
FREE UNIVERSITY OF BOZEN BOLZANO

Analyzing Pair Programming with respect to
Tool Usage and Developer’s Expertise

Bachelor Thesis

Supervisor: Professor Giancarlo Succi
Author: Jelena Vlasenko

Bolzano 2010

Contents
Contents...2

Abstract..4

Zusammenfassung..5

Riassunto..6

Acknowledgement..7

1. Introduction..8

1.1. Problem Statement..8

1.2. Aims and Objectives..9

1.3. Research questions..9

1.4. Methodology...9

2. Background and Related Work...11

2.1. Agile Methodology in Software Development...11

2.2. Extreme Programming...12

2.3. Pair Programming..13

2.4. Research on Pair Programming..13

2.5. Research on tool usage..15

2.6 Contribution of this study to other research works on Pair Programming and Tool Usage..............16

3. Research Methodology...18

3.1. The Goal-Question-Metric...18

3.2. Application of the Goal-Question-Metric to the research...18

4. Experimental Settings...21

2

4.1. Structure of this study...21

4.2. Data...21

4.2.1 The developers..21

4.2.2 Data collection...22

5. Results..23

5.1. Time distribution and usage of tools...23

5.2. Transitions and cycles in usage of tools...25

6. Discussion...30

7. Conclusions and future work..33

Bibliography..34

Appendix A...37

Appendix B...45

3

Abstract
Pair Programming is a software development technique when two developers use one computer to

work on the same task. They use one monitor and one keyboard. The developer who is typing in a
program code is called the driver and the second developer, who is observing and brainstorming the
work of the first developer, is called the navigator. The driver writes the code, finds fast solutions, and
implements algorithms. The navigator observes the work of driver, thinks at more complex solutions,
and finds logical errors. The developers should change their roles at least every 30 minutes. In this study
there has been analyzed the work of an IT team of a large Italian manufacturing company, which prefers
to remain anonymous. The team is composed of 19 developers – 15 already working in the company and
4 newly hired. The study uses a non-invasive measurement collection obtained from PROM. Specifically
there has been investigated the usage of tools by developers when working alone and in pairs, taking
also into consideration their working experience in the company. The results of this study indicate that
the developers working in pairs devote significantly more time to programming activities than the
developers working alone.

4

Zusammenfassung
Pair Programming ist eine Technik der Software-Entwicklung, wenn zwei Entwickler einen Computer

benutzen, um auf der gleichen Aufgabe zu arbeiten. Sie benutzen einen Monitor und eine Tastatur. Der
erste Entwickler, der einen Programmcode eingeben wird, nennt man der Fahrer und der zweite
Entwickler, der die Arbeit des erstes Entwicklers beobachtet und begeistert, nennt man der Navigator.
Der Fehrer schreibt den Code, sucht nach schnelle Lösungen und implementiert Algorithmen. Der
Navigator beobachtet die Arbeit des Fahrers, denkt bei komplexeren Lösungen und findet logische
Fehler. Die Entwickler sollen ihre Rollen mindestens alle 30 Minuten umtauschen. In dieser Studie wurde
die Arbeit eines IT-Team eines großen italienischen Herstellerunternehmen analysiert, die anonym
bleiben bevorzugt. Das Team besteht aus 19 Entwicklern - 15 Entwickler, die bereits im Unternehmen
arbeiten, und 4 Entwickler, die vor kurzem eingestellt den Unternehmen beigetreten haben. Die Studie
benutzt eine Sammlung nicht-invasive Messungen, die aus PROM erhalten sind. Konkret gibt es seit dem
Einsatz von Werkzeugen von Entwicklern bei der Arbeit allein und in Paaren untersucht, wobei auch
berücksichtigt ihre Berufserfahrung in die Firma. Die Ergebnisse dieser Studie zeigen, dass die Entwickler,
die in Paaren arbeiten, widmen mehr Zeit der Programmierungtätigkeiten, als Entwickler, die allein
arbeiten.

5

Riassunto
Pair Programming è una tecnica di sviluppo software quando due sviluppatori utilizzano solo un

computer per lavorare sullo stesso compito. Loro usano un monitor e una tastiera. Lo sviluppatore che
digita il codice di programma si chiama l'autista e il secondo sviluppatore, che sta valutando e ispirando il
lavoro del primo sviluppatore, si chiama il navigatore. L'autista scrive il codice, trova i soluzioni veloci, e
implementa gli algoritmi. Il navigatore osserva il lavoro di autista, pensa a soluzioni più complesse, e
trova gli errori di logica. Gli sviluppatori dovrebbero cambiare i loro ruoli, almeno ogni 30 minuti. In
questo studio è stato analizzato il lavoro della squadra IT di una grande azienda italiana, che preferisce
rimanere anonima. Il team è stato composto da 19 sviluppatori - 15 di loro che già lavorano in azienda da
tanto tempo e 4 neo-assunti. Lo studio utilizza una colezzione di misura non-ivasiva che si ottiene da
PROM. In particolare è stato studiato l'utilizzo dei strumenti da parte degli sviluppatori quando si lavora
da solo e in coppia, prendendo in considerazione anche la loro esperienza di lavoro in azienda. I risultati
di questo studio indicano che gli sviluppatori che lavorano in coppia dedicano molto più tempo alla
programmazione delle attività di sviluppatori che lavorano da soli.

6

Acknowledgement
I am sincerely thankful to my supervisor, Professor Giancarlo Succi, who supported me throughout

this work with his patience and knowledge. This thesis would have not been possible without his
guidance.

I am extremely grateful to Ilenia Fronza for her assistance and precious expertise. She was always
ready to answer the innumerable questions I had in the beginning of this study and helped me to
develop an understanding of the subject.

Finally, I cannot forget the moral support of my parents. I am grateful to my friends Artem Konev
and Viktor Skoks for their patience and readiness to help during the whole period of my studies at Free
University of Bozen Bolzano.

7

1. Introduction
The software development process is a set of phases needed to produce a working software

product that satisfies the requirements of a customer.

Since the early 60s there have been several proposals of development processes. These different
processes differentiated one another for the different phases, and for the time distribution, and the
mutual dependencies among these phases. Typical phases that have been proposed include: planning,
implementation, testing, documentation, deployment, and maintenance.

Several software development models have been developed in the last 40 years to organize the
development process. Most known of them are: waterfall model, spiral mode, iterative and incremental
development, and agile development [Begel and Nagappan, 2007]. Each of them has advantages and
disadvantages. A good recommendation is to select for each project the most suitable model or even
combinations of models and adopt them for the current project.

Agile methods suggest a disciplined project management process. Software product is deployed
with iterative improvements and additions of new customer requirements. During the planning phase it
will be enough to gather only the most important and fundamental requirements. Further the missing
ones will be gathered and implemented during the next iterations. Though, developers should be able to
present a correctly working software product at the end of each iteration. Agile development is very
flexible to customer wishes regarding the project and changing requirements. Moreover, it is possible to
have the working software product with minimal functionality at the end of each iteration that can be
just about 2 weeks long. That is why nowadays agile methods attract a lot of attention of project
managers.

One of the techniques of agile methods that has gained popularity both in academic and industrial
environment is Pair Programming [Begel and Nagappan, 2008]. Pair Programming is one of the practices
of Software Development where 2 programmers work on the same task at one computer using 1
monitor and 1 keyboard. Many advantages of Pair Programming have been identified: [Cockburn and
Williams, 2001, Succi et al., 2002, Heiberg et al., 2003, Hulkko and Abrahamson, 2005, Lui and Chan,
2006, Braught at al., 2008, Vanhanen and Korpi, 2007] when working in pairs defects are detected when
they are typed in, code becomes shorter, pairs solve problems and complete tasks faster than
individuals, developers constantly exchange their knowledge and developers are more satisfied with
their work.

