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What is Deep Learning?

• A class of machine learning algorithms

 that use a cascade of multiple non-linear processing layers

 and complex model structures

 to learn different representations of the data in each layer

 where higher level features are derived from lower level 

features

 to form a hierarchical representation



What is Deep Learning?

• The second resurgence of neural network research

• A useful toolset for

 pattern recognition (in various data)

 representation learning

• A set of techniques that achieve previously unseen results on complex tasks

 Computer vision

 Natural language processing

 Reinforcement learning

 Speech recognition

 Etc.

• A key component of recent intelligent technologies

 Personal assistants

 Machine translation

 Chatbot technology

 Self driving cars

 Etc.

• A new trendy name for neural networks



What is Deep learning NOT?

• Deep learning is NOT
 AI (especially not general/strong AI)

o AI has many to it than just machine learning

o It can be part of specialized AIs

o Might be part of a future strong AI

 the artifical equivalent of the human brain

o but techniques in DL are inspired by neuroscience

 the best tool for every machine learning task

o requires lots of data to work well

o computationally expensive

o „no guarantees”: theorethical results are few and far between

o (mostly) a black box approach

o lot of pitfalls



Neural Networks - Neuron

• Rough abstraction of the human neuron

 Receives inputs (signals)

 Sum weighted inputs is big enough  signal

o Non-continuous step function is 
approximated by sigmoid

– 𝜎 𝑥 =
1

1+𝑒−𝑥

– 𝜎′ 𝑥 = 1 − 𝜎 𝑥 𝜎 𝑥

 Amplifiers and inhibitors

 Basic pattern recognition

• The combination of a linear model and an 
activation function
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Neural Networks

• Artificial neurons connected to each other
 Outputs of certain neurons connected to the input of neurons

• Feedforward neural networks
 Neurons organized in layers

o The input of the k-th layer is the output of the (k-1)-th layer

o Input layer: the values are set (based on data)

o Output layer: the output is not the input of any other layer

o Hidden layer(s): the layers inbetween

 Forward propagation

o ℎ𝑖
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o ...
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Training Neural Networks -
Backpropagation

• Training: modify weights to get the expected output

 Training set: input-(expected) output pairs

 Many ways to do this

 Most common: gradient descent

o Define loss between output and expected output

– Loss (L): single scalar

– Multiple output: individual losses (𝑒𝑖) are summed

o Compute the gradient of this loss wrt. the weights

o Modify the weights in the (opposite) direction of the gradient

• For the hidden-to-output weights (last layer):


𝜕𝐿

𝜕𝑤𝑗,𝑖
𝑛+1 =

𝜕𝑒𝑖
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⋅
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𝑛+1 ⋅
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𝑛+1
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𝜕𝑒𝑖

𝜕 ො𝑦𝑖
𝑓′ 𝑠𝑖

𝑛+1 ℎ𝑗
𝑛

• For the second to last layser:
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• Backpropagation of the error from layer k to (k-1)
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Why go deep?

• Feedforward neural networks are universal approximators
 Can approximate any function with arbitarily low error if they are big 

enough

• What is big enough? 
 Number of layers / neurons

 Theoretical „big enough” conditions massively overshoot

• Go deep, not wide
 For certain functions it is shown

 Exists a k number

 The number of neurons required for approximating the function is 
polynomial (in the input) if the network has at least k hidden layers (i.e. 
deep enough)

 Otherwise the number of required units is exponential in the input



Why was it hard to train neural networks?

