

Freie Universität Bozen

Libera Università di Bolzano

REE UNIVERSITY OF BOZEN · BOLZANO

Evolution over time of satisfaction towards a tourist destination: A fuzzy approach

D'Urso P.^a, Disegna M.^b, Massari R.^a, Osti L.^{b,c}

 $^a {\rm La}$ Sapienza, Roma, Italy $^b {\rm Free}$ University of Bozen-Bolzano, School of Economics and Management, Italy $^c {\rm TOMTE},$ The Competence Centre in Tourism Management and Tourism Economics

CBTS 2013 – Competitiveness, Innovation and Markets: The Multifaceted Tourists' Role

4-7 December 2013, Brunico, Free University of Bolzano, Italy

Customer satisfaction is capable of stimulating **repeat visits**, **positive recommendations and consequently new customers**, **reputation enhancement**, **higher acceptance of price increases**, **and higher profitability** (Anderson et al. 1994; Baker and Crompton, 2000; Kozak and Rimmington, 2000; Homburg et al., 2005; Munier and Camelis; 2013).

Satisfaction has been studied in order to **improve the product/service and to effectively design management and marketing strategies** (Kozak and Rimmington, 2000; Munier and Camelis, 2013).

Satisfaction has been analysed in terms of **satisfaction with the single services/products** within the destination, with the destination, and with the holiday/trip as a whole.

Customer satisfaction has been seen as an indicator of destination competitiveness and performance (Enright and Newton, 2004; Alegre and Garau, 2010; Munier and Camelis, 2013).

(日) (周) (王) (王)

Research objectives

The development and maintenance of competitive advantage is largely dependent upon the understanding of visitors' needs, behaviours and **satisfaction**.

Purpose

This study aims to analyse **temporal differences in the satisfaction level** of international visitors to South–Tyrol.

In fact, the temporal analysis offers relevant information on the evolution of the destination facilitating a review of the efficacy of the strategies implemented over the years.

Methodology

Fuzzy clustering algorithm to fuzzy data was adopted in order to find homogeneous groups of visitors according to their satisfaction level per each period under observation.

The results of the two clustering analysis are been compared.

The empirical study

Dataset: annual inbound survey "International Tourism in Italy" of the Banca d'Italia. Observations: international visitors who spent their trips in South–Tyrol (Northern Italy) Period: 2000-01 (1,582 obs.), and 2010-11 (997 ons.)

Level of satisfaction:

The sample: percentage composition

Variables	2000-2001	2010-2011	p-value			
Socio-demographic characteristics						
Male	64.79	68.91	**			
Age						
Less than 35 years old	30.03	21.16	***			
35-44 years old	24.15	28.59	***			
45-64 years old	38.50	36.41				
More than 64 years old	7.08	13.84	***			
Employment status						
Self-employed	21.18	11.53	***			
Employee	53.92	69.71	***			
Retired	14.35	12.44	*			
Other	10.56	6.32	***			
Country of origin						
Austria	9.42	21.06	***			
Germany	68.77	50.85	***			
Other EU countries	15.49	21.46	***			
Outside EU	6.32	6.62				
Trip characteristics						
Alone	19.97	23.97	***			
Only one cities visited	85.90	84.05	*			
Main purpose of travel						
Tourism, leisure, vacation	79.84	76.03	**			
Job	12.07	10.53				
Other personal motivations	8.09	13.44	***			

Notes: Percentage composition is reported. Significance of the z-test was reported.*** $p \leq 0.01$, *** $p \leq 0.05$, * $p \leq 0.1$, = >

M D (FUB)

Method: Fuzzy clustering to fuzzy data

It is not reasonable to assume that an observation is grouped into only one single cluster (Kotler, 1988) since an observation might belong to **more than one cluster** (Li et al., 2013; Russell & Lodwick, 1999).

 \sim Among the wide number of segmentation methods usually adopted in the literature, **fuzzy methods** (Bezdek, 1981) are preferred in order to overcome this problem.

Human feeling or attitudes are always fuzzy (Chan et al., 2012; Sun and Wu, 2007). Oftentimes, Likert-type scales are used in order to capture information regarding opinions, satisfaction, and emotions but Likert-type scales entails two kinds of **vagueness and uncertainty**:

- 1. Individual judgments/evaluations depend on **prior expectations, beliefs, preferences** of the respondents (Benítez et al., 2007; Coppi & D'Urso, 2002; Engel et al., 1995).
- 2. Respondents must convert their opinion on a scale and this **conversion can distort the original opinion** that had to be captured (Hsu and Lin, 2006).