1.1. Problem Statement
Many research works have been conducted on Pair Programming. Several ones were carried out

in an educational environment. In these cases participants were computer science students. Only few of
the experiments were carried out in an industrial environment. The period of time during which the
experiments were held, was no longer than few days. In some researches there has been analyzed
performance of students during a whole studying semester. The results obtained from the experiments
held in the educational environment may not be useful for industry. In addition, results obtained from

8

different empirical studies contain contradictions. In this study there has been analyzed work of software
developers of a large Italian manufacturing company during a period of 10 months. There has been
investigated how Pair Programming affects the patterns of usage of tools. This work could be useful for
further analysis of Pair Programming in industrial software development teams.

1.2. Aims and Objectives
The aim of this study is to analyze the effects of Pair Programming on usage of tools during

developers’ daily work.

To achieve the aim there has been evaluated how the developers use tools to perform their daily
tasks when they work alone and when in pairs, taking into consideration their working experience in the
company.

1.3. Research questions
This study tries to find answers to the following questions:

• Is there a difference in tool usage when programmers work alone and when in pairs?

• Is there a difference in tool usage when the developers have different working experience?

1.4. Methodology
This work is an observation study in which there has been investigated an impact on tool usage

when developers work alone and when in pairs. The data for this study has been collected from an
industrial team of software developers. The team uses spontaneous Pair Programming (i. e., when the
developers find it appropriate) during the observation time space. It gives a sufficient evidence to answer
the research questions.

The research work is divided in 5 phases:

• Familiarization,

• Planning,

• Data collection,

• Data processing,

• Data analysis.

In the first phase there has been provided familiarization to existing researches on Pair
Programming and tool usage, techniques of data collection and data storage environment. In the second
phase the detailed structure of the research had been planned, defined the research questions and
measures to answer them. In the third phase the data needed for the research has been extracted. In the

9

fourth phase the data has been structured and processed for the further analysis. In the final fifth phase
data analysis has been performed and the obtained results have been evaluated.

The importance of this research is as follows:

• In majority of studies, participants usually are either students or professional software
developers working on the assignments prepared specially for an experiment. In this
study the data obtained from experienced software developers working in their
environment has been analyzed,

• Developers decide themselves when it is more effective to use Pair Programming than
solo programming,

• The time space during which the data was collected is quite large – 10 months, so that it
possible to obtain a large data sample,

• There have been used plots, graphs and tables for data visualization.

10

2. Background and Related Work

2.1. Agile Methodology in Software Development
Nowadays project managers express a growing interest in the agile methods. The agile methods

are helpful for the teams of developers who apply practically iterative software development approach
in their daily work. In this approach software development process is divided into short release phases
known as sprints.

The main idea of the agile development methodology is that software developers should not
fear or avoid changes in the project during its development cycle. Oppositely, they should accept new
requirements and be able to change a development plan according to the new requirements with
minimal losses to the project. This can be achieved applying regular modulations of work, known
iterations or sprints. Teams of developers should be able to present at the end of each iteration a
shippable software product with new functionalities added during the sprint. Thus, the developers focus
on short work cycles and on the functionalities of the product they have to deliver. If there is applied the
waterfall software development methodology the developers will have only one chance to understand
each aspect of the project correctly. In the end this can lead to delivering the project that is not
corresponding to customers’ wishes. According to the agile methodology, every aspect of development
should be revisited constantly throughout the project’s lifecycle. A team of developers has to stop and
re-evaluates the direction of a project in the end of each iteration to be sure that the project they
develop is still the desired one. Thus, there is always a possibility go back with minimal losses to the
project if the team has been moving in a wrong direction. Figure 1 represents the idea of the agile
approach.

The agile approach significantly reduces both development costs and time to deliver the project.
Since the work cycles should be limited to 2 weeks it gives the customers the insurance that the project
under the development is really the product they want. Moreover, after each iteration the developers
should deliver a correctly working piece of software. Thus, the customers can start using and test the
product before the whole development cycle is finished.

Figure 1: “Agile approach to Software Development.” Source: http://leadinganswers.typepad.com

11

The agile methods are aimed to meet customers’ visions about a project. When developing the
project more value should be given to individuals and communication between them than to processes
and tools they use. A working software product should have higher priority than extensive
documentation. Having a customer on site should be more advantageous for the project than having
periodical negotiations.

When applying the agile methods to the software development, customers’ satisfaction can be
achieved by having frequent product releases. Working software product is a way to evaluate progress of
the project. To achieve better results the developers should constantly communicate with the customers
to have a better understanding about the project and to be sure that they move in a right direction.
Moreover, it is important to provide the developers with good working environment. Teams of
developers should be located in such way that constant face-to-face communication could be possible
when it is needed.

There have been introduced many agile software development methods. Project managers should
choose the most suitable one or combination of different ones for every project. Some of these methods
are: Agile Modelling, Agile Unified Process, Essential Unified Process, Feature Driven Development,
Extreme Programming (XP), and Scrum. The last two methods raise an increasing interest from software
developers and project managers.

There are many agile software development practices which are applied by different methods. Some
of them are: Test Driven Development, Behaviour Driven Development, Code Refactoring, Continuous
Integration, and Pair Programming. The last practice is widely applied by Extreme Programming.

2.2. Extreme Programming

In traditional system development methods, like the waterfall model, software development
process consists of several phases. Each phase should be finished before the next one can be started.
Thus requirements for the system are fixed at the beginning of the project. Extreme Programming (XP) is
one of agile software development methods which is focused on software quality improvement. As one
of the methods of the agile software development, it also applies frequent product releases in short
development cycles. It is important for productivity improvement and for adopting new customer
requirements throughout development cycle.

Some of main principles of extreme programming are the following: Pair Programming, constant
code reviews, unit tests, Test Driven Development, an organized project management structure, code’s
simplicity, ability to react quickly to changes in the customer’s requirements, having representatives of
the customer on site and good team work.

12

2.3. Pair Programming

Pair Programming is one of the agile practices when two developers work at one computer on
the same task. The first developers types in program code and the second developer observes the work
of the first one. The first person is called the driver and the second one is called the navigator. It is
advised that the driver and the navigator exchange their roles every 30 minutes or even less.

The role of the navigator is more strategic than the role of the driver. He should be more
concentrated on solving complex problems, identifying logical errors and constantly reviewing the
program code. Thus, the driver can be more focused on the "tactical" aspects of completing the current
task, relying on the navigator as on his guide.

It is claimed that when working in pairs the developers produce shorter programs with better
designs and fewer bugs than when working alone. Two developers working as a pair usually complete
work faster than one developer when they are assigned to the same task. The developers working in
pairs solve at first sight impossible problems quickly and in an elegant way. Regarding the total time the
developers spend to complete a task it is has always been questionable why there is a need to assign two
developers to it if this task can be completed by only one. A project manager should take into
consideration that Pair Programming can reduce the time needed for bug fixing but it can increase the
cost of coding. Thus, it is really important to prioritize tasks where Pair Programming will be beneficial.
The relative weight of these factors can vary from a project to a project and from a task to a task. When
working on the tasks that are complex or not yet understood or known, Pair Programming could be a
good solution. On the other hand, working in pairs on simple tasks will lead to excessive and needless
costs.

Pair Programming could be also useful for knowledge transfers since both programmers
exchange constantly their experience when they work as a pair. They share knowledge of the specifics of
the system they are developing and they learn programming techniques from each other. It can be really
useful when introducing newly hired developers to the team – they learn quickly the specifics of the
project they should work on. When programmers exchange their partners randomly they reduce
possible risks if one of the developers leaves the team.

Another advantage of Pair Programming is improved time management. Developers are better
disciplined when they work in pairs than when they work alone. The developers working in pairs are less
likely skip writing unit tests and are more careful about the code quality since there is always the
observer who will notice it. Also it is true to say that when working in pairs the developers spend less
time on private browsing and writing e-mail than when working alone. The developers working in pairs
are more confident about the quality of their code since they perform constant code reviews.

2.4. Research on Pair Programming
In the last years there has been conducted a large number of researches on Pair Programming.

Most of them were focused on costs and benefits [Cockburn and Williams, 2001] of this technique. Table

13

1 summarizes some of these researches identifying subjects, goals, and obtained results. In the Appendix
A there can be found a more extensive overview on research works conducted on this topic.