• Vanishing gradients

 𝜎′ 𝑥 = 1 − 𝜎 𝑥 𝜎 𝑥

o 𝑥 is too small or too big, the gradient becomes near zero (no update)  saturation

– It is possible that large parts of the network stop changing

o The maximum is 0.25 (at 𝑥 = 0)

o After several layers the gradient vanishes (update negligible)

• Saturation

 Absolute value of weighted inputs is large

 Output 1/0, gradient close to 0 (no updates)

o Neuron doesn’t learn

 Solutions (lot of effort on each task)

o Initialization

o Limited activations

o Sparse activations

• Overfitting

 High model capacity, prone to overfitting

 Black box, overfitting is not apparent

 L1/L2 regularization helps, but doesn’t solve the problem

 Early stopping

• Convergence issues

 SGD often gets stuck  momentum methods

 Sensitivity to learning rate parameter



Neural Winters

• Reasons:

 Inflated expectations

 Underdelivering

 Hard to train the networks

• Results in disappointment

 People abandoning the field

 Lower funding

• First neural winter in the 1970s, second in the 1990s

 Gives way to other methods

• Deep learning is not new

 First deep models were proposed in the late 1960s

• The area was revived in the mid-2000s by layerwise training

• Deep learning boom has started around 2012-2013



Intermission – Layerwise training

• [Hinton et. al, 2006]

• To avoid saturation of the activation functions

• Layerwise training:

 1. Train a network with a single hidden layer, where the 
desired output is the same as the input

o Unsupervised learning (autoassociative neural network)

o The hidden layer learns a latent representation of the input

 2. Cut the output layer

 3. Train a new network with a single layer, using the hidden 
layer of the previous network as the input

o Repeat from 2 fro some more layers

 4. For supervised learning, put a final layer on the top of this 
structure and optionally fine tune the weights

• What happens?

 The weights are not initialized randomly

 Rather they are set to produce latent representations in the 
hidden layer

 Vanishing gradient is still in the lower layers

 No problem, the weights are set to sensible values

• Deep Belief Networks (DBN), Deep Boltzmann Machines 
(DBM)

• Was replaced by end-to-end training & non-saturating 
activations
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Why now? - Compute

• Natural increase in 

computational power

• GP GPU technology

 NN rely on matrix and 

vector operations

 Parallelization brings 

great speed-up

 GPU architecture is a 

good fit



Why now? - Data

• Complex models are more efficient when trained on 

lots of data

• The amount of data increased quickly

 This includes labelled data as well



Why now? – Research breakthroughs –
Non-saturating activations

Name 𝒇(𝒙) 𝒇′(𝒙) Parameters

Rectified Linear Unit (ReLU)

[Nair & Hinton, 2010]

𝑓 𝑥 = max 𝑥, 0
𝑓′ 𝑥 = ቊ

1 if 𝑥 ≥ 0
0 if 𝑥 < 0

None

Leaky ReLU

[Maas et. al, 2013]
𝑓 𝑥 = ቊ

𝑥 if 𝑥 ≥ 0
𝛼𝑥 if 𝑥 < 0

𝑓′ 𝑥 = ቊ
1 if 𝑥 ≥ 0
𝛼 if 𝑥 < 0

0 < 𝛼 < 1

Exponential Linear Unit (ELU)

[Clevert et. al, 2016]
𝑓 𝑥 = ቊ

𝑥 if 𝑥 ≥ 0
𝛼(𝑒𝑥 − 1) if 𝑥 < 0

𝑓′ 𝑥 = ቊ
1 if 𝑥 ≥ 0

𝑓 𝑥 + 𝛼 if 𝑥 < 0

𝛼

Scaled Exponential Linear 

Unit (SELU)

[Klambauer et. al, 2017]

𝑓 𝑥 = 𝜆 ቊ
𝑥 if 𝑥 ≥ 0

𝛼(𝑒𝑥 − 1) if 𝑥 < 0
𝑓′ 𝑥 = 𝜆 ቊ

1 if 𝑥 ≥ 0
𝑓 𝑥 + 𝛼 if 𝑥 < 0

α
𝜆 > 1
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Why now? – Research breakthroughs –
Dropout: easy but efficient regularization

• Dropout [Srivastava et. al, 2014]:
 During training randomly disable units

 Scale the activation of remaining units

o So that the average expected activation remains the same

 E.g.: dropout=0.5

o Disable each unit in the layer with 0.5 probability

o Multiply the activation of non-disabled units by 2

 No dropout during inference time

• Why dropout works?
 A form of ensemble training

o Multiple configurations are trained with shared weights and averaged in the 
end

