(Xi − X̄)2

�n
i=1(Yi − Ȳ )2

(1)

Other correlation measures are Spearman’s rho and Kendall’s tau. Given our data, Pearson’s
rho is sufficient for our purposes.

Regression Analysis

While correlation measures the dependence and thus the strength of a relationship between
two variables X and Y, the regression models this dependency through a function. Regression
can thus define the nature of a cause – effect relation by depicting how the typical value of
the dependent (response) variable changes when any of the independent (predictor) variables
vary. Moreover, regression allows the prediction of a value for the dependent attribute, given
one or more independent attributes. Linear regression is the simplest form of regression (2).

y = αx+ β (2)

Where y is the response attribute, x is the predictor attribute, and α and β are regression
coefficients which depend on the data set. In the case of linear regression, the method of least
squares can solve these coefficients

Clustering Analysis

Clustering groups a collection of data items into clusters of similar items. The objects of one
cluster are then dissimilar to the objects of another cluster. Clustering does not only classify
items, but it gives a measure for similarity between objects. Such analyses are especially
interesting for OSSQuery, since they can deal with different kinds of attributes and with noisy
data. Most applications use heuristic partitioning methods, where clusters are constructed
around the cluster mean or median. The k-Means algorithm, for example, randomly selects
k item values as means for k clusters, assigns the remaining items to the nearest k value, and
calculates the new cluster mean. This process is repeated until the distance of the item values
of a cluster to their mean is minimal.
Other data mining techniques include the classification of items, and association mining [12].
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While the former might be relevant for further analysis on OSS projects and thus for future
work, the latter is somehow related to our main purpose. Association rule mining is the
automated discovery of recurrent patterns and thus relations among data, whereas we aim to
facilitate the investigation on these relations. A very specific and much-studied domain, i.e.
open source software, allows us to perform directed analyses instead of identifying all possible
relations.
To be effective, a data mining tool must allow the user to define a data mining task precisely
through a query. Han et. al. [21] propose five general considerations to this problem.

• The set of data relevant to a data mining task should be specified in a data mining
request

• The kinds of knowledge to be discovered should be specified in a data mining request

• Background knowledge could be generally available for a data mining process

• Data mining results should be able to be expressed in terms of generalized or multilevel
concepts.

• Various kinds of thresholds should be able to be specified flexibly to filter out less
interesting knowledge.

2.4 Background to Queries

The idea behind OSSQuery is to address a variety of different research questions on relations
between attributes of OSS. As a proof-of-concept, we will investigate four commonly studied
research questions; this Section presents the background of these questions.

1. Do non-isolated communities produce quality code? Isolated communities are developer
communities that are not connected to other communities, i.e. where no member con-
tributes to other projects. Research has investigated both on developer communities
[6] and on code quality [2]. Although the relation of the two attributes is very interest-
ing for researchers and managers, not much related research has been done up to now
[6]. This question seeks for a prediction model that describes the relationship between
isolation and quality.

2. To what extent does isolation within the developer community affect code activity?
Previous literature investigates both on community and on code evolution patterns [6].
Instead of giving models, we aim to give a precise measure based on a quantitative
analysis.

3. Does size affect code quality? According to Lehman’s Laws of Software Evolution 1,6,
and 7 [19] software is continuously growing in size and complexity, and quality is de-
creasing if not rigorously maintained.

4. Does activity indicate project maturity? OSS software arguably suffers from the “per-
manently beta” syndrome and low maturity. We aim to discover whether OSS project
maturity depends on activity.

To conclude, we have seen that there exist many techniques for selecting data, cleaning data,
and for mining knowledge from that data. Moreover, we have presented a number of consid-
erations regarding the specification of data mining queries and we have examined different
examples of such queries.

8



3 Method and Design

Retrieving and mining data from several large online forges is a complex task and full of prac-
tical problems and conceptual dilemmas [5]. It is important to notice that every architectural
and methodological solution comprises a number of decisions that influence the outcomes of
the analyses. This Section presents the method and decisions in our approach.

3.1 Method and Design Goals

OSSQuery’s primary task is to identify, filter, transform, store, and evaluate a large set of
comparable data. On the one hand, different forges provide data that is radically different both
in form and in content. On the other hand, only a diverse and large set of forges can provide
a large and statistically relevant dataset. Moreover, researchers and practitioners could use
the data and analyses OSSQuery produces to draw conclusions on OSS. The combination of
these premises leads to five major design goals.

1. Extensibility The system must be extensible to support the collection of projects of sev-
eral programming languages from different forges, versioning systems, and bug trackers.
Similarly, it must be extensible to facilitate and support different types of investigations
on the data.

2. Abstraction: Through a high level of abstraction, the system must integrate and convert
heterogeneous and raw data into an abstract and unified data model.

3. Reliability: The system must be functional and reliable to provide trustworthy outcomes.
High scalability and large data sets increase OSSQuery’s overall complexity. Such a
complex system must be designed in a modular way to isolate points of failure and to
not bias project data during the collection or analysis.

4. Efficiency and Performance: A data mining system must be performing to collect and
analyze a large and representative set of OSS data. Moreover, it must be efficient to
accomplish this task in reasonable time.

5. Usability: Since the output of OSSQuery is primarily used by researchers, a clear,
simple, and functional representation is necessary to provide unambiguous results.

These goals call for a highly modular, extensible, and multi-threaded architecture and for a
simple and functional front-end.

3.2 System Architecture

OSSQuery has a two-component architecture: The Data Collector (Section 4) identifies, re-
trieves, analyzes, cleans, and stores data from several forges. This component iteratively
takes snapshots of the forges and thus runs as a service, i.e. it is a daemon. The Data Miner
(Section 5) interprets a user query, retrieves related data from the database, and analyzes the
data according to the query. This component is request – driven, i.e. the user starts a mining
task by requesting a certain analysis. The database is iteratively updated and expanded, thus
it contains both historical and current data, and it grows indefinitely.
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Figure 2: Logical Representation of Information Flow among OSSQuery Modules

3.3 Data Collection

Designing a reliable and modular piece of software that builds a large data set of clean project
information is a complex task. What is, at first glance, a simple sequential process is not
feasible by indexing, downloading and analyzing data impetuously for a number of reasons.

1. The webpage of projects differs both in content and in form from forge to forge, thus
we need to implement support for each type of webpage.

2. The versioning system may differ in structure (centralized, distributed) or in granularity
(project versioning, file versioning). The most used systems are Subversion, CVS, Git,
and Mercurial.

3. The programming language differs from project to project. To analyze different lan-
guages and extract metrics, we need to interact with different tools.

4. The bug tracker varies from forge to forge, to perform exhaustive analysis on software
defects we thus require support for each tracker.

Hence, to be scalable and to analyze data from a diverse and large set of projects, we would
have an exponential complexity of data collection modules in our system. More precisely,
we needed to support and thus to create a new module for any possible combination of
characteristics listed above (3).

