A multivariate nonlinear analysis of tourism expenditures

Enrico Foscolo

Free University of Bozen-Bolzano School of Economics and Management

December 6th, 2013

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th. 2013 1 / 23

DQ P

Acknowledgments

Based on a joint work with **M. Disegna** and **F. Durante** (Free University of Bozen–Bolzano)

Disegna, M., Durante, F., Foscolo, E. (2013). A multivariate nonlinear analysis of tourism expenditures. Available at BEMPS (working papers): http://www.unibz.it/en/economics/research/ workingpapers/default.html

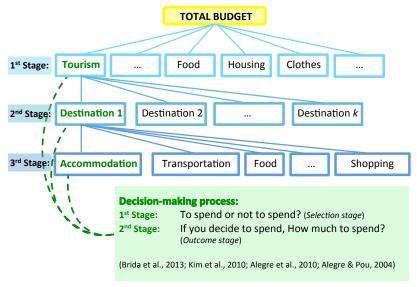
We thank FUB, Banca di Trento e Bolzano, and Intesa Sanpaolo

STTOBS - South Tyrolean Tourism OBServatory

Turismo in Alto Adige:

un'esperienza olistica per il benessere di corpo, mente e spirito!

Foscolo, E. (FUB)


Copulas & Tourism research

December 6th, 2013 2 / 23

MQ P

ヨトィヨト

Visitors' expenditures

(The three-stage budgeting process proposed by Syriopoulos & Sinclair, 1993)

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 3 / 23

The main question

Focusing on Selection stage,

How can we deal with dependence among single decisions?

Foscolo, E. (FUB)

Copulas & Tourism research

-December 6th, 2013 4/23

DQ P

イロト イポト イヨト イヨト

From a probabilistic point of view ...

Let Y_j be a dichotomous variable describing the decision to spend $(Y_j = 1)$ or not $(Y_j = 0)$ in the *j*-th expenditure category

How to define $\mathbb{P}(Y_1 = y_1, ..., Y_j = y_j | X), y_j \in \{0, 1\}$?

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Our solution (roughly speaking ...)

Fitting univariate Logit regressions first

₩

Grouping them by means of a Copula function

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 6 / 23

DQ P

What Copulas are?

Multivariate distribution functions whose univariate margins are uniformly distributed on [0, 1]

The best alternative (at the present) to several classical multivariate distribution functions such as Normal, *t* Student, or Pareto distributions

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 7 / 23

Multivariate distribution functions whose univariate margins are uniformly distributed on [0, 1]

The best alternative (at the present) to several classical multivariate distribution functions such as Normal, *t* Student, or Pareto distributions

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 7 / 23

SOR

Allow to model discrete as well as continuous random variables

 Flexibility in describing extremal dependence in a convenient way

DQ P

- Allow to model discrete as well as continuous random variables
- Flexibility in describing extremal dependence in a convenient way

DQ P

• Permit the combination of any univariate marginal distributions that do not need to come from the same family

Able to accommodate various decision-making rules

• Encompass a number of existing multivariate models, and provide a framework for generating many more

Able to reflect various behavioral interactions in a consistent way

Foscolo, E. (FUB)

Copulas & Tourism research

 Permit the combination of any univariate marginal distributions that do not need to come from the same family

Able to accommodate various decision-making rules

• Encompass a number of existing multivariate models, and provide a framework for generating many more

Able to reflect various behavioral interactions in a consistent way

Foscolo, E. (FUB)

Copulas & Tourism research

 Permit the combination of any univariate marginal distributions that do not need to come from the same family

Able to accommodate various decision-making rules

 Encompass a number of existing multivariate models, and provide a framework for generating many more

Able to reflect various behavioral interactions in a consistent way

Foscolo, E. (FUB)

Copulas & Tourism research

 Permit the combination of any univariate marginal distributions that do not need to come from the same family

Able to accommodate various decision-making rules

 Encompass a number of existing multivariate models, and provide a framework for generating many more

Able to reflect various behavioral interactions in a consistent way

Foscolo, E. (FUB)

Copulas & Tourism research

The Copula-based logit choice model

$$\mathbb{P}(Y_1 = y_1, \dots, Y_j = y_j | \mathbf{X}) = \\ = \psi \{F_1(y_1 | \mathbf{X}_1), \dots, F_j(y_j | \mathbf{X}_j); C\}$$