 Reduces the reliance of neurons on each other

o Each neuron learns something useful

o Redundance in pattern recognition

 Form of regularization



Why now? – Research breakthroughs –
Mini-batch training

• Full-batch gradient descent

 Compute the average gradient over the full training data

 Pass all data points forward & backward

o Without changing the weights

o Save the updates

 Compute the average update and modify the weights

 Accurate gradients

 Costly updates, but can be parallelized

• Stochastic gradient descent

 Select a random data point

 Do a forward & backwards pass

 Update the weights

 Repeat

 Noisy gradient

o Acts as regularization

 Cheap updates, but requires more update steps

 Overall faster conversion

• Mini-batch training

 Select N random data points

 Do batch training with these N data points

 The best of both worlds



Why now? – Research breakthroughs –
Adaptive learning rates

• Standard SGD gets stuck in valleys and 
around saddle points

 Momentum methods

• Learning rate parameter greatly influences 
convergence speed

• Learning rate scheduling

 Larger steps in the beginning

 Smaller steps near the end

 Various heuristics

o E.g. multiply by 0 < 𝛾 < 1 after every 
N updates

o E.g. Measure error on a small 
validation set and decrease learning 
rate if there is no improvement

 Weights are not updated with the same 
frequency

• Adaptive learning rates

 Collect gradient updates on weights so far 
and use these to scale learning rate per 
weight

 Robust training wrt initial learning rate

 Fast convergence

 Recent paper claims that these might be 
suboptimal

Method Accumulated values Scaling factor

Adagrad

[Duchi et. al, 2011]

𝐺𝑡 = 𝐺𝑡−1 + 𝛻𝐿𝑡
2

−
𝜂

𝐺𝑡 + 𝜖

RMSProp

[Tieleman & Hinton, 

2012]

𝐺𝑡 = 𝛾𝐺𝑡−1 + 1 − 𝛾 𝛻𝐿𝑡
2

−
𝜂

𝐺𝑡 + 𝜖

Adadelta

[Zeiler, 2012]

𝐺𝑡 = 𝛾𝐺𝑡−1 + 1 − 𝛾 𝛻𝐿𝑡
2

Δ𝑡 = 𝛾Δ𝑡−1 + 1 − 𝛾
Δ𝑡−1 + 𝜖

𝐺𝑡 + 𝜖
𝛻𝐿𝑡

2 −
Δ𝑡−1 + 𝜖

𝐺𝑡 + 𝜖
𝛻𝐿𝑡

Adam

[Kingma & Ba, 2014]

𝑀𝑡 = 𝛽1𝑀𝑡−1 + 1 − 𝛽1 𝛻𝐿𝑡
𝑉𝑡 = 𝛽2𝑉𝑡−1 + 1 − 𝛽2 𝛻𝐿𝑡

2

−

𝜂
𝑀𝑡

1 − 𝛽1
𝑡

𝑉𝑡
1 − 𝛽2

𝑡 + 𝜖



Complex deep networks

• Modular view
 Complex networks are composed from modules appropriate for 

certain tasks

 E.g. Feature extraction with CNN, combined with an RNN for text 
representation fed to feedforward module

• Function approximation
 The network is a trainable function in a complex system

 E.g. DQN: the Q function is replaced with a trainable neural network

• Representation learning
 The network learns representations of the entities

 These representations are then used as latent features

 E.g. Image classification with CNN + a classifier on top



Common building blocks

• Network types
 Feedforward network (FFN, FNN)

 Recurrent network (RNN)

o For sequences

 Convolutional network (CNN)

o Exploiting locality

• Supplementary layers
- Embedding layer (input)

- Output layer

- Classifier

- Binary

- Multiclass

- Regressor

• Losses (common examples)

 Binary classification: logistic loss

 Multiclass classification: cross entropy (preceeded by a softmax layer)

 Distribution matching: KL divergence

 Regression: mean squared error



Common architectures

• Single network

• Multiple networks merged

• Multitask learning architectures

• Encoder-decoder

• Generative Adversarial Networks (GANs)

• And many more...