Sm = F0×F1× . . .×Fn (3)

Where Sm is the set of data collection modules, and F0 is the set of modules needed for one
specific feature (analogously for F1. . .Fn). Supporting a new characteristic, e.g. programming
language, leads to a linear growth, while adding a new supported feature, e.g. mailing list,
leads to an exponential growth in the number of modules. Such a design is neither modular
nor maintainable and thus unreliable, error prone, and not extensible.
Fortunately, there exists a fitting solution for this problem [32]. The Abstract Factory is an
architectural design pattern that allows “creating families of related objects without specify-
ing their concrete classes” (Gamma et. al, 2002). The idea is that an Abstract Factory can
chose and combine a set of concrete classes to create a general object/a family of objects,
analysis modules, in our case, that are defined through abstract interfaces.
In our case, an Abstract Factory can compose complete analysis modules according to the
general project information and its link. Through this pattern, we can easily assemble an
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ad–hoc module meeting the characteristics of a specific project by using its descriptive infor-
mation. The Abstract Factory pattern reduces our complexity significantly (4).

Sm = F0 ∪ F∪ . . .∪Fn (4)

Supporting a new feature, e.g. programming language, leads to a constant linear growth of
one module, and supporting a new artifact, e.g. mailing lists, leads to a constant linear growth
of |Fi| modules. Moreover, the points of failure are well isolated and identifiable, since there is
only one implementation, e.g. for analyzing Java code. Reducing the architectural complexity
increases maintainability, modularity, reliability, and extensibility and thus satisfies design
goals 1,2, and 3.

Figure 3: Abstract Factory Pattern in the Data Collector

The design of the Data Collector in OSSQuery is based on these considerations and makes
extensive use of the Abstract Factory. Figure 3 depicts the implementation of this pattern
in the Data Collection component, a complete class diagram is presented in Appendix A. Up
to this point, we have seen how an elegant design can support a variety of different features.
In the following, we will examine how to actually identify, retrieve, extract, clean, and store
project data.

Link Retrieval

To collect data on OSS projects it is necessary to locate, identify, and index project information
in the first place. Web spiders are systems which browse the World Wide Web and index web
pages in an automated manner. They are predominantly used to build a corpus of web pages
for search engines and commonly face problems of scale, efficiency, and of making too many
HTTP requests [9]. In the case of OSSQuery, we have a limited set of forges and thus a
limited set of different site-types to inspect. We can use this knowledge to restrict the set
of links that have to be inspected significantly. In information retrieval, we refer to the set
of links that have been found, but still need to be inspected as spider frontier. OSSQuery
addresses the problems of scale, efficiency, and numerous requests by adapting a basic web
crawling algorithm [9].
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Algorithm 1 CPL (Crawling for Project Links)

Input : interestingURLRegex , projectURLRegex , seedURL
1 . Put seedURL in to f r o n t i e r
2 . While ( f r o n t i e r not empty )

2 .1 take URL from f r o n t i e r
2 . 2 make http reque s t and f e t ch html code
2 .3 f o r ( each l i n k in html code )

2 . 3 . 1 i f ( l i n k matches interest ingURLRegex )
add l i n k to f r o n t i e r

2 . 3 . 2 i f ( l i n k matches projectURLRegex )
add l i n k to p ro j e c tL ink s

3 . r e turn p ro j e c tL ink s

CPL (Algorithm 1) takes two regular expressions, which (1) match links that potentially
lead to project links and (2) match project links, as input. Since all major forges use a
standard URL naming convention and there is a very limited set of large forges, it is easy to
manually define the regular expressions. CPL uses two data structures, the frontier queue,
which contains interesting links to be inspected and the projectLinks list, which contains the
project URLs and is the return value. Both queues do not allow duplicates to avoid redundant
spidering. In OSSQuery, the frontier uses a FIFO prioritizations which, with respect to a LIFO
or more advanced URL ordering algorithms [17], guarantees a simple implementation and a
reliable coverage of all indexed pages [26].

Project Data Retrieval

Once the URLs of the OSS projects have been collected, OSSQuery identifies, filters, and
downloads project information to build the data set. To answer a broad range of research
questions, we need the following information:

• Descriptive Information such as project name, description, labels, programming lan-
guage, and activity.

• Collaborator Information such as id, alternative id, email address, or name to identify
the collaborator on other projects/forges.

• The link to the Versioning System for the analysis of the source code and the commit
history.

• The link to the current release for the analysis on the byte code.

• The link to a working bug tracker for the analysis of bugs and bug reporting.

There are different ways to retrieve this information from a forge. OSSQuery, depending on
their availability, uses one or a combination of the following methods.

• Web services: major forges usually provide an XML/RSS interface to access project
information. Web services, with respect to other methods, are commonly reliable and
stable, i.e. robust towards change. However, they are not always present and complete
(e.g. they might not provide bug information).

• HTML parsing: accessing project information by parsing the presentational web inter-
face of a project commonly provides all available information on a project, and is always
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available. This interface is may change over time, though. Such a variation may lead a
parser to misbehave or even fail.

• Java-API: is a usually a reliable, simple, and stable interface to the project database
of forges. Unfortunately, such an API is rarely available and provided only for some
specific information (e.g. for bug information only).

An alternative to collecting OSS information via spidering is asking a forge for its database
dumps, thus having direct access to data. Although this method is easier in practice, it involves
a number of methodological problems. First, dumps containing OSS project information are
rarely available since they are the central value of such forges and their distribution involves
additional costs. Second, they are static snapshots of the database and do not allow efficient
updating. Repositories face a growing number of requests for access to their databases, as a
consequence they reject deny or provide access to accredited academics only. This leads to
non-comparable and non-transparent research.
Once the necessary information has been retrieved, a first cleaning phase is necessary. Metrics
obtainable by source and byte code, collaborator information, and versioning information are
crucial for answering interesting research questions. Projects which fail to provide any of this
information, must be filtered to maintain a consistent dataset.

Project Data Analysis

OSSQuery is not limited to the retrieval of general project information and code, but actively
analyzes the versioning system, the source code, the byte code, and the bug tracker. While
versioning systems and bug trackers provide an apposite API in many cases [27] [28], the
analysis of source code or byte code requires the integration of external tools to get comparable
results. Since it is known that different tools provide different results [29], it is important to
select accredited and popular tools to produce reliable and comparable results. Section 4.1
presents further considerations on the choice of APIs and tools for the analysis of versioning
systems, bug trackers, and code

Data Storage and Updates

All OSS project information and metrics within OSSQuery are stored in the Unified Project
Data Model (Figure 4). This data model must accommodate general project information,
collaborator information, code and versioning analysis outcomes, and bug information. More-
over, it must be abstract, i.e. project and forge independent, fit the data models proposed
by the forges, and include historical and current project information. We want to accumulate
data over time to be able to not only analyze the current state of projects, but also their
history and development. For that purpose, the Data Collector fetches project information
periodically. To minimize HTTP requests and resource consumption, previous literature [11]
proposes to use clustering algorithms to guess the change frequency of a certain web page.
Such an approach might be adapted for predict changes in project, but it would require a
significant training set and is beyond the scope of this work. The web spiders thus follow a
simple strategy: a project is updated if it was not updated for a certain time span (e.g. 2
weeks). The update consists of retrieving the general project information and re-analyzing
artifacts only if they haven’t been analyzed before.
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Figure 4: Unified Project Data Model

3.4 Data Mining

The idea behind OSSQuery is to allow researchers to perform a wide range of mining tasks
based on a large and representative sample of OSS attributes automatically. The design of
the Data Mining component provides the same level of extensibility as the Data Collector by
using the concept of Abstract Factory to allow different types of analysis on the collected data.
Moreover, it is necessary to fit this architecture to a standard, abstract process of analysis.