 \sim Since it is difficult to manage with uncertain and/or vague data through traditional methods, fuzzy sets and fuzzy numbers are commonly used (Chou et al., 2008)

イロト イポト イヨト イヨト

Fuzzy numbers

A general class of fuzzy data, called LR fuzzy data, can be defined in a metric form following Dubois and Prade (1988):

$$\widetilde{\mathbf{X}} \equiv \{ \widetilde{x}_{ik} = (m_{ik}, l_{ik}, r_{ik})_{LR} : i = 1, \dots, N; \, k = 1, \dots, K \},$$
(1)

where:

- $\tilde{x}_{ik} = (m_{ik}, l_{ik}, r_{ik})_{LR}$ denotes the LR fuzzy variable k observed on the ith unit;
- m_{ik} indicates center, i.e. the "core" of the fuzzy number;
- l_{ik} and r_{ik} represent the left and right spread, i.e. the vagueness of the observation.

The fuzzy recoding from the Likert scale to the fuzzy numbers used in this study is displayed in the following figure:

Distance for fuzzy data

Since fuzzy segmentation variables are used, the following distance measure for fuzzy data proposed by Coppi et al. (2012) is adopted:

$$d_F^2(\tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_{i'}) = \left[w_M^2 \left(\|\mathbf{m}_i - \mathbf{m}_{i'}\|^2 \right) + w_S^2 \left(\|\mathbf{l}_i - \mathbf{l}_{i'}\|^2 + \|\mathbf{r}_i - \mathbf{r}_{i'}\|^2 \right) \right], \quad (2)$$

where:

- $\tilde{\mathbf{x}}_i \equiv \{\tilde{x}_{ik} = (m_{ik}, l_{ik}, r_{ik})_{LR} : k = 1, \dots, K\}$ denote the fuzzy data vector for the *i*th unit;
- \mathbf{m}_i , \mathbf{l}_i and \mathbf{r}_i are the vectors of the centers and of the left and right spreads, respectively;
- $\|\mathbf{m}_i \mathbf{m}_{i'}\|^2$ is the squared Euclidean distances between the centers;
- $\|\mathbf{l}_i \mathbf{l}_{i'}\|^2$ and $\|\mathbf{r}_i \mathbf{r}_{i'}\|^2$ are the squared Euclidean distances between the left and right spread, respectively;
- w_M, w_S ≥ 0 are suitable weights for the center component and the spread component of (2), constrained by the following conditions:

 $w_M + w_S = 1$ (normalization condition) and

 $w_M \ge w_S \ge 0$ (coherence condition) (Coppi et al., 2012).

Fuzzy clustering for fuzzy data

Fuzzy C-Means (FCM) clustering algorithm (Bezdek, 1981) was adopted. Using the distance measure proposed by Coppi et al. (2012), the FCM algorithm for fuzzy data becomes:

$$\begin{cases} \min: \sum_{i=1}^{N} \sum_{c=1}^{C} u_{ic}^{p} d_{F}^{2}(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{h}}_{c}) \\ \sum_{c=1}^{C} u_{ic} = 1, \quad u_{ic} \ge 0, \\ w_{M} \ge w_{S} \ge 0; \, w_{M} + w_{S} = 1 \end{cases}$$
(3)

where:

- u_{ic} indicates the membership degree of the *i*th unit in the *c*th cluster;
- $d_F^2(\tilde{\mathbf{x}}_i, \tilde{\mathbf{h}}_c)$ represents the suggested dissimilarity measure between the *i*th unit and the prototype of the *c*th cluster;
- p > 1 is a weighting exponent that controls the fuzziness of the obtained partition;
- the fuzzy vector $\tilde{\mathbf{h}}_c \equiv \{\tilde{h}_{ck} = (h_{ck}^M, h_{ck}^L, h_{ck}^R)\}$ represents the fuzzy prototype of the *c*th cluster.

Note that the prototypes obtained with the FCM algorithm for fuzzy data are of LR fuzzy type, inheriting their typology by the observed data (Coppi et al., 2012).

