Innovative Performances in Hospitality: Determinants and Consequences

Federico Boffa¹ Marianna Succurro²

¹Università di Macerata

²Università della Calabria

Friday, December 13th 2013

Motivation - I

- Literature on innovation
 - Link between innovation and patenting (Moser, Moser and Voena, Dosi)
 - Explores mainly the determinants of innovation
 - Patenting used mostly as measure of innovation
- Little has been done on patenting in the tourism sector
 - while the tourism sector is known to be significantly innovative (Hjalager, 2010)
- Possibly, patenting was not a good way to capture "traditional innovations" in tourism
 - Service sector
- Recent changes, in particular digitalization, may have changed this pattern
 - There appears to be an increasing trend in patents in the hospitality sector.

Motivation - II

- Classes of innovations in tourism
 - Product or service innovations
 - Process innovations
 - Managerial innovations
 - Management innovations
 - Institutional innovation
- Determinants of patenting (since Schumpeter)
 - size
 - market power
 - technological opportunities
 - market opportunities

Overview of the paper

- We analyze the determinants of the patenting behavior in the Italian hospitality sector
 - We find that larger and younger firms patent more, while firms with more market power patent less
- We analyze the impact of patenting activity on firms' performances
 - \bullet We find that patenting very significantly (1%) increases turnover, while it has no significant impact on labor productivity
- Based on the relation between market power and propensity to patent, we build a theory model to rationalize this behavior

Data

- Italian accounting data → Amadeus database (Bureau van Dijk)
- Patents data → Orbis database (Bureau van Dijk)
- We measure innovative performance in terms of successful patents applications
- We measure firms' economic performance in terms of:
 - turnover
 - productivity
 - productivity measured as (value added/employees)
 - profit
 - ROI
- Our sample spans the 2003-2010 years

Descriptives (2010)

• Patenting and non-patenting firms respectively:

Variable	Obs	Mean	Std. Dev	Min	Max
Turnover 2010	17.	2 11110,21	103234,7	0	1352687
Age	20	2 72, 54455	16,06115	1	108
la_TA_2010	17	1 0,2553475	0,310469	0	1
MP_2010	16	0 1,139661	0,63349601	0,7217848	8
Region	20:	2 10,34653	5,115454	1	20
Legal form	20	2 0,0544554	0,227478	0	1

Variable	Obs	Mean	Std. Dev	Min	Max
Turnover 2010	165	1006,285	1873,262	0	20938
Age	203	17,39901	14,4333	1	80
la_TA_2010	163	0,2285877	0,3088372	0	1
MP_2010	157	2,254501	14,608	0,4683908	184
Region	20 3	11,133	5,298706	1	20
Legal form	203	0,0344828	0,1829167	0	1

Sample

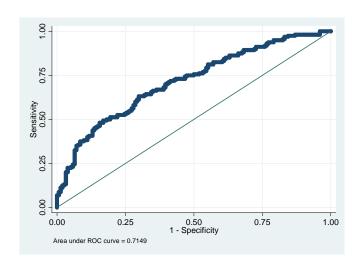
- Initial sample includes:
 - Patenting firms N=202
 - Non patenting firms N = 10490
- Patenting activity still a rare event in the sample!
- Transform the panel into a balanced panel
 - Patenting firms N = 202
 - Non patenting firms N = 202 (randomly extracted from the population)

Empirical model - step I

- Two-step logit regression
- Step I: Estimate the determinants of patenting.

$$PAT_{i} = \beta_{0} + \beta_{1}SIZE_{i} + \beta_{2}AGE_{i} + \beta_{3}AGE_{i}^{2} + \beta_{4}INT_{i} + \beta_{5}LF_{i} + \beta_{6}MP_{i} + \beta_{7}R_{i} + \epsilon_{i}$$

where:


- PAT_i dummy variable equal to 1 for firms with successful patents applications over the period 2003-2010
- SIZE; of the firm, measured in terms of annual turnover
- AGE_i measured as the difference between 2010 and the year of foundation
- INT_i indicates intangibles over total assets
- LF_i indicates the legal form and equals 1 for listed company, 0 otherwise
- MP_i is a proxy for market power, equal to profits/production costs
 - Measure of the margin, which proxies for market power

Federico Boffa (Unimc) CBTS 2013 13 December 8 / 16

Determinants of patenting

Patent Probability - Logistic Regression			
	Coefficient β	Marginal effects dy/dx	
	2,157***	0,406***	
SIZE	(0,658)	(0,058)	
	-0,060**	-0,011**	
AGE	(0,028)	(0,005)	
	0,001**	0,000**	
AGE - squared	(0,000)	(0,000)	
	1,347**	0,289**	
INT	(0,400)	(0,086)	
	-1,091	-0,246	
LF	(0,771)	(0,187)	
	-0,018	-0,003	
MP	(0,038)	(0,007)	
Regional Dummies	included	included	
	0,224		
constant	(0,870)		
	Log-likelihood: - 191,76		
	Pseudo R ² = 0,16		
	LR chi-square(22) =48,88		
	Prob>chi-square=0,000		
	N=315		

ROC curve

Empirical model - Step II

• Step II: determining the effects of patenting on firms' performances

•

$$\begin{aligned} \textit{TURN}_i &= \beta_0 + \beta_1 \widehat{\textit{PAT}}_i + \beta_2 X_i + \epsilon_i \\ \textit{PROD}_i &= \beta_0 + \beta_1 \widehat{\textit{PAT}}_i + \beta_2 X_i + \epsilon_i \end{aligned}$$

- where:
 - TURN_i is a dummy equal to 1 if the firm has a positive % variation in turnover
 - PROD_i is a dummy equal to 1 if the firm has a positive % variation in productivity
 - PAT_i is the step 1 predicted patenting probability
 - X_i is a matrix of control variables
 - ϵ_i is a random error term

Effects of patenting on turnover

Increase in Turnover – Logistic Regression

	Coefficient β	Marginal effects dy/dx	
Predicted PATENT prob.	5.466***	0.448***	
	-1.782	(0.156)	
Controls	included	included	
constant	0.001** (0.000)		

Effects of patenting on performances

Increase in Productivity – Logistic Regression

	Coefficient β	Marginal effects dy/dx	
Predicted	3.000	0,133333333	
PATENT prob.	-2.003	(0.164)	
Controls	included	included	
constant	0.001**		
constant	(0.000)		

The model (sketch)

- Puzzle from the empirical analysis: more competition involves more incentives to innovate.
- Idea behind theory model: mix IO models of horizontal and vertical differentiation to capture a specific feature of the tourism industry.
- Patent increases the level of vertical differentiation.
- We show that, when products are closer substitutes horizontally (i.e., more competition), firms have more incentives to patent.
- Intuition: horizontal differentiation is not sufficient to relax competition.
 - Marginal benefits from relaxing competition are larger if competition is tougher to start with
 - Relaxing competition has decreasing returns.
- Hence, more innovation under smaller horizontal differentiation.

Conclusions

- Age and size have a significant effect on the probability of patenting, as does expenditure on intangibles.
- Market power appears to have a negative effect on the probability of patenting.
 - although it is not significant in the current specification
- Legal form has no effect (although the sample of listed companies may be too small to draw implications).
- Patenting behavior has a very significant (1% significance) effect on turnover, a 10% significant effect on operating profit and ROI, while no significant effect on labor productivity.
- Theory model rationalizes why patenting is associated to more competition (lower horizontal differentiation).
- Future steps:
 - logit for rare events
 - suggestions welcome

THANKS FOR YOUR ATTENTION

16 / 16