Figure 5: Data Mining Process
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Figure 5 depicts an abstract process that follows the five principles to design a data mining
query language (Section 2.2) [21] in five steps:

1. The user defines and launches the Data Mining task. Such tasks commonly contain gen-
eral software attributes, as quality or size, thus it is necessary to define these attributes
we want to analyze. In OSSQuery, attributes are organized on multilevel concept hier-
archies [21]. This way, we can map high-level software attributes to low-level project
information and thus handle the requests with a certain precision. These taxonomies
have a strong impact on the outcomes of the analysis, and should therefore be trans-
parent to the user.

2. Upon a request, the system automatically generates and launches queries to retrieve all
task relevant information from the database.

3. The system analyzes the data set on the statistical distribution of each attribute. The
corresponding results are presented to the user.

4. The user can refine the data set to focus on specific projects as well as consider different
data sets for a certain investigation. Subsequently, he may either proceed to the results
of the mining task, or re-check the new distribution of the data set. The user can carry
out this step of refinement for an indefinite number of times.

5. Finally, the system performs the data mining/analysis through different statistical tools
presented in Chapter 2 on the refined data set. The results are presented to the user.

The diverse data set and the extensible architecture of the Data miner allow a variety of
analyses. Since the realization of different types of mining tasks is beyond the scope of this
work though, we focus on one type of analysis as a proof of concept and provide an extensible
architecture for future work (Section 6). Research in OSS is particularly interested in depen-
dencies among software attributes; consequently, we decided to focus on cause-effect relations.
Such relations describe a connection between two facts, where one fact is the consequence of
the other fact.
Notably the software measure are approximately normally distributed around an ideal value,
thus we decided to use Pearson’s correlation to measure dependence. As a measure of support
for the correlation, we give the p-value for the null-hypothesis H0 “The two variables are zero
correlated”, thus a low p-value signals a high reliability on the fact that a correlation truly
exists. Pearson’s correlation is a measure for the dependence and thus the relation between
attributes, but gives no information on how the attributes are related. For this purpose, we
perform a regression analysis. A proper mathematical relation defines a cause–effect relation.
Software metrics exists on various levels of granularity, e.g. there exist project level, class
level, and method level metrics. Blindly comparing metrics of different granularity leads to
inconsistent results. It is possible to compare the metrics values on the same level by calculat-
ing the mean value. This is prone to biased for two reasons, though. First, the mean value is
often not representative since it reduces the variance a distribution has. The deviation from
the mean and subtle trends that could be significant are neglected. Second, the operation of
calculating the mean is not additive in general, thus giving misleading results when used for
further computations (such as correlation or regression).
In case two or more metrics have different granularity, OSSQuery implements the following
mehod. First, we calculate minimum, maximum, and average value of the class-level data by
project. Second, we cluster both attributes into three major clusters (small, medium, and
large numbers). Finally, we give a percentage for the correspondence between the clusters at
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project level and at class level.

loc\cbo small medium large
small 85% 13% 2%

medium 90% 9% 1%
large 97% 3% 0%

Table 1: Cluster Analysis on LOC and CBO metrics

Table 1, for example, gives rough information on how the LOC (Lines Of Code) metric relates
to the CBO (Coupling Between Objects). Notably, larger projects tend to have a lower CBO

value and therefore a modular, less complex, and less faulty structure. Considering all the
values on the table, a researcher in OSS can easily get a rough image of how the CBO metric
behaves for projects with of different sizes.
In this Chapter, we have presented how structural patterns can facilitate an extensible design.
We also propose a number of methods to address the challenges of both collecting and analyz-
ing a large set of project information. In the following Chapters we will validate our approach
through different tests. Moreover, to assess our overall method and thus the reliability of our
results, we have chosen four OSS research questions on cause-effect relations from literature
(Section 2.3). Comparison of our results to previous research on the same questions can give
us clues on whether our methodology is sound.
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4 Data Collection, Realization

While Chapter 3 introduces the design and method of our approach, this Chapter presents
the realization of the Data Collection component. In particular, we will focus on the imple-
mentation, major practical problems, solutions, and specific results of the data collection in
OSSQuery.

4.1 Implementation

Open Source Software is scattered around a large number of forges, in different programming
languages, using different versioning systems and different bug trackers. We aim to collect a
large and representative set focusing on projects with certain characteristics. In this Section,
we first state which types of projects OSSQuery currently supports, and subsequently give
implementation details.
Fortunately, most of the projects share a small number of common properties. Therefore, it
is possible to analyze a large set of projects supporting a limited set of characteristics. We
have focused on the projects with the following properties.

Forges

Most of the OSS projects reside on the most popular project hosting sites [4], such as Source-
Forge, GitHub, GoogleCode, Launchpad, CodePlex, or GNU Savannah. Unfortunately it is
also true that some well-known and much-studied Apache and Linux projects prefer to use
their own repositories. We decided to retrieve our projects from SourceForge (300,000 projects
1) and GoogleCode (>250,000 projects 2), because they offer a wide range of information on
a huge number of projects. GitHub is not relevant for our purpose since it provides no byte
code releases and it exclusively features Git as versioning system.

Programming Languages

Different pragmatic approaches for measuring the popularity of programming languages [38]
[39] agree on the fact that Java, C, and C++ are prevalently used in OSS (disregarding
languages such as RegEx, HTML, and XML). For the selection of the supported programming
languages, we also considered the availability of reliable metrics. Chidamber and Kemerer
(1994) propose a metrics suite [8] that gives an extensive and precise analysis of object-
oriented code [37]. For the popularity and the availability of adequate metrics, we focus on
Java (approx. 18% of OSS projects) and C++ (approx. 10% of OSS projects) .

Versioning Systems

Large-scale investigation [39] shows that 58 % of OSS projects use Subversion as Versioning
Control System. The remaining part predominantly uses GitRepository (25%) or CVS (13%).
Considering these numbers and the availability of APIs to the repositories, we have chosen to
focus on projects using Subversion.

Bug Trackers

We have decided to use the bug trackers provided by the forges, i.e. Sourceforge and Google
Code. Although there exist a number of large, independent bug trackers, we noticed that
people tend to report bugs where they downloaded the software.

1www.sourceforge.net
2http://googleblog.blogspot.com/2009/12/meaning-of-open.html
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Further Limitatons

Since we want to gather a consistent and reliable set of project information, we decided to
exclude small, incomplete, or not measurable projects. Therefore, we apply the following
thresholds.

1. The project must provide a release with at least 10 compiled modules.

2. The project must provide source code with at least 10 modules.

3. The project must have at least 10 commits in the last year.

4. We collect the bugs of a project only if there exist more than 10 reported bugs.

5. The project must have at least one active collaborator.

These criteria were theoretically chosen to match projects with consistent information, while
still allowing a quantitative analysis on a large and diverse data set. Moreover, the modular
and extensible design of the Data Collector permits an easy extension of the supported features
(Section 6.3). A modular, extensible, and reliable architecture must be implemented with an

adequate programming language. The Data Collector of OSSQuery is entirely written in
the Java programming language (v. 1.6), whose strengths are modularity for extensible and
reusable code, a large standard library, and the availability of many third-party libraries.
Collecting, storing and analyzing OSS requires interaction with the WWW, the local file
system, a database, and with external software. In the following, we present external tools
and libraries we integrated to gather and store project information.