Impressive results

• Few of the many impressive results by DL fom the 
last year
 Image classification accuracy exceeds human baseline

 Superhuman performance in certain Atari games

o Agent receives only the raw pixel input and the score

 AlphaGo beat go world champions

 Generative models generate realistic images

 Large improvements in machine translation

 Improvements in speech recognition

 Many production services using deep learning



Don’t give in to the hype

• Deep learning is impressive but
 deep learning is not AI

 strong/general AI is very far away

o instead of worrying about „sentient” AI, we 
should focus on the more apparent 
problems this technological change brings

 deep learning is not how the human brain 
works

 not all machine learning tasks require deep 
learning

 deep learning requires a lot of 
computational power

 the theory of deep learning is far behind of 
its empirical success

 this technological change is not without 
potentially serious issues inflicted on 
society if we are not careful enough

• Deep learning is a tool
 which is successful in certain, previously 

very challenging domains (speech 
recognition, computer vision, NLP, etc.)

 that excels in pattern recognition

You are here



Why deep learning has potential for 
RecSys?

• Feature extraction directly from the content
 Image, text, audio, etc.

 Instead of metadata

 For hybrid algorithms

• Heterogenous data handled easily

• Dynamic behaviour modeling with RNNs

• More accurate representation learning of users and items
 Natural extension of CF & more

• RecSys is a complex domain
 Deep learning worked well in other complex domains

 Worth a try



The deep learning era of RecSys

• Brief history:
 2007: Deep Boltzmann Machines for rating prediction

o Also: Asymmetric MF formulated as a neural network (NSVD1)

 2007-2014: calm before the storm

o Very few, but important papers in this topic

 2015: first signs of a deep learning boom

o Few seminal papers laying the groundwork for current research directions

 2016: steep increase

o DLRS workshop series

o Deep learning papers at RecSys, KDD, SIGIR, etc.

o Distinct research directions are formed by the end of the year

 2017: continuation of the increase of DL in recommenders

• Current status & way forward
 Current research directions to be continued

 More advanced ideas from DL are yet to be tried

 Scalability is to be kept in mind



Research directions in DL-RecSys

• As of 2017 summer, main topics:

 Learning item embeddings

 Deep collaborative filtering

 Feature extraction directly from the content

 Session-based recommendations with RNN

• And their combinations



Best practices

• Start simple
 Add improvements later

• Optimize code
 GPU/CPU optimizations may differ

• Scalability is key

• Opensource code

• Experiment (also) on public datasets

• The data should be compatible with the task you want to solve

• Don’t use very small datasets

• Don’t work on irrelevant tasks, e.g. rating prediction



Frameworks

• Low level

 Torch, pyTorch - Facebook

 Theano – University of Montreal

 Tensorflow - Google

 MXNet

• High level

 Keras

 Lasagne
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Learning item embeddings & 
2vec models



Item embeddings

• Embedding: a (learned) real value vector 
representing an entity
 Also known as:

o Latent feature vector

o (Latent) representation

 Similar entities’ embeddings are similar

• Use in recommenders:
 Initialization of item representation in more advanced 

algorithms

 Item-to-item recommendations



Matrix factorization as embedding learning

• MF: user & item embedding learning
 Similar feature vectors

o Two items are similar

o Two users are similar

o User prefers item

 MF representation as a simplictic neural network

o Input: one-hot encoded user ID

o Input to hidden weights: user feature matrix

o Hidden layer: user feature vector

o Hidden to output weights: item feature matrix

o Output: preference (of the user) over the 
items

• Asymmetric MF
 Instead of user ID, the input is a vector of 

interactions over the items

R U

I

≈

0,0,...,0,1,0,0,...0

u

𝑟𝑢,1, 𝑟𝑢,2, … , 𝑟𝑢,𝑆𝐼

𝑊𝑈

𝑊𝐼



Word2Vec

• [Mikolov et. al, 2013a]

• Representation learning of words

• Shallow model

• Linear operations in the vector space can be associated with semantics
 king – man + woman ~ queen