• C ∈ C₆

•
$$F_j(y_j | \mathbf{X}_j) = \begin{cases} 0 & y_j < 0\\ \frac{1}{1 + \exp(\mathbf{X}_j^{\top} \mathbf{\beta}_j)} & 0 \le y_j < 1\\ 1 & y_j \ge 1 \end{cases}$$
, $\mathbf{X}_j \subseteq \mathbf{X}$

• see Song (2007) for a definition of $\psi(\cdot)$

➡ Go to the formula

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 10 / 23

DQ P

The Copula-based logit choice model

$$\mathbb{P}(Y_1 = y_1, \dots, Y_j = y_j | \mathbf{X}) = \\ = \psi \{F_1(y_1 | \mathbf{X}_1), \dots, F_j(y_j | \mathbf{X}_j); C\}$$

O ∈ Ce

•
$$F_j(y_j | \boldsymbol{X}_j) = \begin{cases} 0 & y_j < 0 \\ \frac{1}{1 + \exp(\boldsymbol{X}_j^\top \boldsymbol{\beta}_j)} & 0 \le y_j < 1 \\ 1 & y_j \ge 1 \end{cases}$$
, $\boldsymbol{X}_j \subseteq \boldsymbol{X}$

• see Song (2007) for a definition of $\psi(\cdot)$

NN.		the	formu	
	90		TOTTTU	

Foscolo, E. (FUB)

December 6th, 2013 10 / 23

DQ P

How to estimate the Copula-based logit choice model? (I)

Two-step estimator (known as **the inference functions for margins method**)

(1) Fitting marginal parametric distributions first; i.e., obtaining the maximum likelihood estimates $\hat{\beta}_1, \ldots, \hat{\beta}_j$

(2) Fitting the parametric Copula for fixed margins afterwards; i.e., obtaining the maximum (composite) likelihood estimate $\hat{\theta}$

Asymptotic properties have been investigated by Joe (1997, 2005)

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 11 / 23

DQ C

(日)

How to estimate the Copula-based logit choice model? (I)

Two-step estimator (known as **the inference functions for margins method**)

- (1) Fitting marginal parametric distributions first; i.e., obtaining the maximum likelihood estimates $\hat{\beta}_1, \ldots, \hat{\beta}_j$
- (2) Fitting the parametric Copula for fixed margins afterwards; i.e., obtaining the maximum (composite) likelihood estimate $\hat{\theta}$

Asymptotic properties have been investigated by Joe (1997, 2005)

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 11 / 23

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

How to estimate the Copula-based logit choice model? (I)

Two-step estimator (known as **the inference functions for margins method**)

- (1) Fitting marginal parametric distributions first; i.e., obtaining the maximum likelihood estimates $\hat{\beta}_1, \ldots, \hat{\beta}_j$
- (2) Fitting the parametric Copula for fixed margins afterwards; i.e., obtaining the maximum (composite) likelihood estimate $\hat{\theta}$

Asymptotic properties have been investigated by Joe (1997, 2005)

Foscolo, E. (FUB)

Copulas & Tourism research

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

How to estimate the Copula-based logit choice model? (II)

In practice, different Copula families may be fitted to the same set of univariate margins

A criterion is need in order to select a proper Copula among the possible different functions

\downarrow

Perform the likelihood-ratio test for nested models due to Vuong (1989)

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 12 / 23

DQ P

How to estimate the Copula-based logit choice model? (II)

In practice, different Copula families may be fitted to the same set of univariate margins

A criterion is need in order to select a proper Copula among the possible different functions

∜

Perform the likelihood-ratio test for nested models due to Vuong (1989)

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 12 / 23

DQ C

The method at work

Dataset

"International Tourism in Italy": annual survey, Bank of Italy (2011)

Observation

550 international visitors who have visited any city in South–Tyrol for "tourism, holiday, leisure"

DQ C

イロト イポト イラト イラト

Univariate Logit regression results

	Accommodation	Transportation	Shopping
Food & beverages expenditure	0.001** (0.001)	0.001** (0.001)	0.001* (0.001)
Expenditure for other services	0.001 [*] (0.001)	0.001**	0.001 (0.001)
German-speaking	-1.049^{**}	-1.078*** (0.35)	0.473** (0.22)
Retired	-1.447^{***}	-1.158^{***}	-0.038 (0.24)
Alone traveler	-1.273*** (0.33)	-0.895*** (0.28)	-0.285 (0.29)
Safety (Level of satisfaction)	0.700***	0.808*** (0.14)	0.424***
Constant	-2.796*** (1.02)	-4.145*** (1.19)	-3.272*** (0.73)