Tools for Code Analysis

To collect a set of correct and comparable code metrics, it is necessary to use reliable and
popular tools [34]. While there exist many tools that collect exclusively simple metrics, such
as LOC (Lines Of Code) or NOM (Number Of Modules), software for a more advanced
analysis of code is scarce [33]. We pointed out free academic tools that are commonly used to
calculate the CK metrics [8]. The first, CKJM [30], analyzes Java byte-code and is integrated
as a library. The second, CCCC [31], analyzes C++ source code, but is written in C and
offers no interface to Java. Thus, OSSQuery executes CCCC as an external process, parsing
the results in XML format. To analyze simple code metrics such as LOC or NOM, we adapt
JLOC [42], an implementable and reliable tool that analyzes both C++ and Java source code.

Database

OSSQuery gathers a large data set of projects and stores a considerable set of information
for each project (Chapter 6). Moreover, to perform exhaustive analysis, we must query the
data continuously. Thus, a reliable and fast database management system (DBMS) is crucial
to our task. We chose PostgreSQL because of its speed (especially in recent versions), its
robustness, and its ACID compliance. To interact with the DBMS, we use JDBC, a popular
API that provides methods to launch queries directly from Java.

Additional Libraries

Java provides a Standard Library of remarkable size, which supports many features of OS-
SQuery. In particular, all HTTP requests and file system operations are implemented using
standard libraries (Java Net and Java IO). For other, more specific needs, it was necessary to
use external libraries. Since we need both the changelog and the source code of a project, it
is necessary to have an API for the versioning system, i.e. Subversion. SVNKit [27] provides
an exhaustive and reliable interface to Subversion. To analyze code it is necessary to extract
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code from a number of archives, we use the TAR and JAR Java libraries to support zip, g-
and bzip(1 and 2), tar, and jar archives. Moreover, CKJM [30] requires different modules of
the BCEL library. Finally, to download project information from online forges (Section 3.3),
we use the Google Data API 1 for bug information and the XML–DOAP [44] API for project
information from SourceForge.
We developed and tested the Data Collector component under Mac OS X and Ubuntu 10.04
LTS.

4.2 Practical Problems and Solutions

Developing a large-scale, extensible tool for data collection is fraught with a number of spikes
and pitfalls [5]. This Section reports major practical problems encountered during the devel-
opment of the Data Collector. Moreover, we present possible solutions by showing how we
address these problems in OSSQuery.
Efficiency

Web Spidering as such is a resource and time consuming task [9], mining for project infor-
mation is even more expensive, though. In spite of the cost of parsing web pages, the Data
Collector must download byte- and source-code, and inspect bug tracker and versioning sys-
tem without making too many HTTP requests. To address this problem, the data Collector
uses multiple threads which concurrently process several projects. Differing project size makes
the threads asynchronous, thus facilitating an uninterrupted employment of critical resources.
In our case, the major bottleneck is limited bandwidth for downloading project data. A large
amount of threads (e.g. 20) make this approach even more effective. To decrease the num-
ber of subsequent HTTP requests and to exploit the full download bandwidth, the threads
alternate projects from different forges. Moreover, each page is requested once only, i.e. all
relevant data is immediately extracted and stored. Outcomes and results related to efficiency
in OSSQuery are presented in Section 4.3.
Identification of Project Release

Many forges do not exclusively provide the current release of a project on the web site. Beside
the release, they provide documentation, screenshots, executable files, or older releases which
we are not interested in at this point. There commonly exists no tag or flag indicating the
current project release. The web site provides the name, description, keywords, date, and
size of the file, though. While such identification is generally easy for a human, we found
no general, implementable pattern to detect the correct file. Thus, we define a pattern,
combining different characteristics commonly observed in the release files we are looking for.
More precisely, we associate a weight to each characteristic and thus rank the files. The file
with the highest ranking is expected to be the archive containing the current release of the
project under analysis. If that should not be the case, the file ranked second will be chosen.
We compute the rank of the link as follows:

• Increase of 4 points if the keywords of the link contain “featured”, decrease of 4 points
if the keywords of the link contain “deprecated”

• Increase of 3 points if the filename contains the project name

• Increase of 2 points if the filename or the description contains one of the following
keywords: “bin”, “release”, “dist”, “built”, decrease of 2 points if the filename or the
description contains one of the following keywords: “doc”,”pdf”,”html”,”screen”

• Increase of 1 point if the filename or the description contains one of the following key-
words: “stable”, “unix”, “linux”
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• Assign up to 6 points for the relative file size and 6 points for the relative number of
downloads (relative to other files in the list); large and more frequently downloaded files
usually contain the byte code.

• Assign up to 4 points for the relative age of the file, older files are usually deprecated

To obtain this ranking policy, we iteratively set and tested different weights for a certain
characteristic, while keeping other weights constant. This process was repeated until a satis-
factory percentage of correct matches on a random test was met. Although the combination
of optimal weights is not necessarily the overall best weighting policy, our approach provided
positive results. The algorithm was tested on a sample size of 50 randomly selected projects
providing a release. A manual inspection of the files/archives chosen by our algorithm re-
vealed that 98% (i.e. 49) of the files actually contained the current release of the byte code,
no file contained a former release of the project, and 1 file didn’t contain a release at all. In
this case, we ignore the project.

Matching and Identifying Users

Many forges identify the collaborators of a project in different ways throughout their facili-
ties. Both in SourceForge and in Google Code, the ID given to a certain collaborator in the
bug tracker does usually not coincide with the ID of the same collaborator in the versioning
system or on the project website, e.g. Table 2.

Forge ID on Web-Site ID on Bug-Tracker ID on VCS

Google Code @UBBUSldZBBVFXgR7FQ%3D%3D ma. . . @gmail.com manuel.piubelli@gmail.com
SourceForge mpiubelli89 Manuel Piubelli manuel.piubelli@gmail.com

Table 2: User Identification on SourceForge and Google Code

Fortunately, each registered user has a dedicated webpage which matches user_id and bu-
gowner ID with an abbreviated version of the email address. To match the abbreviated version
to a complete version of an email address, we first match the domain of the address. Then
we check whether the local part of the abbreviated email address (e.g. “ma”) is a substring
of the local part of complete email address (e.g. “manuel.piubelli”). Finally, if more than one
abbreviated address remains, we assign a rank to the abbreviated email address according
to the length of the local part (such that “ma” is preferred to “m”). This algorithm has a
computational complexity of O(n) = n

2
2 and was tested on 90 collaborators of three different

projects. Manual verification resulted that the algorithm worked in 100% of the test cases
(i.e. on all 90 collaborators).

Parsing HTML Code

To gather consistent and reliable data, and to remain operational also in the future, we prefer
to use APIs instead of parsing web-interfaces. Some information, however, is provided on
HTML sites only, making scripted parsing the only solution. Large forges commonly generate
their websites from templates which give them a rather consistent structure suitable for parsing
[5]. A limited domain of forges makes precise knowledge of these templates possible and thus
allows a purpose-specific parser to be more suitable than general solutions [35]. To identify
important information, our parser relies on regular expressions matching basic, structural
tags of the templates. Since the templates assure a clear-cut division between content and
presentation, this strategy is robust against likely modifications of the website. Thus, a major
restructuring of the SourceForge interface in April 2011 did not affect our parsing activity in
any way.
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Besides these major problems, we have encountered a number of minor spikes which we will
not treat in detail. Some of these are file management, support of different (nested) archives,
efficient memory handling, and efficient query launching.