Some of the studies were aimed to determine if Pair Programming had a positive effect on
developer’s working skills [Vanhanen and Korpi, 2007, Braught et al., 2008] and on code’s quality
[Williams et al., 2000, Heiberg et al., 2003, Vanhanen and Korpi, 2007, Begel and Nagappan, 2008]. Most
experiments were held with students. Validity of these experiments is questionable and it cannot be
generalized to teams of industrial developers. Only few ones were held with professional developers [Lui
and Chan, 2003, Hulkko and Abrahamsson, 2005, Canfora et al., 2006, Vanhanen and Korpi, 2007, Chong
and Hurlbutt, 2007, Arisholm and Sjoberg, 2007]. It has been identified in [Lui and Chan, 2003] that pairs
outperform individuals only when tasks are challenging and new to them. In [Hulkko and Abrahamsson,
2005] there have been analyzed four software development projects. It has been claimed that Pair
Programming does not provide an extensive quality benefits and does not result in consistently superior
productivity when comparing to solo programming. In [Canfora et al., 2006] it has been claimed that Pair
Programming decreases productivity but on the other hand increases code quality. In [Arisholm and
Sjoberg, 2007] authors conducted an experiment with the largest number of professional developers
than in other experiments on Pair Programming. It appears that junior pair programmers have achieved
a significant increase in correctness comparing to the individuals and have achieved approximately the
same degree of correctness as senior programmers working alone.

Authors Subjects Goal of the experiment Results

“Pair Programming:
What’s in it for Me? ,”
Andrew Begel, Nachiap-
pan Nagappan (2008)

487 surveys To continue the preced-
ent study (Begel et al.,
2007).

PP allows the introduction
of fewer bugs, spreading
code understanding and
over-all higher quality of
the produced code. Disad-
vantages of PP are cost-ef-
ficiency , work time
scheduling difficulties and
personality conflicts.

“Evaluating Pair Pro-
gramming with Respect
to System Complexity
and Programmer Ex-
pertise,” Erik Arisholm,
Hans Gallis, Tore Dyba,
and Dag I. K. Sjoberg
(2007)

295 junior, intermediate
and senior professional
Java consultants.

T o detect if PP reduces
the time required to
solve tasks correctly or
increases the propor-
tion of correct solu-
tions.

Junior pair programmers
achieved a significant in-
crease in correctness
compared with the indi-
viduals and achieved ap-
proximately the same de-
gree of correctness as
senior individuals.

14

Authors Subjects Goal of the experiment Results

“Usage and Perception
of Agile Software Devel-
opment in an Industrial
Context: An Exploratory
Study,” Andrew Begel,
Nachiappan Nagappan
(2007)

491 professionals (Mi-
crosoft developers,
testes and managers
who directly involved in
the development of
software).

To evaluate communic-
ation between team
members, speed of re-
leases and flexibility.

Advantages of Agile Soft-
ware development: Im-
proved communication
between team members,
quick releases and in-
creased flexibility of Agile
designs.

“The Social Dynamics of
Pair Programming,” Jan
Chong, Tom Hurlbutt
(2007)

10 professional pro-
grammers.

To investigate how pro-
fessionals perform
when working in pairs.

Pairs appeared to be more
efficient when both pro-
grammers took on driver
and navigator responsibil-
ities. Equipping pair pro-
grammers with dual key-
boards facilitates the rap-
id switching of keyboard
control.

“Evaluating Perform-
ances of Pair Designing
in Industry,” Gerardo
Canfora, Aniello Cim-
itile,Felix Garcia, Mario
Piattini, Corrado Aaron
Visaggio (2006)

18 professional pro-
grammers (5 pairs and 8
individual program-
mers).

To investigate how PP
affects system design.
The quality of the result
is evaluated by 2 inde-
pendent evaluators.

Designing in pairs de-
creases productivity but
increases the quality of
the product.

Table 1: “Overview of existing studies on Pair Programming (PP)”

2.5. Research on tool usage
The first principle of agile methods says that if you want to succeed in software development you

should give more value to people than to tools and processes. Still to evaluate and to improve
performance of developers it is essential to understand how they work, which tools they use, and for
which purposes.

 Until now there have been conducted only few researches on tool usage. Table 2 gives an
overview of some them. In some studies there has been investigated one specific tool and how it has
been used. The goal of these studies mainly is to propose a better tool to perform the same tasks with
better results. Other research works have been focused on which tools developers use during their daily
work aiming to find a set of tools which they regularly use. The results of these studies show that the
developers tend use regularly rather a small set of tools. On the other hand, they constantly test a large
number of new tools for their daily work. Though, these studies were not investigating if there are
dependencies among the tools the developers use and if some of these tools are typically used together.

15

Authors Subjects Goal of the experiment Results

“An Exploratory Study
of Developers’ Toolbox
in an Agile Team,” I. D.
Coman and Giancarlo
Succi, 2009

3 developers of a small
Austrian company

To detect how many
tools use developers,
which tools are used
frequently and for
which purpose they
serve.

Developers use 41 distinct
tools.
Developers use 12, 11 and
13 tools respectively.
Five main activities:
Documents, Navigating,
Communication, Internet
and Coding.

“Maintaining Mental
Models: A Study of
Developer Work
Habits,” T. D. LaToza et
al., 2006

344 survey responses by
Microsoft’s software
design engineers;
Interviews with 11
Microsoft’s software
design engineers

To detect which tools
developers use, what
their activities and
practices are.

Developers use a variety
of tools and search for
better solutions.
Developers switch
frequently between tools.
Developers prefer face-to-
face communication than
electronic one.

“An Examination of
Software Engineering
Work Practices,” J.
Singer et al., 1997

Group that maintains a
large
telecommunication
system: 6 survey
responses, exploring
work of 10 developers,
the company’s tool
usage statistics.

To provide software
engineers with a toolset
to improve their daily
work activities.

Developers most of their
time use compilers and
search tools.

“Understanding
Software Maintenance
Tools: Some Empirical
Research,” T. C.
Lethbridge and J. Singer,
2007

Team of software
engineers.

To detect which tools
developers and what
should be improved to
make them more
productive.

Developers use more
often editors and search
tools than other tools

Table 2: “Overview of existing studies on Tool Usage”

2.6 Contribution of this study to other research works on Pair
Programming and Tool Usage

There has been reviewed a number of existing studies on Pair Programming (Appendix A). It has
been found that most studies have been conducted with students and only few ones with professional
software developers. Moreover, the time space during which the studies were held was no longer than
few days. It has been noticed that there the researches do not investigate effects of Pair Programming
on tool usage. In this study there has been investigated how developers use different tools when they

16

work alone and when they work in pairs. Data for this study comes from a team of professional software
developers from a large Italian manufacturing company. The developers use Pair Programming during
their daily work. The data has been collected during a time space of 10 months from October 2007 to
July 2008 non-invasively by means of PROM (PRO Metrics) [Sillitti et al., 2003]. PROM automatically
collects data from the tools the developers use. Moreover, the developers were asked to constantly
check its correctness. Thus, the data can be considered very reliable.

17

3. Research Methodology

3.1. The Goal-Question-Metric
Goal-Question-Metric (GQM) paradigm has been introduced by Victor Basili [Basili et al., 1994].

GQM is a top-down approach to Software Metrics to introduce a goal-driven measurement system for
software development. When applying GQM, firstly goals are defined, then the questions that address
these goals are stated, and then metrics that provide answers to the questions are identified.

GQM is a measurement model that consists of three levels (Figure 2): computational, operational,
and quantitative levels. On the conceptual level the goals for the object that should be measured are
defined. The object can be a product, a process or a resource. The product involves everything what can
be produced during the system life cycle. On the operational level the questions that are aimed to
characterize the defined goals are stated. On the quantitative level corresponding data for every
question is identified. The data can be either objective when it depends only on the objet that should be
measured or subjective when it depends not only on the object but also on a viewpoint from which the
data has been taken.