In regards to the identification of the optimal number of clusters, the following compactness and separation validity index (S) proposed by Xie and Beni (1991) was adopted:

$$S = \frac{\sum_{i=1}^{N} \sum_{c=1}^{C} u_{ic}^{p} d_{F}^{2}(\tilde{\mathbf{x}}_{i}, \tilde{\mathbf{h}}_{c})}{N \cdot (d_{min})^{2}}$$
(4)

イロト 不得 トイヨト イヨト

where:

- N is the total number of data;
- $(d_{min})^2$ is called the separation of the fuzzy *c*-partition.

 d_{min} is the minimum distance between fuzzy prototypes: $d_{min} = \min_{c,i} d_F^2(\tilde{\mathbf{h}}_c, \tilde{\mathbf{h}}_i)$

A smaller S indicates that all the clusters are overall compact and separate to each other \implies The goal is to find the partition with the smallest S.

Profiling

In order to profile the identified clusters the matrix of other information ($\mathbf{Y} = \{(y_{i1}, \ldots, y_{ik}, \ldots, y_{iK}) : i = 1, \ldots, N; k = 1, \ldots, K\}$), such as the socio-demographic and traveling characteristics, collected through the survey can be used.

When the profiling variables are **categorical**, the weighted percentage frequency (\tilde{f}_{kjc}) , referring to the *j*th (j = 1, ..., J) modality of the *k*th original variable (\mathbf{y}_k) for the *c*th (c = 1, ..., C) cluster, was calculated as follows:

$$\tilde{f}_{kjc} = \frac{\sum_{i=1}^{N} y_{ikj} u_{ic}}{\sum_{c=1}^{C} \sum_{i=1}^{N} y_{ikj} u_{ic}} \cdot 100$$
(5)

When the profiling variables are **quantitative**, the usual weighted mean (\tilde{y}_{kc}) was calculated as follows:

$$\tilde{y}_{kc} = \frac{\sum_{i=1}^{N} y_{ik} u_{ic}}{\sum_{i=1}^{N} u_{ic}}$$
(6)

where u_{ic} is the membership degree of unit i to each final cluster c.

M D (FUB)

The three clusters solution

э

・ロト ・個ト ・ヨト ・ヨト

Rank of the centroids: comparison among clusters

	Satisfaction	Cluster 1	Cluster 2	Cluster 3	
		"Unfulfilled"	"With reservations"	"Enthusiasts"	
	Friendliness	8.110 (7)	8.613 (8)	9.382 (8)	
	Art		8.57 (7)	9.165 (6)	
	Landascape	8.87 (10)	9.295 (10)	9.718 (10)	
2000-01	Accommodation	7.288 (4)	8.199 (5)	9.139 (5)	
	Food & beverage	8.15 (9)	8.691 (9)	9.399 (9)	
	Price	5.71 (1)	6.242 (1)	7.019(1)	
	Products sold	7.147 (3)	7.809 (2)	8.532 (2)	
	Information	6.95 (2)	7.911 (3)	8.849 (3)	
	Safety	7.337 (5)	8.097 (4)	8.968 (4)	
	Overall	8.003 (6)	8.552 (6)	9.315 (7)	
	Satisfaction	Cluster 1	Cluster 2	Cluster 3	
		"Unfulfilled"	"With reservations"	"Enthusiasts"	
	Friendliness	7.916 (9)	8.619 (<mark>9</mark>)	9.300 (5)	
	Art	7.643 (7)	8.396 (7)	9.327 (7)	
	Landscape	8.002 (10)	8.863 (10)	9.644 (10)	
2010-11	Accommodation	7.611 <mark>(4</mark>)	8.321 (4)	9.335 <mark>(8</mark>)	
2010-11	Food & beverage	7.639 (6)	8.385 (6)	9.310 (6)	
	Price	6.038 (1)	6.717 (1)	8.088 (1)	
	Products sold	7.402 (2)	7.946 (2)	8.892 (2)	
	Information	7.559 (3)	8.251 (3)	9.258 (3)	
	Safety	7.689 (8)	8.541 (8)	9.437 (9)	
	Overall	7.627 (5)	8.338 (5)	9.269 (4)	