4.3 Results and Remarks

In this Chapter, we will present Data Collection – specific results, the general outcomes of
the OSSQuery project will be presented in Chapter 6. These results predominantly describe
the population of projects and thus the forges that we inspect. Moreover, we will present
a few general remarks on collecting data from forges that might be of interest for further
research, e.g. [36]. We developed an extensible, reliable, and efficient Data Collector following
the method presented in Section 3 with the limitations of Section 4.1. The Data Collector
collected a large dataset indexing a significant proportion of publicly available open source
software. Hence, we registered the following distribution of projects.

Figure 6: OSS Distribution over 100,000 Projects

This statistic considers 100,000 projects that were analyzed and filtered by OSSQuery in June
2011. Such an amount of projects is remarkable, since similar research [22] has indexed 60,000
projects, while FLOSSMole [4], a EU funded project running since 2006 indexes 500,000
projects. Notably, only 2% of the collected projects satisfy our threshold. This value is
relatively high with respect to findings of other measurements, though:

• Other census [38] [39] claim that the percentage of Java and C++ projects amounts to
approximately 28%. We notice, that in our statistic 34% of projects are either written
in Java or in C++

• We agree with other research [5] [36] on the fact that the majority of projects are
incomplete, small, incomplete, or abandoned projects. Thus, we consider only 9% of
projects that use Subversion and are written in Java or C++, which amounts to 2% of
all indexed projects.

• According to other census [39] 58% of all projects are versioned on Subversion, our
statistics claims 92%. This discrepancy heavily depends on the fact that we do not
consider GitHub, a forge which provides exclusively GitRepository. Thus, our statistic
refers to project from SourceForge and Google Code only. Moreover, versioning sys-
tems are not mutually exclusive, i.e. one project may be versioned on more than one
versioning system.
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Thus, the above shows that only few projects are complete in terms of code, versioning and
bugs, while most of them are too abandoned, small, or provide inconsistent data.
In addition to population statistics, we logged the time the Data Collector would take to
analyze a project both to assess the efficiency of our tool and to get a rough picture of
the project size. The average time of a complete analysis with a download bandwidth of
approximately 2Mbps is 124s. The Data Collector takes, on average, 0.4s to identify a project
on a forge, 109s to download all necessary data, 15s to analyze and extract information from
this data, and 1.4s to store the data (approx. 1,000 tuples per project) on the database. If
we include all currently indexed projects, the average time to process a project amounts to
4.2s per project. More information to this statistic is given in Appendix B.
Finally, we share some practical remarks regarding the automation of collecting data from
online forges.

1. Java APIs suitable for data collection are rarely available and commonly unmaintained.
Both XML and Java APIs must be integrated with HTML parsing since they do not
provide all the data which is provided by the presentational interface.

2. A FIFO queue in the spidering deamon leads to a breadth first traversal of a forge
(Section 3.3) and thus, if starting from the homepage of the forge, most relevant and
featured projects are detected first. Appendix B shows the distribution of complete and
analyzed projects with respect to the number of projects analyzed.

3. It is broadly believed that both SourceForge and Google Code implement defenses to
prevent spidering [5]. Alternating requests according to forges, specifying a User-Agent
header in the requests and implementing a delay in the crawling algorithm may avoid
banning. We were never banned from any forge to date.

4. We have noticed that bugs are commonly tracked all in one place, i.e. bug reports of one
project are commonly not scattered over different trackers. Approximately 53% of the
complete, and stored project provide bug tracking on the forge where they are hosted.

This Section presented the implementation, problems, and results of collecting data from
online forges. We have shown that this task involves a number of practical problems and
decisions. Moreover, while analyzing the sample of indexed projects we noticed that only a
small proportion of OSS projects provide consistent and complete data. General outcomes
and results of the OSSQuery project are presented in Chapter 6.
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5 Data Mining, Realization

This Chapter presents the realization of the Data Mining component according to the method
and design in Chapter 3. In particular, we will focus on the implementation, major practical
problems, solutions, results, and give some remarks regarding the realization of the Data
Miner in OSSQuery. General project results and outcomes are presented in Chapter 6.

5.1 Implementation

This Section provides a technical insight into the Data Miner of OSSQuery by presenting
the implementation details, tools and techniques we use to complete the five-step process of
Data Mining presented in Chapter 3 (Figure 5). The extensive data set and the extensible
architecture of the Data Miner permit the implementation of a number of different analysis
and mining tasks. As a proof-of-concept, we focus on the investigation of cause–effect relations
in OSS, thus we implemented correlation, regression, and clustering analyses on different types
of software attributes.
To define a number of abstract and general software attributes which can be queried, we
use concept hierarchies [20]. Concept hierarchies are multilevel taxonomies that map abstract
concepts to concrete information, in our case software attributes to the collected OSS data. We
can thus encode domain specific knowledge (Section 2.3) such as the composition of abstract
attributes into a concise formalism. To remain extensible and modular, we define concept
hierarchies in an xml file. Hence, we can easily add and therefore support new attributes by
modifying the corresponding file.

Figure 7: Concept Hierarchy for Size

Figure 7 depicts a simple concept hierarchy defining the attribute of Size in OSS projects,
other hierarchies are presented in Appendix C. Although each of these hierarchies defines
a different concept, a “ leaf ” node may appear more than once in different hierarchies. For
example, Number of Collaborators appears in both the concept of Size and of Community

Isolation. Besides defining software attributes, these hierarchies link the concrete software
metrics, i.e. their “ leaves”, to a query which retrieves that metric from the database, such as
the following.

SELECT project_id, count(distinct collaborator_id) AS NumberOfCollaborators FROM Pro-

jectCollaborator GROUP BY project_id;

OSSQuery can thus identify task relevant data by expanding all the respective concept hier-
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archies. Moreover, using the queries, the system is able to retrieve the identified information
from the database as we will show in the following Section.

The second, computational part of the data mining process involves three major steps:

1. The Data Miner analyzes the collected data regarding their distribution and presents a
histogram, the mean value, standard deviation, minimum, and maximum value to the
user.

2. The user can then refine the data set, remove outliers, and refresh the distribution
analysis until he/she is satisfied with the data and decides to submit the refinement.

3. The Data Miner performs either correlation and regression, in case the concepts are of
the same granularity, or clustering analysis in case they have different granularity. In
either case, we compare each property, i.e. leaf node of the concept hierarchy, of the
first attribute with each property of the second attribute. The results are presented
both in graphical and textual form.