Figure 2: “The GQM Paradigm”

3.2. Application of the Goal-Question-Metric to the research
There has been analyzed the performance of the team with respect to the following two factors:

• When the developers work in pairs and when they work alone

18

• Are the developers new to the team or they are already experts

With respect to the factors stated above there has been an interest in analyzing work of the
following patterns of work:

• Experts solos (experts working alone)

• Experts pairs (pairs of 2 experts)

• Novices solos (novices working alone)

• Novices pairs (pairs of 2 novices)

• Mixed pairs (pairs of 1 novice and 1 expert)

• Pairs (experts pairs and novices pairs)

• Solos (experts solos and novices solos)

With respect to the patterns of work that have been identified above the following goal can be
stated:

Goal: Analyze work of the team of the developers and to evaluate it taking into consideration if they are
new to the team or not and if they work in pairs or alone.

To analyze the work of the team there have been selected nine core applications that are
common for all patterns of work of developers and are used regularly during the whole period of this
study. These applications cover 85% of total time spent by the developers on working activities.
Applications that had been used only occasionally were excluded. These applications are: Browser,
Outlook, Microsoft Office Excel, Microsoft Office Word, Microsoft Messenger, Microsoft Windows
Explorer, Microsoft Management Console, Remote Desktop and Visual Studio.

As the result of this study the following questions should be answered:

• Q1: Do the developers when they work in pairs spend more time on programming activities than
when they work alone?

• Q2: Do the developers when they work in pairs spend less time on browsing and writing e-mails
than when they work alone?

• Q3: Do the developers when they work in pairs browse more for business purposes than for
private ones than when they work alone?

• Q4: Is there a difference how the developers cycle from Visual Studio to one of the applications
from the application set and back to Visual Studio (Visual Studio->Application1->Visual Studio)?

19

• Q5: Is there a difference how the developers cycle from Visual Studio to one of the applications
from the application set, then to another application from the application set and then back to
Visual Studio (Visual Studio->Application1->Application2->Visual Studio)?

After the goal of the research has been identified and the research questions have been raised the
metrics to answer the questions can be identified:

• M1: Percentage of time spent in each application with respect to total time spent working in the
applications

• M2: Average time the developers spent in each application

• M3: Probability to switch from one application to another

• M4: Percentage of time when developers browse for business purposes and when for private
ones

• M5: Percentage of cycles of type Visual Studio->Application1->Visual Studio

• M6: Percentage of cycles of type Visual Studio->Application1->Application2->Visual Studio

20

4. Experimental Settings

4.1. Structure of this study
This study has been conducted in the following way:

1. Seven patterns of work of developers have been identified, taking into consideration their
work experience in the team. These patterns are experts solos, experts pairs, novices
solos, novices pairs, mixed pairs, solos, and pairs.

2. Applications that are common for all patterns of work and are used regularly during a time
space of 10 months have been identified. These applications are Browser, Outlook,
Microsoft Messenger, Microsoft Office Word, Microsoft Office Excel, Microsoft Windows
Explorer, Microsoft Management Console, Remote Desktop, and Visual Studio.

3. The data to compute total time spent in each application, average time to stay in each
application, and probability to switch among the applications have been extracted.

4. Graphs that visualize data obtained in step 3 have been built.

5. Cycles of type Visual Studio->Application->Visual Studio and of type Visual Studio->
Application1->Application2->Visual Studio have been identified and computed. Total
number of cycles of each type for all patterns of work of the developers has been
computed. Total and average time spent in the cycles has been computed.

4.2. Data

4.2.1 The developers

The data has been collected from the team of developers of IT department of a large Italian
manufacturing company that prefers to remain anonymous and it is the same as it has been detailed in
Section 4.1.1 of [Phaphoom, 2010]. The study has covered a time space of 10 months from October 2007
to July 2008. The developers are Italians. All of them have university degrees in computer-related areas.
The team is composed of professional developers who have programming experience from 10 to 15
years. During this time space the developers performed maintenance and improvement of the existing
software. The percentage of Pair Programming was identified when the developers were working on
different methods in classes. Table 3 represents characteristics of the collected data, showing the total
number of methods accessed during the time space and the descriptive statistic of pair programming
used. During the period of 10 months the team of developers interacted with 24765 methods and the
mean of Pair Programming applied to each method is 5.95%.

21

The programming language that has been used is mainly C#. The developers use some of the
Extreme Programming practices in the development process during their daily work. In particular, they
use weekly iterations, Pair Programming, user stories, collective code ownership, coding standards, and
test driven development. The team members use spontaneous Pair Programming, i.e. when they find it
useful and appropriate. Each developer has his own workplace and workstation. The team is located in
an open space what favours communication and knowledge transfers among them.

Time space October 2007 – July 2008

Number of accessed methods 24765

Number of accessed classes 3238

AVG percentage of Pair Programming 5.95

Standard deviation 21.32

Table 3: “Characteristics of the collected data”

4.2.2 Data collection

The data in this study represents all the activities of the developers at their computer. It has
been collected non-invasively by means of PROM (PRO Metrics) [Sillitti et al., 2003]. PROM is a tool for
automated data collection and analysis. It collects both code and process measures. PROM’s architecture
is based on plug-ins that collects data from the tools the developers use. Thus, PROM has information
about all software application used by the developers, the time they spend in them, and the identifiers
of the developers. If the developers do Pair Programming PROM will store information also about
composition of pairs.

Before the beginning of this study the developers had an experience of working with the PROM.
They also got comprehensive information about the tool and what kind of data it collected. Each team
member could access to his own data and also to summary data of other team members. Moreover, the
developers had rights to look at the data stored at their own machine and to decide if they want to send
it to the central database or to delete it. The developers we asked to check the reliability of the data that
had been collected. The developers collected the data throughout the study. Moreover, the participation
in this study from the part of the developers was on a voluntary basis.

22

5. Results

5.1. Time distribution and usage of tools
In the beginning of this study there has been computed the amount of time the developers spend in

different applications during the time space of ten months. For the analysis there have been selected
nine core applications that are common for all seven patterns of work of the developers (experts solos,
experts pairs, novices solos, novices pairs, mixed pairs, solos, and pairs) and are used regularly during
this space of time. These applications are Visual Studio, Browser, Outlook, Microsoft Office Word,
Microsoft Office Excel, Microsoft Messenger, Microsoft Windows Explorer, Microsoft Management
Console and Remote Desktop.

Box plots were used to visualize the data. The box plots were created in R – an environment for
statistical computing and graphics (www.r-project.org). It has been noticed that most time the
developers spend in the following applications - Visual Studio, Browser, and Outlook.

Figure 3 represents how the developers applying different patterns of work use Visual Studio. It can
be seen that the novices and the experts when they work alone behave similar and devote to
programming activities about 33% of their time. The developers working in pairs spend significantly more
time on programming activities than the developers working alone. The experts working in pairs spent
almost twice more time in Visual Studio than experts working alone. The novices working in pairs also
spend more time on programming activities than the novices working alone but the difference is less
significant than between the experts working alone and the experts working in pairs. The mixed pairs
spend 75% of their time on programming activities what is more than the developers working in the
other patterns of work.

Figure 3: “Percentage of time spent in Visual Studio”

Figure 4 represents the amount of time the developers devote to writing and reading e-mails during
their working time. It is noticeable that the developers when they work as mixed pairs spend less time on

23

e-mail than when they apply any other pattern of work. The pairs spend significantly less time in Outlook
than solos. The pairs spend only 5% of their time and the solos spend 21% of their time on writing and
reading e-mails. The experts and the novices behave similar when they work alone. The experts working
alone spend 21% of their time and the novices working alone 23%. The experts working in pairs spend a
bit less time on e-mails than the novices working in pairs. The experts spend 13% of their time and the
novices 15%. It is important to mention that the developers receive all the requirements for the projects
they work on via e-mail. It could be possible that when the developers work alone they tend to check
more often the requirements than when they work in pairs.