Rank of the centroids: comparison between periods

	Cluster 1 "	Unfulfilled"	Cluster 2 "With reservations"		
	2000-2001 2010-11		2000-2001	2010-11	
Friendliness	8.110 (7)	7.916 (9)	8.613 (8)	8.619 (9)	
Art	8.131 (8)	7.643 (7)	8.570 (7)	8.396 (7)	
Landascape	8.870 (10)	8.002 (10)	9.295 (10)	8.863 (10)	
Accommodation	7.288 (4)	7.611 (4)	8.199 (5)	8.321 (4)	
Food & beverage	8.150 (9)	7.639 (6)	8.691 (9)	8.385 (6)	
Price	5.710 (1)	6.038 (1)	6.242 (1)	6.717 (1)	
Products sold	7.147 (3)	7.402 (2)	7.809 (2)	7.946 (2)	
Information	6.95 (2)	7.559 (3)	7.911 (3)	8.251 (3)	
Safety	7.337 (5)	7.689 (8)	8.097 (4)	8.541 (8)	
Overall	8.003 (6)	7.627 (5)	8.552 (6)	8.338 (5)	

	Cluster 3 "Enthusiasts"		
	2000-2001	2010-11	
Friendliness	9.382 (8)	9.300 (5)	
Art	9.165 (6)	9.327 (7)	
Landascape	9.718 (10)	9.644 (10)	
Accommodation	9.139 (5)	9.335 (8)	
Food & beverage	9.399 (9)	9.310 (6)	
Price	7.019 (1)	8.088 (1)	
Products sold	8.532 (2)	8.892 (2)	
Information	8.849 (3)	9.258 (3)	
Safety	8.968 (4)	9.437 (9)	
Overall	9.315 (7)	9.269 (4)	

*M*𝗊 (FUB)

E

イロト イヨト イヨト イヨト

Profiling: comparison among clusters

Variables	2000-2001				2010-2011			
	Unfulfilled	With	Enthusiasts	p-value	Unfulfilled	With	Enthusiasts	p-value
		reservations				reservations		-
Socio-demographic charac	cteristics						1	
Male	67.97	66.32	61.14	*	70.74	69.60	66.13	
Age				**				
Less than 35 years old	35.54	29.04	27.39		22.39	21.25	19.74	
35-44 years old	25.49	25.57	22.02		26.57	28.33	31.07	
45-64 years old	33.58	38.09	42.52		35.52	36.54	37.22	
More than 64 years old	5.39	7.30	8.07		15.52	13.88	11.97	
Employment status								
Self-employed	23.23	20.87	20.1		11.38	11.68	11.65	
Employee	54.03	54.61	53.27		68.56	70.94	70.22	
Retired	11.00	14.43	16.42		14.07	11.97	11.33	
Other	11.74	10.09	10.22		5.99	5.41	6.80	
Country of origin								***
Austria	10.02	9.19	9.21		29.85	18.13	14.84	
Germany	66.75	69.50	69.35		42.99	53.26	56.45	
Other EU countries	16.63	15.08	15.08		20.59	21.25	22.58	
Outside EU	6.60	6.24	6.37		6.57	7.36	6.13	
Trip characteristics								
Alone	24.45	19.62	17.25	**	31.14	21.81	18.71	***
Only one cities visited	82.64	86.63	87.44	*	86.97	83.57	81.61	
Main purpose of travel				*				***
Tourism, leisure, vacation	74.88	80.94	82.08		68.65	77.21	82.63	
Job	14.88	11.61	10.55		13.43	10.54	7.40	
Other personal motivations	10.24	7.45	7.37		17.92	12.25	9.97	

Notes: Percentage composition is reported. Significance of the Chi-square test was reported.*** $p \leq 0.01$, ** $p \leq 0.05$, * $p \leq 0.1$.