 Paris – France + Italy ~ Rome

• Data: (target) word + context pairs
 Sliding window on the document

 Context = words near the target

o In sliding window

o 1-5 words in both directions

• Two models

 Continous Bag of Words (CBOW)

 Skip-gram



Word2Vec - CBOW

• Continuous Bag of Words

• Maximalizes the probability of the target word given the context

• Model

 Input: one-hot encoded words

 Input to hidden weights

o Embedding matrix of words

 Hidden layer

o Sum of the embeddings of the words in the context

 Hidden to output weights

 Softmax transformation

o Smooth approximation of the max operator

o Highlights the highest value

o 𝑠𝑖 =
𝑒𝑟𝑖

σ𝑗=1
𝑁 𝑒

𝑟𝑗
, (𝑟𝑗: scores)

 Output: likelihood of words of the corpus given the context

• Embeddings are taken from the input to hidden matrix

 Hidden to output matrix also has item representations (but not used)

E E E E

𝑤𝑡−2 𝑤𝑡−1 𝑤𝑡+1 𝑤𝑡+2

word(t-2) word(t-1) word(t+2)word(t+1)

Classifier

word(t)

averaging

0,1,0,0,1,0,0,1,0,1

𝑟𝑖 𝑖=1
𝑁

𝐸

𝑊

𝑝(𝑤𝑖|𝑐) 𝑖=1
𝑁

softmax



Word2Vec – Skip-gram

• Maximalizes the probability of the context, 
given the target word

• Model
 Input: one-hot encoded word

 Input to hidden matrix: embeddings

 Hidden state

o Item embedding of target

 Softmax transformation

 Output: likelihood of context words (given the 
input word)

• Reported to be more accurate

E

𝑤𝑡

word(t)

word(t-1) word(t+2)word(t+1)

Classifier

word(t-2)

0,0,0,0,1,0,0,0,0,0

𝑟𝑖 𝑖=1
𝑁

𝐸

𝑊

𝑝(𝑤𝑖|𝑐) 𝑖=1
𝑁

softmax



Speed-up

• Hierarchical softmax [Morin & Bengio, et. al, 2005]
 Softmax computation requires every score

 Reduce computations to O log2𝑁 by using a binary tree

o Leaves words

o Each inner node has a trainable vector (v)

o 𝜎 𝑣𝑇𝑣𝑐 is the probability that the left child of the current node is the next step we have to 
take in the tree

– Probability of a word: 𝑝 𝑤 𝑤𝑐 = ς𝑗=1
𝐿 𝑤𝑡 −1𝜎 𝐼𝑛 𝑤,𝑗+1 =𝑐ℎ 𝑛 𝑤,𝑗 𝑣𝑛 𝑤,𝑗

𝑇 𝑣𝑐

• 𝑛(𝑤, 𝑗): j-th node on the path to w

• 𝑐ℎ(𝑛): left child of node 𝑛

o During learning the vectors in the nodes are modified so that the target word becomes 
more likely

• Skip-gram with negative sampling (SGNS) [Mikolov, et. al, 2013b]
 Input: target word

 Desired output: sampled word from context

 Score is computed for the desired output and a few negative samples



Paragraph2vec, doc2vec

• [Le & Mikolov, 2014]

• Learns representation of 

paragraph/document

• Based on CBOW model

• Paragraph/document 

embedding added to the 

model as global context

E E E E

𝑤𝑡−2 𝑤𝑡−1 𝑤𝑡+1 𝑤𝑡+2

word(t-2) word(t-1) word(t+2)word(t+1)

Classifi

er

word(t)

averaging

P

paragraph ID

𝑝𝑖



Prod2Vec

• [Grbovic et. al, 2015]