Figure 4: “Percentage of time spent in Outlook”

Figure 5 represents how much time the developers applying the seven patterns of work spend in
Browser. In general, the developers working alone spend more time on browsing than the developers
working in pairs. When they work alone they spend 10% of their time on browsing and when they work
in pairs they spend 5% on the same activity. The novices working alone spend more time on browsing
than the experts working alone. The novices spend 13% and the experts spend 9% of their time on
browsing the Internet. Moreover, the novices working in pairs spend more time on browsing than the
experts working in pairs. The novices spend 10% of their time and the experts only 3%. The developers
working as mixed pairs spend 5% of their time on this activity.

24

Figure 5: “Percentage of time spent in Browser”

It has been identified that the developers spend a noticeable part of their time on browsing the
Internet. Thus, it has been interesting to see what exactly they do when they browse web pages. On the
one hand, browsing could be interpreted as an activity that distracts the developers from their work. On
the other hand, the developers when writing code might need to search for additional information or
code examples for their work in the Internet. For the further analysis it has been decided to divide
browsing into the two following categories: Private Browsing and Business Browsing. In the category
Private Browsing there has been collected all the developer’s activities in the Internet that do not relate
to their work. In the category Business Browsing there has been collected all the developers’ activities
that are directly related to their work – searching for code examples, reading about technologies they
use in their work and filling in time sheets. It has been identified that the developers working in different
patterns of work spend from 71% to 84% of their Browsing time for business purposes. According to the
results the expert developers working in pairs devote more time for business browsing than others.
Table 4 summarizes the obtained results.

Experts
Solos

Experts
Pairs

Novices
Solos

Novices
Pairs

Mixed
Pairs

Solos Pairs

Private Browsing 28% 16% 32% 34% 22% 29% 24%

Business Browsing 72% 84% 68% 66% 78% 71% 76%

Total 100% 100% 100% 100% 100% 100% 100%

Table 4: “What the developers do when they browse”

5.2. Transitions and cycles in usage of tools
Seven graphs can be found in the Appendix B. The graphs visualize the data about the total and the

average time spent in each application and the probabilities to switch among the applications for the

25

seven patterns of work of the developers. A vertex represents an application. A size of the vertex
depends on the total time spent in the application to which it corresponds. An arc represents a link
between two applications if there is a switching between them. The arc can be one-directional, if there is
a one-way switching, and bi-directional, if there is a two-way switching. In addition to the findings from
the box plots above, the developers working in pairs stay in all applications longer than the developers
working alone. Developers working in pairs in general stay significantly longer in Visual Studio than the
developers working alone. It has been noticed that the developers in general tend to switch very often
between Visual Studio and Browser, and between Visual Studio and Outlook.

Figure 6 represents how solos and pairs switch among Visual Studio, Browser and Outlook. It can be
seen that the solos spend 30% of their time in Visual Studio and the pairs 60%. The solos spend 10% of
their time in Browser and the pairs 10%. The solos spend 21% of their time on Outlook and the pairs only
5%. The solos stay on average in Visual Studio, Browser, and Outlook is 30 seconds, 25 seconds, and 31
seconds respectively. The pairs stay in these applications 136 seconds, 76 seconds, and 80 seconds
respectively. The solos switch from Visual Studio to Browser with the probability 0.15 and from Browser
to Visual Studio with the probability 0.34. The probability to switch from Browser to Outlook is 0.23 and
the probability to switch from Outlook to Browser is 0.12. The developers working alone switch from
Outlook to Visual Studio with the probability 0.37 and from Visual Studio to Outlook with the probability
0.26. The pairs switch from Visual Studio to Browser with the probability 0.11 and from Browser to Visual
Studio with the probability 0.48. The probability to switch from Browser to Outlook is 0.17 and the
probability to switch from Outlook to Browser is 0.07. The developers working in pairs switch from
Outlook to Visual Studio with the probability 0.4 and from Visual Studio to Outlook with the probability
0.22.

26

Figure 6: “Usage of tools by experts working in pairs”

Then there has been investigated how the developers cycle from one application to another. Cycles
of the two following types have been investigated:

• Paths of size of 2 applications: when the developers switch from Visual Studio to one of the
applications and then return to Visual Studio,

• Paths of size of 3 applications: when the developers switch from Visual Studio to one of the
applications, then again to one of the applications, and then they return to Visual Studio.

It has been found that out of all the cycles the developers when they apply different patterns of
work tend to spend most time in the following ones:

• Visual Studio->Browser->Visual Studio,

• Visual Studio->Outlook->Visual Studio,

• Visual Studio->Microsoft Messenger->Visual Studio.

The most time consuming cycle is when the developers switch from Visual Studio to Outlook and
then return to Visual Studio. The developers applying different patterns of work spend in this cycle from
25% to 41% of time out of all the cycles of path of 2 applications. The total number of this cycle out of all
cycles varies between 17% and 35%. On average the developers spend in this cycle between 75 and 611
seconds. Second time consuming cycle is when the developers switch from Visual Studio to Browser and
then return to Visual Studio. The developers applying different patterns of work spend from 8% to 40%
of time out of all cycles of path of 2 applications. The total number of this cycle out of all cycles varies
between 9% and 43%. On average developers spend in this cycle between 62 and 350 seconds. Third
time consuming cycle is when the developers switch from Visual Studio to Microsoft Messenger and then
return to Visual Studio. The developers applying different patterns of work spend from 6% to 15% of
time out of all cycles of paths of 2 applications. The total number of this cycle out of all cycles varies
between 7% and 18%. On average developers spend in this cycle between 68 and 328 seconds. Table 4

27

represents the total number of the cycles, total time spent in the cycles and average time spent in the
cycles mentioned above. The rest time is distributed among the remained applications. Since the
developers have spent very little time in these cycles they haven’t been represented in the Table 5.

Visual Studio ->
Browser->Visual Studio

Visual Studio->
Outlook->Visual Studio

Visual Studio->Microsoft
Messenger->Visual Studio

Total
number
of
cycles
%

Total
time
spent in
cycles
%

AVG
time
spent
in a
cycle

Total
number
of
cycles
%

Total
time
spent in
cycles
%

AVG
time
spent
in a
cycle

Total
number
of
cycles
%

Total
time
spent in
cycles
%

AVG
time
spent in
a cycle

Experts solos 16% 14% 62 sec 31% 33% 75 sec 9% 9% 68 sec
Experts pairs 9% 8% 221 sec 24% 37% 391 sec 14% 12% 230 sec
Novices solos 24% 22% 74 sec 35% 41% 94 sec 8% 9% 84 sec
Novices pairs 43% 40% 350 sec 17% 28% 611 sec 7% 6% 328 sec
Mixed pairs 18% 21% 268 sec 21% 25% 276 sec 18% 15% 199 sec
Solos 18% 16% 65 sec 23% 34% 79 sec 9% 9% 70 sec
Pairs 15% 15% 284 sec 23% 35% 423 sec 13% 9% 84 sec
Table 5: “Cycles of paths of 2 applications”

For the cycles of path of 3 applications there has been computed the same data as for the cycles of
paths of 2 applications. Moreover, it has been noticed that these cycles are scarce in the daily work of
the developers. Though, it has been found that among these cycles the most time consuming one is
when the developers switch from Visual Studio to Browser then they switch to Outlook, and then return
to Visual Studio. Table 6 represents how the developers applying different patterns of work devote time
to this cycle. The percentage is computed out of all cycles when the developers switch from Visual Studio
to Browser and from Browser to the rest 8 applications. It can be seen that the total number of these
cycles varies from 20% to 83% out of all cycles, total time spent varies from 10% to 99.6%, and the
average time spent in this cycle is between 67 and 741 seconds.

28

Visual Studio ->Browser-> Outlook->Visual Studio

Total number
of cycles %

Total time spent in
cycles %

AVG time spent in
a cycle

Experts solos 39% 40% 100 sec
Experts pairs 47% 30% 67 sec
Novices solos 56% 56% 128 sec
Novices pairs 83% 99.6% 741 sec
Mixed pairs 20% 10% 412 sec
Solos 42% 44% 107 sec
Pairs 57% 61% 388 sec
Table 6: “Cycles of paths of 3 applications”

29

6. Discussion
The goal of this study is to analyze and evaluate work of an industrial team of software developers

working in a large Italian company. Since there is a growing interest to Pair Programming it has been
taken into consideration if the developers when performing their daily tasks have been working alone or
in pairs. It has been found essential to distinguish the developers according to their work experience in
the company. The developers who work for the company more than 5 years are called the experts and
the one who have recently joined the company are called the novices. There has been investigated how
they use different applications during their daily work. Five research questions were stated to
understand the behaviour of the developers. Six metrics were identified to answer these questions.
Table 7 summarizes the answers to these questions.