In the following, we will analyze these steps in more detail, it is important to notice though,
that this process refers to the current state of implementation and can be extended to a va-
riety of other types of analyses by simply adding or altering an analysis module (class). For
example, we could support nonlinear regression by adding a class that defines the respective
R Code.
First of all, we must prepare the data for different kinds of analyses. For step 1, i.e. the
distribution analysis, data is simply arranged into unordered vectors. For step 3, instead,
we create property pairs, i.e. pairs of ordered vectors containing the values of two measures
(one of the first attribute and one of the second attribute) for all projects of the dataset.
Such vector pairs are needed to analyze the relation between two properties, i.e. to calculate
correlation and regression.
Although the computations, such as correlation and regression may also be directly imple-
mented in Java, we decided to delegate this task to an external tool, hence keeping the system
modular and extensible to other types of analyses. R [45] is a programming language that
offers a complete software environment for statistical computing. A valid, but more special-
ized alternative to R is WEKA [46]. We have chosen R because of its concise syntax and the
availability of a large set of packages and features. Hence, the R scripts we wrote to perform
distribution, regression, correlation, and clustering analysis are simple and concise. Finally,
the results are presented to the user.
The layer diagram of Figure 8 presents the technologies in the various layers of the Data
Mining component in OSSQuery. To interact with the user, we created a presentational web
interface using Java Server Pages (JSP) and Java Servlets. The business logic of the Data
Miner application is written in Java, with exception of the analysis scripts (R) and the concept
hierarchies (XML). We host the complete application with interface and business logic on an
Ubuntu 10.04 LTS webserver kindly provided by the Free University of Bolzano.
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Figure 8: Data Miner Layers

5.2 Practical Problems and Solutions

Analyzing large data sets in quasi-real-time is full of practical problems. In this Section we
present major problems and possible solutions to the problems for the execution of user-issued
mining tasks.

Efficiency

As in collecting data, efficiency is a crucial problem in performing large-scale data mining.
On the one side, the Data Miner is affected by high resource consumption due to complex
computations. On the other side, users perform analyses in real-time, i.e. they launch a
query and expect an immediate result, thus the Data Miner must have a low response time.
These two premises force a data mining system to be efficient in retrieving, arranging, and
analyzing data. To optimize data retrieval, we first need to join data of different software
properties, i.e. associate and order them with respect to the project they belong to. It is
definitely more efficient if such an expensive task is performed by an optimized DBMS using
indices rather then by a custom implementation. Hence, we combine the queries from the
concept hierarchies into one single query, thereby optimizing the joins and avoiding duplicate,
redundant retrieval of some metrics. We will treat the problem of generating such a query
in the following paragraph. Once the Data Miner retrieved the data from the database, we
create property pairs (Section 5.1) and launch the analysis scripts in R. Refining the dataset
is the only task we perform in Java. The cost of this task is linear proportional to the number
of projects in the worst case (O(n)). Thus, except for the data refinement, all expensive
operations are performed by specialized and optimized tools, i.e. PostgreSQL and R.

Query Generation

To retrieve and arrange data efficiently, we decided to generate large queries from the queries
defined in the concept hierarchies (Section 5.1) automatically. Thus, we avoid the cost of
joining the results of each single query in Java, and delegate this operation to the optimized
DBMS. Since pre-defined queries may contain more internal “JOIN” operators in the “FROM”
clause, or aggregate functions in the “SELECT” clause, such an automatic generation is
not trivial. In OSSQuery, we combine the subqueries clause–by–clause, i.e. we merge all
“SELECT” clauses, all “FROM” clauses, all “WHERE” clauses, etc. This approach requires
an automatic labeling of all “FROM” and a relabeling of the rows in the “SELECT” clause to
avoid ambiguities. Finally, we join and group the “FROM” clauses with respect to the project
ID.
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Interaction with R

There exist several interfaces from Java to R, the most commonly used is JRI [47], which
provides an extensive low level Java API to R. For the scripts we are currently using, a more
restrictive but simpler approach is more convenient. RCaller [43] provides a way to launch
R scripts (in string format) directly from Java code, and it transforms result–objects (e.g.
vectors of double values) from R into Java.

Besides the problems presented in this Section, we faced a number of issues in developing the
Data Miner which will not be treated in detail. Some of these are representing multiple types
of analyses and plots clearly, allowing an efficient, iterative refinement of the data set, and
providing an understandable user interaction.

5.3 Results

This Section presents results regarding the realization of the Data Miner, more general out-
comes, such as actual mining task results are given in Section 6. Moreover, we assess the
solutions we proposed in Section 5.2 by giving measurements and test results.
We designed and developed an extensible, efficient, and usable Data Miner as presented pre-
viously. The application is currently active on a web-server of the Free University of Bolzano
and features a web-interface to launch data mining tasks (Appendix D).
Our major concern is efficiency both in querying the database and in analyzing data. To
test our efficiency, we register the time of querying data, of analyzing data, and of loading
the result page. We perform tests with a connection bandwidth of 1Mbps, and we clean the
caches before each test to not affect the outcomes. The following results represent the average
response time for a mining task that involves 600 projects and approximately 4 mln tuples.

Figure 9: Data Set Refinement Time Figure 10: Data Analysis Time

Figure 9 refers to the time to assess the distribution and to present the data refinement site,
whereas Figure 10 depicts the time needed to perform the investigation and to present the
results. Querying refers to the time taken to launch a query from Java, to retrieve the data
from the database, and to get the result-set in Java. Analysis refers to the computations
performed in R, Data Processing refers to the time taken for all processing performed in
Java, including the generation of queries and the data arrangement. Page Loading, instead,
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is the time the results-page is loaded and thus includes the transferal of textual and graphical
data, and depends on the loading time of the browser. Considering the low bandwidth, the
amount of tuples to be queried, the computational complexity of the performed analyses,
a response time of 18.60s and 14.22s for refining the data set and completing the analysis,
respectively, seems reasonable. Other projects featuring large-scale data analyses, hosted on
much faster systems [39] have response times of five to six seconds. We will present the
outcomes of distribution analyses, data mining tasks, and the queries we described in Section
2.3 in Chapter 6.
This Section presented the implementation, problems, and results of realizing an efficient
and functional Data Mining module to perform analyses on project information. We have
explained our approach to solve major practical problems. Finally, we have presented the
resulting Data Miner application and assessed its efficiency.
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6 Discussion

In this Chapter, we will discuss the outcomes of the OSSQuery project. We first present the
limitations of the project to define the scope of our work, then we give major results regarding
the data set and the data analysis. Finally, since OSSQuery is a very broad and extensible
project, we outline directions for further research beyond what was possible in the timeframe
of this thesis.

6.1 Limitations

This Section delineates the scope of our work by defining which functionalities we developed
and which problems we solved in the current state of OSSQuery. Ideas and suggestions
for future research are presented in Section 6.3. In spite of addressing a broad range of
projects through a careful selection of which features, i.e. programming languages, versioning
systems, bug tracking systems, and forges to support, there are still many projects that our
Data Collector does not index. In particular, we are currently limited to publicly available
projects that are

• written in Java and C++ programming languages

• hosted on SourceFroge and Google Code forges

• versioned on Subversion versioning system

• using either SourceForge and Google Code bug tracker

Moreover, we limit ourselves to the collection of explicitly available information (descriptive
information, logs, bug tracking, etc.) and do not aim to include other, implicit information
such as communications over mailing lists, forums, or feature requests in our analyses. Nev-
ertheless, we were able to retrieve and store a good percentage of the available data, thus
building a diverse and representative data set. Neither do we intend to perform more ad-
vanced analysis on the reliability of software, e.g. testing the software to measure Mean Time
To Failure. Notably, such analyses are difficult to automate and introduce a new dimension
of variables that can influence the outcomes (such as the context in which software is tested).
The collected data offers a remarkable range of possible analyses. In our current work, we
investigate cause–effect relations as a proof of concept. Accordingly, we focused on correlation
and linear regression for attributes of the same granularity, and cluster values for attributes
of different granularity. Both types of analysis can indicate a strong dependence and thus
a potential cause-effect relation between attributes. Notably, linear regression is not always
the best measure, additional support of polynomial or exponential regression would enhance
the analysis (Section 6.3). Finally, it is not yet possible to define a more complex, concise, or
restrictive data mining task, e.g. to specify which kind of projects should be considered and
which type of analysis should be performed.
This Section presented the major limitations to define the scope of our work and thus to better
explain and support the results (Section 6.2) and future work (Section 6.3) of the OSSQuery
project.