• Skip-gram model on products

 Input: i-th product purchased by the user

 Context: the other purchases of the user

• Bagged prod2vec model

 Input: products purchased in one basket by the user

o Basket: sum of product embeddings

 Context: other baskets of the user

• Learning user representation

 Follows paragraph2vec

 User embedding added as global context

 Input: user + products purchased except for the i-th

 Target: i-th product purchased by the user

• [Barkan & Koenigstein, 2016] proposed the same model later as item2vec

 Skip-gram with Negative Sampling (SGNS) is applied to event data



Utilizing more information

• Meta-Prod2vec [Vasile et. al, 2016]
 Based on the prod2vec model

 Uses item metadata

o Embedded metadata

o Added to both the input and the context

 Losses between: target/context item/metadata

o Final loss is the combination of 5 of these losses

• Content2vec [Nedelec et. al, 2017]
 Separate moduls for multimodel information

o CF: Prod2vec

o Image: AlexNet (a type of CNN)

o Text: Word2Vec and TextCNN

 Learns pairwise similarities

o Likelihood of two items being bought together

I

𝑖𝑡

item(t)

item(t-1) item(t+2)meta(t+1)

Classifi

er

meta(t-1)
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Deep collaborative filtering



CF with Neural Networks

• Natural application area

• Some exploration during the Netflix prize

• E.g.: NSVD1 [Paterek, 2007]

 Asymmetric MF

 The model:

o Input: sparse vector of interactions

– Item-NSVD1: ratings given for the item by users

• Alternatively: metadata of the item

– User-NSVD1: ratings given by the user

o Input to hidden weights: „secondary” feature vectors

o Hidden layer: item/user feature vector

o Hidden to output weights: user/item feature vectors

o Output:

– Item-NSVD1: predicted ratings on the item by all users

– User-NSVD1: predicted ratings of the user on all items

 Training with SGD

 Implicit counterpart by [Pilászy et. al, 2009]

 No non-linarities in the model

Ratings of the user

User features

Predicted ratings

Secondary feature 

vectors

Item feature 

vectors



Restricted Boltzmann Machines (RBM) for 
recommendation

• RBM

 Generative stochastic neural network

 Visible & hidden units connected by (symmetric) weights

o Stochastic binary units

o Activation probabilities: 

– 𝑝 ℎ𝑗 = 1 𝑣 = 𝜎 𝑏𝑗
ℎ + σ𝑖=1

𝑚 𝑤𝑖,𝑗𝑣𝑖

– 𝑝 𝑣𝑖 = 1 ℎ = 𝜎 𝑏𝑖
𝑣 + σ𝑗=1

𝑛 𝑤𝑖,𝑗ℎ𝑗

 Training

o Set visible units based on data

o Sample hidden units

o Sample visible units

o Modify weights to approach the configuration of visible units to the data

• In recommenders [Salakhutdinov et. al, 2007]

 Visible units: ratings on the movie

o Softmax unit

– Vector of length 5 (for each rating value) in each unit

– Ratings are one-hot encoded

o Units correnponding to users who not rated the movie are ignored

 Hidden binary units

ℎ3ℎ2ℎ1

𝑣5𝑣4𝑣3𝑣1 𝑣2

ℎ3ℎ2ℎ1

𝑣5𝑣4𝑣3𝑣1 𝑣2

𝑟𝑖: 2        ?         ?        4        1



Deep Boltzmann Machines (DBM)

• Layer-wise training

 Train weights between visible and hidden 

units in an RBM

 Add a new layer of hidden units

 Train weights connecting the new layer to 

the network

o All other weights (e.g. visible-hidden 

weights) are fixed

ℎ3
1ℎ2

1ℎ1
1

𝑣5𝑣4𝑣3𝑣1 𝑣2

ℎ3
1ℎ2

1ℎ1
1
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ℎ2
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2

Train
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Fixed

ℎ3
1ℎ2

1ℎ1
1

𝑣5𝑣4𝑣3𝑣1 𝑣2

ℎ3
2ℎ2

2
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Fixed

ℎ2
3ℎ1

3 ℎ4
3ℎ3

3

Fixed



Autoencoders

• Autoencoder

 One hidden layer

 Same number of input and output units

 Try to reconstruct the input on the output

 Hidden layer: compressed representation of the data

• Constraining the model: improve generalization

 Sparse autoencoders

o Activations of units is limited

o Activation penalty

o Requires the whole train set to compute

 Denoising autoencoders [Vincent et. al, 2008]

o Corrupt the input (e.g. set random values to zero)

o Restore the original on the output

• Deep version

 Stacked autoencoders

 Layerwise training (historically)