It has been found that the expert developers when they work in pairs spend 64% of their time on
programming activities. Moreover, when the experts work alone they spend only 34% of their time on
programming activities. The novices when they work alone behave very similar to the experts and spend
32% of their time on programming activities. The novices working in pairs spend only 49% of their time
on programming activities what is less that spend the experts working in pairs. In general, it can be
concluded that the developers working in pairs spend almost twice more time on programming activities
that the developers working alone.

It has identified that the developers tend to spend a noticeable part of their time on browsing web
pages. In particular, the developers the developers working alone spend twice more time on browsing
than the developers working in pairs. Since in the database there are stored only the headers of the
visited pages they have been examined and a set of key words has been identified to distinguish business
browsing from private one. The obtained results show that the developers applying different patterns of
work tend to spend from 66% to 84% of time on business browsing. The highest number has been
identified by the expert developers working in pairs.

It has been investigated how the developers switch between applications. It has been computed
how much time on average the developers spend in each application before switching to another one
and probabilities to switch among them. Further, the cycles of path of 2 applications when the
developers switch from Visual Studio to one of the applications and then return to Visual Studio have
been identified. The following numbers have been computed: the total number of the cycles, and the
total and the average time spent in these cycles. It has been found that the developers tend to spend
more time in the following three cycles: switching from Visual Studio to Outlook, or to Browser, or to
Microsoft Messenger and then returning to Visual Studio. The reason why the developers switch so often
from Visual studio to Outlook and back can be because they receive the requirements for their project
via e-mail. Moreover, since the significant part of the browsing is devoted to Business browsing the

30

developers might tend to switch so often from Visual Studio to Browser in searching for code examples
and other information important for their work.

The cycles of path of 3 applications when the developers switch from Visual Studio to one of the
applications, then again they switch to one of the applications, and only then they return to Visual Studio
are scarce in the work of the developers. Though, it has been noticed that the developers tend to spend
notably more time in the cycle when they switch from Visual Studio to Browser, then they switch to
Outlook, and the return to Visual Studio than in any other cycle of path of 3 applications.

Q1/M1, M2,
M3

Q2/M1, M2,
M3

Q3/M4 Q4/M5 Q5/M6

Experts Solos 34% of time
devoted to
Visual Studio

9% of time
devoted to
Browser and
21% to Outlook

28% of time
devote to
Private
browsing and
72% to
Business one

Most time
(33%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(40%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

Experts Pairs 64% of time
devoted to
Visual Studio

3% of time
devoted to
Browser and
13% to Outlook

16% of time
devote to
Private
browsing and
84% to
Business one

Most time
(37%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(30%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

Mixes Pairs 75% of time
devoted to
Visual Studio

5% of time
devoted to
Browser and
6% to Outlook

22% of time
devote to
Private
browsing and
78% to
Business one

Most time
(25%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(56%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

Novices Solos 32% of time
devoted to
Visual Studio

13% of time
devoted to
Browser and
23% to Outlook

32% of time
devote to
Private
browsing and
68% to
Business one

Most time
(41%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(99.6%) devoted
to Visual Studio
->Browser->
Outlook-> Visu-
al Studio

Novices Pairs 49% of time
devoted to
Visual Studio

10% of time
devoted to
Browser and
15% to Outlook

34% of time
devote to
Private
browsing and
66% to
Business one

Most time
(40%) devoted
to Visual
Studio->
Browser->
Visual Studio

Most time
(10%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

31

Q1/M1, M2,
M3

Q2/M1, M2,
M3

Q3/M4 Q4/M5 Q5/M6

Solos 33% of time
devoted to
Visual Studio

10% of time
devoted to
Browser and
21% to Outlook

29% of time
devote to
Private
browsing and
71% to
Business one

Most time
(34%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(44%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

Pairs 60% of time
devoted to
Visual Studio

5% of time
devoted to
Browser and
5% to Outlook

24% of time
devote to
Private
browsing and
76% to
Business one

Most time
(35%) devoted
to Visual
Studio->
Outlook->
Visual Studio

Most time
(61%) devoted
to Visual Studio
-> Browser->
Outlook-> Visu-
al Studio

Table 7: “Summary on Research Questions and Metrics”

32

7. Conclusions and future work
The goal of this study was to observe daily work of 19 software developers from an IT department

of a large Italian manufacturing company and to investigate how they use different tools. The data was
collected during a time space of 10 month from October 2007 to July 2008. The daily work of the
developers was analyzed taking into consideration their working experience in the company. The
developers were applying spontaneous Pair Programming, i.e. when they found it appropriate. Compare
to other studies conducted on Pair Programming the observation period is significantly large what makes
it important for other studies in this area.

It has been identified that the developers working in pairs spend significantly more time on
programming activities and less time on browsing and writing e-mails than the developers working
alone. Moreover, all developers except experts working in pairs when they browse spend on average
70% of their time on business browsing. Experts working in pairs when they browse they spend 84% of
their time for business browsing. It has also been noticed that the developers have cycles in their daily
work. They tend to switch a lot from Visual Studio to either Outlook or Browser and back to Visual
Studio.

 In the future it is planned to repeat this experiment, taking into consideration the different kind of
purposes people have when using a browser, in particular, when they use it for work and when for
personal reasons.

33

Bibliography
[Arisholm et al., 2007] Arisholm, E., Gallis, H., Dyba, T., and I.K. Sjoberg, D., “Evaluating Pair
Programming with respect to System Complexity and Programmer Expertise,” IEEE Transactions on
Software Engineering, 33(2), pp 65-86, February 2007

[Baheti et al., 2002] Baheti, P., Williams, L., Gehringer, E., Stotts, D., Smith, McC., J. “Distributed Pair
Programming: Empirical Studies and Supporting Environments,” Technical Report TR02-009, Department
of Computer Science, University of North Carolina at Chapel Hill, 2002

[Basili et al., 1994] Basili, V. R., Caldiera G., and Rombach H. D., "The Goal Question Metric Approach,"
Encyclopedia of Software Engineering, John Wiley & Sons, Inc., pp 528-532, 1994

[Begel and Nagappan, 2007] Begel, A. and Nagappan, N., “Usage and Perceptions of Agile Software
Development in an Industrial Context: An Exploratory Study,” In Proceedings of the First international
Symposium on Empirical Software Engineering and Measurement, pp 255-264, September 2007

[Begel and Nagappan, 2008]Begel, A. and Nagappan, N., “Pair programming: what's in it for me?,” In
Proceedings of the Second ACM-IEEE international Symposium on Empirical Software Engineering and
Measurement, pp 120-128, October 2008

[Braught et al., 2008] Braught, G., Eby, L. M., and Wahls, T., “The effects of pair-programming on
individual programming skill,” In Proceedings of the 39th Special Interest Group on Computer Science
Education (SIGCSE), pages 200-204,, 40 (1), pp 200-204, February 2008

[Canfora et al., 2007] Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and Visaggio, C. A., “Evaluating
performances of pair designing in industry,” Journal of Systems and Software, 80 (8), pp 1317-1327,
August 2007

[Cockburn and Williams, 2001] Cockburn, A. and Williams, L., “The costs and benefits of pair
programming,” pair programming”. In G. Succi and M. Marchesi, editors, The XP Series. Extreme
Programming Examined, Addison-Wesley Longman Publishing Co., pp 223-243, 2001

[Coman et at., 2008] Coman, I. D., Sillitti, A., and Succi, G., “Investigating the Usefulness of Pair-
Programming in a Mature Agile Team,” In Proceedings of the 9 th International Conference on Agile
Porcesses and eXtreme Programming in Software Engineering (XP), pp 127-136, 2008