イロン 不通 とうほう うほう 二日

Profiling: comparison between periods

Variables	Unfulfilled		With Reservation			Enthusiasts			
	2000-2001	2010-2011	p-value	2000-2001	2010-2011	p-value	2000-2001	2010-2011	p-value
Socio-demographic characteristics									
Male	67.97	70.75	*	66.32	69.60	**	61.14	66.13	***
Age									
Less than 35 years old	35.54	22.39	***	29.04	21.25	***	27.39	19.74	***
35-44 years old	25.49	26.57		25.57	28.33	*	22.02	31.07	***
45-64 years old	33.58	35.52		38.09	36.54		42.52	37.22	***
More than 64 years old	5.39	15.52	***	7.30	13.88	***	8.07	11.97	***
Employment status									
Self-employed	23.23	11.38	***	20.87	11.68	***	20.10	11.61	***
Employee	54.03	68.56	***	54.61	70.94	***	53.27	70.32	***
Retired	11.00	14.07	**	14.43	11.97	**	16.42	11.29	***
Other	11.74	5.99	***	10.09	5.41	***	10.22	6.77	***
Country of origin									
Austria	10.02	29.85	***	9.19	18.13	***	9.21	14.84	***
Germany	66.75	42.99	***	69.50	53.26	***	69.35	56.45	***
Other EU countries	16.63	20.60	***	15.08	21.25	***	15.08	22.58	***
Outside EU	6.60	6.57		6.24	7.37		6.37	6.13	
Trip characteristics									
Alone	24.45	31.14	***	19.62	21.81	*	17.25	18.71	
Only one cities visited	82.64	86.87	***	86.63	83.57	**	87.44	81.61	***
Main purpose of travel									
Tourism, leisure, vacation	74.88	68.66	***	80.94	77.21	**	82.08	82.64	
Job	14.88	13.43		11.61	10.54		10.55	7.40	***
Other personal motivations	10.24	17.91	***	7.45	12.25	***	7.37	9.97	**

Notes: Percentage composition is reported. Significance of the z-test was reported. *** $p \le 0.01$, ** $p \le 0.05$, * $p \le 0.1$.

Landscape has resulted to be the most satisfying factor for the three clusters and across the years.

Since the late 1980s several strategies have been implemented in order to keep farmers (and not only) on the mountains.

As stated by Luis Durnwalder (president of the Province of Bolzano from 1989 to 20013) the maintenance of nature and agricultural landscape has an added value for the province and for that reason **public funds are given to mountain farmers in order to allow them economic survival on the mountains**.

In exchange, **farmers maintain both the natural and cultural landscape**, so important for the comparative advantage of South Tyrol as a tourism destination.

Some points to be considered on "Accommodation"

Satisfaction with **Accommodation** has increased over the years for the "Enthusiasts".

Four main factors:

- Decentralisation of the regulation in favour of regional autonomies → This give the opportunity to Bolzano province to focus on quality, setting high standards in the local hotel rating system, which are in fact higher than in nearby and competing Italian destinations.
- Since 2001, the 4-star and 3-star Superior have been introduced in the local rating system → Several hotel entrepreneurs upgraded their infrastructures to the Superior category.
- 3. Within the public policy of stimulating farming and private enterprises in rural mountain areas, incentives have been given to farmers and hotel owners for the renovations of existing buildings → Many hotels have been renovated leading to a change in category by some hotels
- 4. The average satisfaction increase but the highly satisfied and dissatisfied customers decrease → Repeat visitors have higher expectations before the holiday and the surprise effect decreases influencing satisfaction.

・ ロ と ・ 雪 と ・ 雪 と ・ 日 と

Some points to be considered on "Friendliness"

Satisfaction with **Friendliness** has decreased over the years for the "Enthusiasts" and it has increased for the "Unfulfilled".

Three main factors:

- South-Tyrol counts for around 75% German speaking inhabitants and 25% Italian speaking inhabitants. The main historic international market of this area is Germany, with a much lower proportion of Austrian and Swiss tourists ~ Communication and cultural understanding between tourists and hosts has been always smooth but the opening to new markets from Eastern Europe has lead to a certain degree of dissatisfaction.
- Although South-Tyrol is part of Italy, most of the population lives according to German/Austrian traditions → The Eastern European tourists coming in South-Tyrol thinking to find the typical Italian lifestyle of a Mediterranean country are disappointed.
- **3.** In general **locals tend to speak only German and Italian**, making any interaction with new markets even harder.

・ロト ・回ト ・ヨト ・ヨト

Some points to be considered on "Food & Beverages"

Satisfaction with Food & Beverages has generally decreased over the years.

This level of dissatisfaction is definitely worth of further studies and analysis.

Three possible factors:

- 1. Eastern European tourists expect typical Italian food and drinks, which is not typically served in this area.
- Many studies have pointed out that satisfaction is the result of the trade-off between quality and price and tourists are generally dissatisfied with prices and cost of living.
- 3. Perhaps customers come to South Tyrol with high expectations that cannot be met?