6.2 Results

The general aim of this work is to automatize the OSS research process of data collection
and data investigation to allow studies on a data set representative for the population of OSS
projects on the Internet. In this Section, we present results and outcomes of our solution. In
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particular, we will first discuss the data set we accumulate, then we compare the results of
OSSQuery to results of other, manual investigations on four research questions explained in
Chapter 2. Finally, we discuss and interpret the results.
To perform analysis on a significant and representative set of information on OSS projects,
we have arbitrarily chosen to take a database snapshot after indexing 100,000 and collecting
2,076 projects from SourceForge and Google Code to answer our research questions. The data
collection has been running since and as of 05/07/11 we have collected information on more
than 2,500 projects while indexing over 143,000 projects. In the following, we briefly analyze
the data set we consider for the research questions. Agreeing with other sources [39], we found
that Java projects outweigh C++ projects on the considered OSS forges (Figure 11).

Figure 11: Distribution wrt Language Figure 12: Distribution wrt Forge

We have also found that, indexing the same number of projects from both forges, we could
collect more projects from SourceForge than from Google Code (Figure 12). The cause for this
observation might be a different distribution of programming languages, versioning systems,
but also a different percentage of clean and consistent projects.

Figure 13: CBO Historgram Figure 14: LOC Histogram
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The distribution of size–related metrics is strongly skewed to the right (Figure 14), while
quality–related metrics as the CK metrics suite [8] commonly follow a normal distribution
around their ideal value, e.g. the Coupling Between Objects (CBO) metric (Figure 13). The
distribution of some CK metrics, as Depth of Inheritance Tree (DIT ) and Weighted Methods

per Class (WMC ) show a significant amount of outlier projects in the data set, though. From
the DIT distribution in Figure 15, we hypothesize that many projects do not use inheritance,
which leads to higher structural and computational complexity of the code. The distribution
of the WMC metric (Figure 16) reflects this effect: a consistent amount of projects has an
average WMC value exceeding 10.

Figure 15: DIT Historgram Figure 16: WMC Histogram

Using the data set of 2,076 projects described in the above, we will now discuss the results
to four well studied research queries we explained in Chapter 2 and, where possible, compare
these to results of previous, related research. To remain neutral and present representative
results, we have not refined the data while performing the following analyses.

Q1. Do non-isolated communities produce quality code?

To investigate this research question, we analyze the relation between community isolation
and code quality. We consider the number of collaborators, and the number of links, i.e. the
weighted number of shared collaborators, to other projects as measure of isolation. Thus,
a collaborator contributing in two further projects represents two links. For code quality,
instead, we examine the CK metrics suite [8] and the bug density. Since the CK metrics
(Section 2) are defined on class level, we perform a clustering analysis on relations involving
such metrics, whereas we perform a correlation and regression analysis on relations involving
bug density. While the CK metrics suite correlates the structural quality of software, bug
density is a valid measure for reliability of software. The outcomes of the analyses on different
relations between properties of isolation and properties of quality coincide and indicate a slight
negative correlation. For example, the relation between the number of shared collaborators
and the bug density shows a negative correlation of -0.08, and, correspondingly a negatively
sloped regression line (Figure 17).
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Figure 17: Correlation between Shared-

Collaborators and BugDensity

Figure 18: Clustering on SharedCollabora-

tors and WMC

The clustering analyses agree on the fact that highly connected communities produce quality
code. The relation between shared collaborators and Weighted Methods per Class (WMC) in
Figure 18, for instance, shows that while isolated communities produce code with a variable
WMC value, interconnected communities produce less complex code (0% of projects with
non-isolated communities have a high WMC). This numbers indicate that isolated projects
produce slightly more complex and thus less maintainable code. In conclusion, we agree with
previous research which claims that non-isolated communities tend to produce quality code
[6]. The current data set, however, does not permit the rejection or the acceptance of the
hypothesis that there exists no correlation between isolation and quality.

Q2. To what extend does isolation within communities affect code activity?

Previous literature [6] claims that the developer community and especially the collaboration
with other communities influence the activity of a project. We considered churn, commit,
and code-rate as measures for activity and the weighted number of shared collaborators as
measure for community isolation. The churn rate measures the average change in the code
between two commits, the commit rate indicates the frequency of commits, and the code rate
measures the growth rate of the code. While the commit rate is positively correlated with
the number of shared collaborators, the churn rate, which is a strong indicator for software
evolution, is negatively correlated with isolation (Figure 19). This trend indicates a more
stable, controlled use of the versioning system by non-isolated communities and may be the
effect of a more organized and systematic development process. However, we cannot make
any inference on the true correlation at any reasonable confidence level due to a too high
p-value.
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Figure 19: Correlation between SharedCollaborators and ChurnRate

Q3. Does size affect code quality?

According to Lehman’s Laws of Software Evolution 1,6, and 7 [19] software is continuously
growing in size and complexity, and quality is decreasing if the software is not rigorously
maintained. Thus, this research query investigates the quality of different sized projects but,
following the above laws, also the state of maintenance of OSS. Our results indicate a negative
correlation between size and quality.

Figure 20: Correlation between LOC and
BugDensity

Figure 21: Clustering on LOC and CBO
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The relations of both Bug Density and CBO to LOC indicate that larger projects tend to be
less faulty and less complex than smaller project. The p-value permits a rejection of the H0

hypothesis with a confidence level of 99% and thus shows a strong validity of this correlation.
This result is not in contrast to Lehman’s law though, it shows that larger projects are
generally more rigorously maintained and therefore provide high quality code. Our results
agree with the results of previous research [40] which claims that software quality is positively
correlated to size, and show that online forges generally contain a large amount of small, low
quality projects.

Q4. Does activity affect project maturity?

Open Source Software (OSS) generally suffers from the permanent beta syndrome. We aim
to discover whether a high activity generally leads to higher project maturity and thus can
prevent projects from this syndrome. Our analysis indicates a negative correlation between
activity and maturity.

Figure 22: Correlation between Commi-

tRate and ReleaseMaturity

Figure 23: Correlation on Coderate and Age

Maturity is measured in terms of age, the release maturity i.e. releases per line of code, and,
analogously, revision maturity, measures for activity where presented in Q2. The relations
of different measures for activity and maturity coincide and indicate that projects with high
process activity are commonly less mature. As stated in Chapter 2, correlation cannot detect
the direction of causality, though. Therefore it is probable that low project maturity causes
high activity, i.e. that projects experience high development activity in early stages and
reach a stable activity at some point. The negative correlation is supported by a low p-value,
permitting the rejection of the hypothesis, that correlation would be zero, with a confidence
level of 99 %.
We conclude this Section by outlining and interpreting the results presented above. Our
major contribution through this work is an extensible data mining system capable of indexing
a huge number of OSS projects (>143,000), collecting a large data set (>2,500) of projects
with different characteristics, and performing investigation on cause-effect relations through
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different analysis types. The collected dataset corresponds to the findings of other tools [39]
and to the population of OSS projects on forges. The tests on different queries (Q1 – Q4)
show general agreement with other research on smaller samples [1] [2] [6] [34]. The analyses
on the data set and on the queries, however, present some divergences with respect to other
literature. The analyses on the Queries demonstrate, that especially small projects do not
show a common trend, as reported in previous research. These facts lead to weakly supported
correlations, e.g. in Q1 and Q2, and make out possible dissimilarities to results of other
research.