[Coman et al., 2009] Coman, I. D., Sillitti, A., and Succi, G., “A case-study on using an Automated In-
process Software Engineering Measurement and Analysis system in an industrial environment,” In
Proceedings of the 31st international Conference on Software Engineering, pp 89-99, May 2009

34

[Chong and Hurlbutt, 2007] Chong, J. and Hurlbutt, T. 2007. “The Social Dynamics of Pair Programming,”
In Proceedings of the 29th International Conference on Software Engineering, pp 354-363, May 2007

[Fronza et al, 2009] Fronza, I., Sillitti, A., Succi, G., “Modeling Spontaneous Pair Programming when New
Developers Join a Team,” XP 2009, pp 242 – 244, 2009

[Gallis et al., 2003] Gallis, H., Arisholm, E., and Dybå, T., “An Initial Framework for Research on Pair
Programming,” In Proceedings of the International Symposium on Empirical Software Engineering, p 132,
September – October 2003

[Heiberg et al, 2003] Heiberg, S., Puus, U., Salumaa, P., and Seeba A, “Pair-Programming Effect on
Developers Productivity,” In Proceeding of the 4th International Conference on Agile Processes and
eXtreme Programming in Software Engineering (XP), p 1016, 2003

[Hulkko and Abrahamsson, 2005] Hulkko, H. and Abrahamsson, P., “ A multiple case study on the impact
of pair programming on product quality,” In Proceedings of the 27th international Conference on
Software Engineering, pp 495-504, May 2005

[Lui and Chan, 2003] Lui, K. M and Chan, K. C. C., “When does a Pair Outperform Two Individuals?,” In
Proceedings of the 4th international Conference on Extreme Programming and Agile Processes in
Software Engineering, pp 225 – 233, May 2003

[Lui and Chan, 2006] Lui, K. M. and Chan, K. C., “Pair programming productivity: Novice-novice vs.
expert-expert,” International Journal on Human-Computer Studies, 64(9), pp 915-925, September 2006

[McDowell et al., 2002] McDowell, C., Werner, L., Bullock, H., and Fernald, J., “The effects of pair-
programming on performance in an introductory programming course,” In Proceedings of the 33 rd

SIGCSE Technical Symposium on Computer Science Education, pp 38-42, February - March 2002,

[McDowell et al., 2003] McDowell, C., Hanks, B., and Werner, L., “Experimenting with pair programming
in the classroom,” In Proceedings of the 8th Annual Conference on Innovation and Technology in
Computer Science Education, pp 60-64, June – July, 2003

[Nawrocki et al.,2005] Nawrocki, J., Jasiñski, M., Olek, L., Lange, B., “Pair programming vs. side-by-side
programming,” In Proceedings of EuroSPI, pp 28–38, November 2005

[Nawrocki and Wojciechowski, 2001] Nawrocki, J., Wojciechowski, A., “Experimental evaluation of pair
programming,” In Proceedings of the 12th European Software Control and Metrics Conference, pp 269–
276, April 2001

35

[Phaphoom, 2010] Phaphoom, N., “Pair Programming and Software Defects. A Case Study”, Master
Thesis, Free University of Bozen Bolzano, 2010

[Sillitti et al., 2003] Sillitti, A., Janes, A., Succi, G., and Vernazza, T., “Collecting, Integrating and Analyzing
Software Metrics and Personal Software Process Data,” In Proceedings of the 29 th Conference on
EUROMICRO, pp 336 – 342, 2003

[Strunk and White, 2004] Strunk, W. and White, E. B., “The Elements of Style”, 4 th edition, Allyn and
Bacon, 2004

[Succi et al., 2002] Succi G., Pedrycz W., Marchesi M., and Williams L., “Preliminary analysis of the effects
of pair programming on job satisfaction,” In Proceedings of 4th International Conference on eXtreme
Programming and Agile Processes in Software Engineering (XP2002), 2002

[Vanhanen and Korpi, 2007] Vanhanen, J. and Korpi, H., “Experiences of Using Pair Programming in an
Agile Project,” In Proceedings of the 40th Annual Hawaii international Conference on System Sciences,
January 2007

[Williams et al., 2000] Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R., “Strengthening the
Case for Pair Programming,” IEEE Software, 17 (4), pp 19-25, July 2000

[Williams and Kessler, 2000] Williams, L. and Kessler, R. R., “The Effects of ‘Pair-Pressure’ and ‘Pair-
Learning’ on Software Engineering Education,” In Proceedings of the 13 th Conference of Software
Engineering Education and Training, p 59, 2000

[Wonnacott and Wonnacott, 1990] Wonnacott, T. H. and Wonnacott, R. J., “Introductory Statistics”,
Wiley, 1990

36

Appendix A
Table 8: “Overview of existing studies on Pair Programming”

Authors Subjects Goal of the experiment Results

“Pair Programming:
What’s in it for Me? ,”
Andrew Begel,
Nachiappan Nagappan
(2008)

487 surveys. To continue the
precedent study (Begel et
al., 2007).

PP allows the introduction
of fewer bugs, spreading
code understanding and
over-all higher quality of
the produced code.

Disadvantages of PP are
cost-efficiency , work time
scheduling difficulties and
personality conflicts.

“The effect of Pair
Programming on
Individual Programming
Skill,” Grant Braught, L.
Marlin Eby, Tim Wahls
(2008)

151 students (77
paired and 74
individual).

To measure the effects of
PP on the development
of individual
programming ability,
comparing solo and pair
programmers.

Students with lower SAT
scores were able to achieve
higher lab practica when
using PP.

Students at all SAT levels
who pair-programmed
were more likely to
complete the course
successfully.

“Evaluating Pair
Programming with
Respect to System
Complexity and
Programmer Expertise,”
Erik Arisholm, Hans
Gallis, Tore Dyba, Dag I.
K. Sjoberg (2007)

295 junior,
intermediate and
senior professional
Java consultants.

To detect if PP reduces
the time required to
solve tasks correctly or
increases the proportion
of correct solutions.

Junior pair programmers
achieved a significant
increase in correctness
comparing to the
individuals and achieved
approximately the same
degree of correctness as
senior individuals.

37

Authors Subjects Goal of the experiment Results

“Usage and Perception of
Agile Software
Development in an
Industrial Context: An
Exploratory Study,”
Andrew Begel,
Nachiappan Nagappan
(2007)

491 professionals
(Microsoft
developers, testes
and managers who
directly involved in
the development
of software).

To evaluate
communication between
team members, speed of
releases and flexibility.

Advantages of Agile
Software development:
Improved communication
between team members,
quick releases and
increased flexibility of Agile
designs.

“The Social Dynamics of
Pair Programming,” Jan
Chong, Tom Hurlbutt
(2007)

10 professional
programmers.

To investigate how
professionals perform
when working in pairs.

Pairs were more efficient
when both programmers
took on driver and
navigator responsibilities.

Equipping pair
programmers with dual
keyboards facilitates the
rapid switching of keyboard
control.

Recommendations: both
programmers should be on
the same level of
knowledge. Pair rotation
should be avoided late in a
task.

38

Authors Subjects Goal of the experiment Results

“Experiences of Using
Pair Programming in an
Agile Project,” Jari
Vanhanen, Harri Korpi
(2007)

4 professional
developers.

To develop an internal
reposting system for the
company using Java
technologies and to pilot
agile practices.

The driver rarely noticed
defects during coding but
the released code
contained almost no
defects.

Test-driven development
and design in pairs probably
decreased defects.

The developers considered
that PP improved quality
and knowledge transfer and
was better suited for
complex tasks than for
simple.

“Evaluating
Performances of Pair
Designing in Industry,”
Gerardo Canfora, Aniello
Cimitile,Felix Garcia,
Mario Piattini, Corrado
Aaron Visaggio (2006)

18 professional
programmers (5
pairs and 8
individual
programmers).

To investigate how PP
affects system design.
The quality of the result
is evaluated by 2
independent evaluators.

Designing in pairs decreases
productivity but increases
the quality of the product.