・ロト ・四ト ・ヨト ・ヨト

Conclusions

The policies undertaken by the local government to keep populated and add value to mountain and peripheral areas **have been successful** both in terms of landscape and quality standard of the infrastructures outside the main towns of the province.

The decrease in satisfaction with Food & Beverages **should be further studies to determine what has caused such a change** in one of the main niche markets of the destination.

The market is changing so it is important to:

- 1. inform customers of the **history and location of South-Tyrol** so that tourists are coming with expectations that can be met.
- 2. inform tourism enterprises and hosts of **cross-cultural differences**. Tourism is an intangible product where employees-customer relations, host-tourists relations and finally customer-to-customer relations play a significant role in the satisfaction with the holiday experience. Cross-cultural studies and understanding and compatibility management in hotels should be implemented.

<ロ> (日) (日) (日) (日) (日)

Thank you for your attention!

- Pierpaolo D'Urso: Pierpaolo.Durso@uniroma1.it
- Marta Disegna: marta.disegna@unibz.it
- Riccardo Massari: riccardo.massari@uniroma1.it
- Linda Osti: Linda.Osti@unbz.it

Acknowledgements: STTOBS

A research project by the Free University of Bolzano, Banca di Trento e Bolzano, and Intesa Sanpaolo

STTOBS - South Tyrolean Tourism OBServatory

Turismo in Alto Adige: un'esperienza olistica per il benessere di corpo, mente e spirito!

MD (FUB)

Some references

- Benítez, J.M., Martín, J.C., Román, C. (2007). Using Fuzzy number for measuring quality of service in the hotel industry. *Tourism management*, 28:544–555.

– Bezdek, J. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA.

- Coppi, R., & D'Urso, P. (2002). Fuzzy k-mean clustering models for triangular fuzzy time trajectories. *Statistical Methods and Applications*, 11: 21–24.

- Coppi, R., DUrso, P., and Giordani, P. (2012). Fuzzy and possibilistic clustering for fuzzy data. *Computational Statistics & Data Analysis*, 56(4):915–927.

- Chiang, W.-Y. (2011). Establishment and Application of Fuzzy Decision Rules: an Empirical Case of the Air Passenger Market in Taiwan. *International Journal of Tourism Research*, 13: 447–456.

- Kim, Y., Suh, B., and Eves, A. (2010). The relationships between foodrelated personality traits, satisfaction, and loyalty among visitors attending food events and festivals. *International Journal of Hospitality Management*, 29:216–226.

– Koc, E. and Altinay, G. (2007). An analysis of seasonality in monthly per per- son tourist spending in Turkish inbound tourism from a market segmentation perspective. *Tourism Management*, 28(1):227–237.

- Kotler P. (1988). Marketing Management. 6th edn. Prentice-Hall: Englewood Cliffs, NJ.

– Kozak, M. and Rimmington, M. (2000). Tourist satisfaction with Mallorca, Spain, as an off-season holiday destination. *Journal of Travel Research*, 38(3):260–269.

– Lee, J. and Beeler, C. (2009). An investigation of predictors of satisfaction and future intention: Links to motivation, involvement, and service quality in a local festival. *Event Management*, 13(1):17–29.

- Likert, R. (1932). A technique for the measure of attitudes. Archives of Psychology, 140: 5-55.

- Russell S, Lodwick W. (1999). Fuzzy clustering in data mining for telco database marketing campaigns. 18th International Conference of the North American in Fuzzy Information Processing Society, Fuzzy Information Processing Society: New York, NY (720726).

- Xie, X. and Beni, G. (1991). A validity measure for fuzzy clustering. *IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI)*, 13(8):841–847.

- Zhang, L., Qu, H., and Ma, J. (2010). Examining the relationship of exhibition attendees satisfaction and expenditure: The case of two major exhibitions in China. *Journal of Convention & Event Tourism*, 11(2):100–1189.