Figure 24: Correlation betw. SharedCollaborators and BugDensity

Figure 24 depicts the result of Q1 “Do non isolated communities produce high quality code?”
if we filter out smaller projects. The correlation is now strongly supported by a much lower
p-value and a clear tendency is visible. These results sustain the hypothesis, that the weak
support, especially in Q1 and Q2, the apparently random distribution of metrics for some
projects, and differences to other research are caused by a high number of small, though
consistent projects. We deduce that many of these projects are developed with no specific
process, strategy, or organization. Considering that the projects of our data set are already
filtered against small and inconsistent projects, we can infer that such projects constitute
a significant proportion of all OSS. Our criticism, however, is not directed to this part of
projects, which does not fit the models and results of previous research in OSS. We rather
claim that investigating on a small set of projects can lead to outlier analyses and results.
Such research results [1] [2] [6] [34] do not represent the general situation of OSS, on the
contrary it may mislead to the idea, that OSS fits precise models and results.

6.3 Future Work

The process of knowledge extraction (Figure 1) combines a wide range of concepts and tech-
niques, but also different fields of computer science. Accordingly, the automation of extracting
knowledge from large online forges encompasses this complexity, but opens a range of possibil-
ities as well. Neither do we claim to collect all available OSS project information (Section 4),
nor do we claim to perform all possible analyses on the collected data (Section 5). However,
we designed and developed an extensible and modular architecture that follows a transparent
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method and can readily accommodate any type of collection from online forges and any type
of data mining tasks (Section 3). Thus, both the Data Collector and the Data Miner can
easily be enhanced to analyze an even larger proportion of OSS with different types of mining
tasks.
The Data Collector currently supports a limited set of project characteristics. Although we
have focused and implemented support for the most popular and widespread characteristics, a
number of projects are still neglected. The support of additional programming languages, e.g.
of C# or Python, versioning systems, e.g. CVS or GitRepository, and forges, e.g. Launchpad
or GNU Savannah, would expand the proportion of indexed projects.
The Data Miner currently supports the analysis of cause–effect relations through correlation,
regression, and clustering analyses. Both the collected data and the extensible structure of
the Data Miner permit an easy extension in types of analyses and attributes to investigate.
Other data mining tasks, as classification, different clustering algorithms, or even unguided
association rule mining may provide significant results in the field of OSS.
The support of different types of analysis and an even larger data set call for a powerful
query language to better define advanced data mining tasks. OSSQuery, in its current state,
additionally collects descriptions and labels which could be used to better define the data set
by allowing keywords in the query. Previous research [21] proposes a valid and applicable
solution to this problem.
In conclusion, OSSQuery is an extensible and performant data mining system that collects
large data sets and provides plausible results. Comparison with other, manual research has
shown that an automatic, quantitative investigation may provide generally valid, representa-
tive results and trends. Moreover, we presented a number of possible enhancements for our
system, and its possible contributions to research. The combination of a large data set, a
variety of analyses, and a strong formalism to launch queries would provide a complete and
extensive data mining system for the general analysis of OSS.
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7 Conclusion

Our major contribution through this work is a system that automates the process of identify-
ing, collecting, cleaning, and analyzing open source projects from the web to allow quantitative
and comparable research on OSS. Such automation involves numerous conceptual complex-
ities and practical issues both in collecting and in analyzing data. While widely available,
information on OSS is scattered across places in heterogeneous forms. Moreover, to extract
all information from the available data, it is necessary to analyze source code, versioning sys-
tem, and bug tracker of projects with radically different properties. Finally, to perform useful
analyses and investigations, we must support a variety of queries on abstract and general
software attributes, e.g. code quality or project size.
We have designed and developed OSSQuery, a data mining system for investigation on
cause–effect relations. It applies methods of information retrieval, as web crawling, and of
data mining, as correlation and clustering analyses, on the universe of publicly available OSS
data to extract valuable knowledge on e.g. relations between software attributes. Hence,
OSSQuery aims to facilitate investigation and discovery of valid and representative results on
different research questions on cause-effect relations in OSS.
The method and design of our approach seek for an efficient, extensible, and reliable system
that can accommodate the collection of projects with radically different properties, e.g. pro-
gramming languages, and a variety of different mining tasks through elegant architectural
patterns. In its current state, OSSQuery collects, stores, and updates C++ and Java projects
from SourceForge and GoogleCode iteratively. Moreover, the system is able to investigate on
cause–effect relations among different software attributes through correlation, regression, and
clustering analyses on demand.
As of July 2011, OSSQuery identified, indexed, and filtered over 143,000 projects constructing
a data set of more than 2,500 projects and we expect this data set yet to grow. Thus, the
database stores a comprehensive amount of information of the projects in approximately 18
mln tuples. The composition and distribution of this data set correspond to the findings of
other tools, thus we can deduce that it is representative for the universe of OSS.
As a proof-of-concept, we performed different analyses on much studied research questions
using OSSQuery. In the following, we will briefly present the results and a corresponding
interpretation of such investigations.

1. Do non-isolated communities produce quality code? Our results show that non-isolated
communities generally produce high quality code, the support for this claim is rather
low, though.

2. To what extent does isolation within the developer community affect code activity? Our
investigation confirms that non-isolated communities follow a more constant, regular
development activity.

3. Does size affect code quality? The results clearly show that larger projects tend to be
of superior quality.

4. Does activity indicate project maturity? Our investigation demonstrates that mature
projects usually have a constant, lower activity than new projects.

Our results are generally similar to those of other, manually conducted analyses on the same
problems. The findings of such manual research, do only fit the characteristics of a minor
proportion of projects, though. Thus, we claim that research on small groups of projects
may not provide results that are valid or representative for all OSS. Our system is designed
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and built to be extended. We currently collect project information from Google Code and
SourceForge and perform investigations on cause-effect relations. The support of further
forges and analyses would increase the value of OSSQuery and allow researchers to perform
any type of quantitative investigation on open source.
To our knowledge, while other approaches simply collect and store general project data [4],
our system is the only tool that actively performs quantitative analyses on OSS attributes. We
are convinced that OSSQuery can be useful to conduct large-scale investigations and allows
a re-evaluation of current beliefs as well as a discovery of new results in the field of OSS.
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Appendix A : Data Collector Design
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Appendix B : Further Statistics on Data Collection

Figure 25: Histogram of Time to Collect a Project’s Information [s]

Figure 26: Number of Good Projects per Indexed Projects [%]
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Appendix C : Concept Hierarchies

Figure 27: Concept Hierarchy of Quality

Figure 28: Concept Hierarchy of Community Isolation
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Figure 29: Concept Hierarchy of Activity

Figure 30: Concept Hierarchy of Maturity

44
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Figure 31: Screenshot of OSSQuery Homepage

Figure 32: Screenshot of a Analysis Results
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