*...*p* < 10%, **...*p* < 5%, * * *...*p* < 1%

Foscolo, E. (FUB)

Copulas & Tourism research

-December 6th, 2013 14/23

DQ (P

Image: A math a math

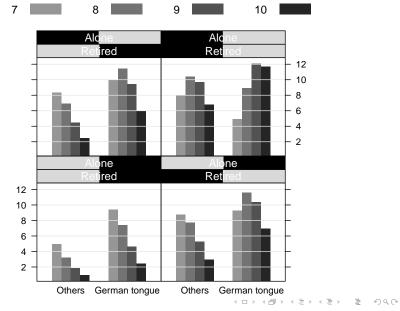
The core

14 Copula models \Rightarrow the **Normal Copula**

$$\hat{\boldsymbol{\theta}} = \left\{ \begin{matrix} 0.729^{\star\star\star}, 0.193^{\star\star\star}, 0.246^{\star\star\star} \\ (0.012) & (0.023) & (0.001) \end{matrix} \right\}$$

Foscolo, E. (FUB)

Copulas & Tourism research


December 6th, 2013 15 / 23

1

900

イロト イポト イヨト イヨト

Which differences? . Go to the output

Concluding remarks (I)

Aim

study the interactions in tourists' decisions

Given a set of explanatory variables, the Copula-based logit choice model is able to predict the probability that the tourist is likely to spend in two or more categories

DQ P

Concluding remarks (II)

Case study

Data collected by Bank of Italy in 2011 throughout the survey entitled "International Tourism in Italy" are analyzed

Main finding independence among expenditures underestimates the probability of spending in all categories

Implications

specific marketing campaign that offer a combination of different services (meals, lodging, shopping, etc.) according to tourists' profile

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 18 / 23

SOR

医下子 医下

What now?

Money, of course!

In other words, we leave a thorough investigation of the second stage (the outcome stage) and **its integration with the selection phase** to future research

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 19 / 23

DQ P

What now?

Money, of course!

In other words, we leave a thorough investigation of the second stage (the outcome stage) and **its integration with the selection phase** to future research

Foscolo, E. (FUB)

Copulas & Tourism research

December 6th, 2013 19 / 23

DQ P

イロト イポト イラト イラト

Song (2007)

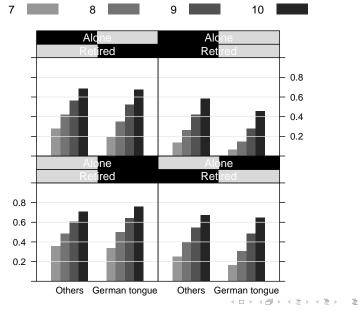
$$\mathbb{P}(Y_{1} = y_{1}, \dots, Y_{J} = y_{J} | \boldsymbol{X}) =$$

= $\sum_{j_{1}=0}^{y_{1}} \dots \sum_{j_{J}=0}^{y_{J}} (-1)^{\sum_{k=1}^{J} (j_{k}+y_{k})} C\{F_{1}(j_{1} | \boldsymbol{X}_{1}), \dots, F_{J}(j_{J} | \boldsymbol{X}_{J})\}$

Go Back
 Go
 Go

Foscolo, E. (FUB)

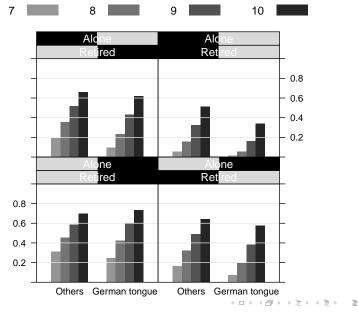
Copulas & Tourism research


December 6th, 2013 21 / 23

1

900

<ロト < 団 > < 三 > < 三 >


The Normal-based output •••••

Foscolo, E. (FUB)

Copulas & Tourism research

The Independence-based output

Foscolo, E. (FUB)

Copulas & Tourism research