Level of satisfaction

Segmentation variables	Descriptions		
Level of satisfaction with the different aspects of the destination			
Friendliness	1= very satisfied in hospitality and friendliness of the people; 0=otherwise		
Art	1= very satisfied in cities and works of art; 0=otherwise		
Landscape	1= very satisfied in landscape and natural environment; 0=otherwise		
Accommodation	1= very satisfied in hotels and other accommodation; 0=otherwise		
Food & beverage	1= very satisfied in food and beverage; $0=$ otherwise		
Price	1= very satisfied in price and cost of living; $0=$ otherwise		
Products sold	1= very satisfied in quality and variety of products offered in stores; 0=otherwise		
Safety	1 = very satisfied in safety of tourists; $0 =$ otherwise		
Overall satisfaction	1= very satisfied in overall satisfaction; $0=$ otherwise		

2

・ロト ・回ト ・ヨト ・ヨト

Description of the profiling variables

Profiling variables	Descriptions			
Socio-demographic and economic characteristics				
Male	1= Male; 0= Female			
Age				
Less than 35 years old	1 = Less than 35 years old; $0 =$ otherwise			
35-44 years old	1 = 35-44 years old; $0 =$ otherwise			
45-64 years old	1 = 45-64 years old; $0 = $ otherwise			
More than 65 years old	1 = 65 years old and over; $0 =$ otherwise			
Employment status				
Self-employed	1 = The respondent is self-employed; $0 =$ otherwise			
Office worker	1 = The respondent is office worker; $0 =$ otherwise			
Employee	1 = The respondent is employee; $0 =$ otherwise			
Retired	1 = The respondent is retired; $0 =$ otherwise			
Other employment status	1 = The respondent is in other occupation; $0 =$ otherwise			
Country of origin				
Austria	1 = The respondent comes from Austria; $0 =$ otherwise			
Germany	1 = The respondent comes from Germany; $0 =$ otherwise			
Other EU countries	1 = The respondent comes from other European countries; $0 =$ otherwise			
Outside EU	1 = The respondent comes from a country outside Europe; $0 =$ otherwise			
Trip characteristics				
Visit alone	1 = The respondent makes the trip alone; $0 =$ otherwise			
Only one cities visited	1 = Only one city visited in South-Tyrol during the trip; $0 = $ otherwise			
Main purpose of travel				
Tourism, leisure, vacation	1 = The respondent makes the trip for holiday purposes; $0 =$ otherwise			
Job	1 = Business trip; 0 = otherwise			
Other personal motivations	1 = The respondent makes the trip for a personal motivations			
	(visiting friends & relatives, study, shopping, etc.); $0 =$ otherwise			

International tourists arrivals in South-Tyrol

FCM for fuzzy data algorithm

- 1: Fix C and max.iter;
- 2: Set iter = 0;
- 3: Generate the initial membership degree matrix $\mathbf{U}^{(0)}$, subject to: $\sum_{c=1}^{C} u_{ic} = 1, \qquad u_{ic} \ge 0$
- 4: Compute the prototypes $\tilde{\mathbf{h}}_{c}^{(0)} \equiv \{\tilde{h}_{ck}^{(0)} = (h_{ck}^{M(0)}, h_{ck}^{L(0)}, h_{ck}^{R(0)})\}, c = 1, \dots, C$ using $\mathbf{U}^{(0)}$;
- 5: repeat
- 6: Update the weights $w_M^{(t)}$ and $w_S^{(t)}$, keeping fixed $\mathbf{U}^{(t-1)}$ and $\tilde{\mathbf{h}}_c^{(t-1)}$, $c = 1, \ldots, C$, where $t \ge 1$ denotes the iteration number, and set $w_M^{(t)} = w_S^{(t)} = 0.5$ if $w_S^{(t)} \ge 0.5$;
- 7: Update the prototypes $\tilde{\mathbf{h}}_{c}^{(t)}, c = 1, \dots, C$, keeping fixed $\mathbf{U}^{(t-1)}$;
- 8: Update the membership degree matrix $\mathbf{U}^{(t)}$ keeping fixed $\tilde{\mathbf{h}}_{c}^{(t)}$, $c = 1, \ldots, C$ and $w_{M}^{(t)}$ and $w_{S}^{(t)}$.
- 9: $iter \leftarrow iter + 1;$
- 10: until $\|\mathbf{U}^{(t)} \mathbf{U}^{(t-1)}\| < \varepsilon, \varepsilon > 0$, or iter = max.iter

•

イロン イロン イヨン イヨン 三日