“Pair Programming
Productivity: Novice-
Novice vs. Expert-
Expert,” Kim Man Lui,
Keith C. C. Chan (2006)

40 part-time
master’s students
with full-time jobs.

To perform a repeated
programming experiment
(subjects repeatedly
write the same program).

PP is more effective to
increase the productivity of
novices than of experts.

“A Multiple Case Study
on the Impact of Pair
Programming on Product
Quality,” Hanna Hulkko,
Pekka Abrahamsson
(2005)

4 software
development
projects.

To study the impact of PP
on software product
quality.

PP may not necessarily
provide as extensive quality
benefits as suggested in
literature and on the other
hand does not result in
consistently superior
productivity when
compared to solo
programming.

39

Authors Subjects Goal of the experiment Results

“Pair Programming vs.
Side-by-Side
Programming,” Jerzy R.
Nawrocki, Michal
Jasinski, Lukasz Olek, and
Barbara Lange (2005)

25 students. To compare two styles of
PP: XP-like and side-by-
side (SbS) programming
and solo programming.

55% of the students
preferred collaborative
programming (SbS or XP
approach) to individual.
40% had the opposite
opinion and 5% had mixed
feelings. Of those 55% SbS
approach was preferred by
70% of the students and XP
by 30%. 48% of the
students working in pairs
were satisfied in with their
own code and 36% not.
45% were satisfied about
partner’s code and 45%
not. The effort for SbS is
smaller than for XP but the
effort of individual code
maintenance is greater for
SbS than for XP.

“Pair-Programming Effect
on Developers
Productivity,” Sven
Heiberg, Uuno Puus, Priit
Salumaa, and Asko Seeba
(2003)

110 students. To verify how PP affects
programmer’s technical
productivity. Students
were divided to groups
and into pairs inside the
groups. One group was
using PP and another
group was using
traditional teamwork
technique. The
experiment was divided
into 2 phases.

Phase1: 1.7 times more
pair-programmers passed
first test cases than non-
pair programmers.

Phase1: the average
number of passed test
cases per pair was 1.9 times
higher at pair-
programmers.

Phase2: non-pair-
programmers passed no
test cases.

40

Authors Subjects Goal of the experiment Results

“When does a Pair
Outperform Two
Individuals? ,” Kim Man
Lui and Keith C. C. Chan
(2003)

15 industrial
programmers.

To measure productivity
of Pair Programming.

Pair Programming achieves
higher productivity when a
pair writes a more
challenging program where
they should spend more
time on design.

Pair programmers
outperform solo
programmers when a
problem is new to the
developers.

“Experimenting with
Industry’s “Pair
Programming” Model in
the Computer Science
Classroom,” Laurie A.
Williams, Robert R.
Kessler (2003)

41 students. To compare cycle time,
productivity and quality
results between pairs and
individuals.

Pairs are not less
productive then individuals.

“The Effects of Pair-
Programming on
Performance in an
Introductory Course,”
Charlie McDowell, Linda
Werner, Heather Bullock,
Julian Fernald (2002)

~600 students. To investigate the effects
of PP on student
performance in an
introductory
programming class.

Students working in pairs
produced code of better
quality, completed the
course at higher rates and
performed about s well on
the final exam as students
who programmed
independently.

“Preliminary Analysis of
the Effects of Pair
Programming on Job
Satisfaction,” Giancarlo
Succi, Michele Marchesi,
Witold Pedrycz, Laurie
Williams (2002)

108 responses on
a questionnaire of
54 developers
using PP and 54
developers not
using it.

To analyze the effects of
Pair Programming on job
satisfaction.

PP has a significant, positive
influence on the
satisfaction of developers.

41

Authors Subjects Goal of the experiment Results

“Distributed Pair
Programming: Empirical
Studies and Supporting
Environments,” Prashant
Baheti, Laurie Williams,
Edward Gehringer, David
Stotts, Jason McC. Smith
(2002)

132 students
divided into
collocated teams
without pairing (9
groups), collocated
teams with pairs
(16 groups),
distributed team
without pairs (8
groups),
distributed team
with pairs (5
groups).

To compare the different
working arrangements of
student teams
developing object-
oriented software.

It is feasible to develop
software using distributed
pair programming and the
resulting software is
comparable to software
developed in collocated or
virtual teams.

“The Costs and Benefits
of Pair Programming,”
Alistair Cockburn, Laurie
Williams (2001)

To sum up all advantages
of pair programming with
respect to economics,
satisfaction, design
quality, continuous
reviews, problem solving,
learning, team building
and communication, staff
and project management.

The befits of PP are the
following: many mistakes
are detected when they are
typed, the end defect
content is statistically
lower, the designs are
better and size of code is
smaller, the problems are
solved faster in teams, the
developers learn more in
pairs, multiple people
understand each part of the
system, developers get
experience in working
together, developers are
more satisfied about their
work.

42

Authors Subjects Goal of the experiment Results

“Experimental Evaluation
of Pair Programming,”
Jerzy Nawrocki, Adam
Wojciechowski (2001)

A group of 21
students divided
into tree sub-
groups:
Personal Software
Process (PSP) – 6
programmers;
XP for single
programmers
(XP1) – 5
programmers;
XP-like
programming
(XP2) – 5 pairs of
programmers.

To evaluation pair
programming.

Almost no difference
between XP1 and XP2 what
implies that PP is rather
expensive technology.
Experimentation and test-
centred thinking reduces
development time. PP is
more predictable than
individual one. XP1 is the
most efficient programming
technology, while PSP and
XP2 are more or less the
same.

“Strengthening the Case
for Pair-Programming,”
Laurie Williams, Robert
R. Kessler, Ward
Cunningham, Ron Jeffries
(2000)

41 students (13
solo programmers
and 14 pairs).

To detect if PP helps in
speeding up
development and
improving software
quality.

The code produced by pairs
passed more of the
automated post-
development test cases.
When working in tandem
programmers were able to
complete their assignments
40-50% more quickly.

43

Authors Subjects Goal of the experiment Results

“The effects of “Pair-
Pressure” and “Pair-
Learning” on Software
Engineering Education,”
Laurie A. Williams,
Robert R. Kessler (2000)

10 collaborative
pairs of students.

To measure Pair-Pressure
on quality, on students
and on teaching staff.

All the projects were
delivered on time and were
of very high quality – the
average grade was 98%.
The same group of students
when working alone had
average grade 78.1%. The
students performed much
more consistently and with
higher quality in pairs then
they did individually. The
students were extremely
positive about their
collaborative experience
and “Pair-Pressure”
according to anonymous
surveys. “Pair-Learning”
reduced the workload of
the teaching staff since the
students could solve more
questions with their
partners.

44

Appendix B
Figure 7: “Usage of tools by experts working alone”

45

Figure 8: “Usage of tools by experts working in pairs”

46

Figure 9: “Usage of tools by novices working alone”

47

Figure 10: “Usage of tools by novices working in pairs”

48

Figure 11: “Usage of tools by mixed pairs”

49

Figure 12: “Usage of tools by developers working alone”

50

Figure 13: “Usage of tools by developers working in pairs”

51

	Contents
	Abstract
	Zusammenfassung
	Riassunto
	Acknowledgement
	1. Introduction
	1.1. Problem Statement
	1.2. Aims and Objectives
	1.3. Research questions
	1.4. Methodology

	2. Background and Related Work
	2.1. Agile Methodology in Software Development
	2.2. Extreme Programming
	2.3. Pair Programming
	2.4. Research on Pair Programming
	2.5. Research on tool usage
	2.6 Contribution of this study to other research works on Pair Programming and Tool Usage

	3. Research Methodology
	3.1. The Goal-Question-Metric
	3.2. Application of the Goal-Question-Metric to the research

	4. Experimental Settings
	4.1. Structure of this study
	4.2. Data
	4.2.1 The developers
	4.2.2 Data collection

	5. Results
	5.1. Time distribution and usage of tools
	5.2. Transitions and cycles in usage of tools

	6. Discussion
	7. Conclusions and future work
	Bibliography
	Appendix A
	Appendix B­