 End-to-end training (more recently)

Data

Corrupted input

Hidden layer

Reconstructed output

Data



Autoencoders for recommendation

• Reconstruct corrupted user interaction vectors

• Variants

 CDL [Wang et. al, 2015]

o Collaborative Deep Learning

o Uses Bayesian stacked denoising autoencoders

o Uses tags/metadata instead of the item ID

 CDAE [Wu et. al, 2016]

o Collaborative Denoising Auto-Encoder

o Additional user node on the input and bias node beside the 

hidden layer



Recurrent autoencoder

• CRAE [Wang et. al, 2016]

 Collaborative Recurrent Autoencoder

 Encodes text (e.g. movie plot, review)

 Autoencoding with RNNs

o Encoder-decoder architecture

o The input is corrupted by replacing words with a deisgnated 

BLANK token

 CDL model + text encoding simultaneously

o Joint learning



Other DeepCF methods (1/2)

• MV-DNN [Elkahky et. al, 2015]

 Multi-domain recommender

 Separate feedforward networks for user and items per domain (D+1 networks in total)

o Features first are embedded

o Then runthrough sevaral layers

 Similarity of the final layers (user and item representation) is maximized over items the user visited 
(against negative examples)

• TDSSM [Song et. al, 2016]

 Temporal Deep Semantic Structured Model

 Similar to MV-DNN

 User features are the combination of a static and a time dependent part

 The time dependent part is modeled by an RNN

• Coevolving features [Dai et. al, 2016]

 Users’ taste and items’ audiences change over time (e.g. forum discussions)

 User/item features depend on time

 User/item features are composed of

o Time drift vector

o Self evolution

o Co-evolution with items/users

o Interaction vector

 Feature vectors are learned by RNNs



Other DeepCF methods (2/2)

• Product Neural Network (PNN) [Qu et. al, 2016]
 For CTR estimation

 Embedded features

 Pairwise layer: all pairwise combination of embedded features 

o Like Factorization Machines

o Outer/inner product of feature vectors or both

 Several fully connected layers

• CF-NADE [Zheng et. al, 2016]
 Neural Autoregressive Collaborative Filtering

 User events  preference (0/1) + confidence (based on occurence)

 Reconstructs some of the user events based on others (not the full set)

o Random ordering of user events

o Reconstruct the preference i, based on preferences and confidences up to i-1

 Loss is weighted by confidences



Applications: app recommendations

• Wide & Deep Learning [Cheng et. al, 2016]

• Ranking of results matching a query

• Combination of two models

 Deep neural network

o On embedded item features

o „Generalization”

 Linear model

o On embedded item features

o And cross product of item features

o „Memorization”

 Joint training

 Logistic loss

• Improved online performance
 +2.9% deep over wide

 +3.9% deep+wide over wide



Applications: video recommendations

• YouTube Recommender [Covington et. al, 2016]
 Two networks

 Candidate generation

o Recommendations as classification

– Items clicked / not clicked when were recommended

o Feedforward network on many features

– Average watch embedding vector of user (last few items)

– Average search embedding vector of user (last few searches)

– User attributes

– Geographic embedding

o Negative item sampling + softmax

 Reranking

o More features

– Actual video embedding

– Average video embedding of watched videos

– Language information

– Time since last watch

– Etc.

o Weighted logistic regression on the top of the network
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Feature extraction from content for 
hydrid recommenders



Content features in recommenders

• Hybrid CF+CBF systems
 Interaction data + metadata

• Model based hybrid solutions
 Initiliazing

o Obtain item representation based on metadata

o Use this representation as initial item features

 Regularizing

o Obtain metadata based representations

o The interaction based representation should be close to the metadata based

o Add regularizing term to loss of this difference

 Joining

o Obtain metadata based representations

o Have the item feature vector be a concatenation

– Fixed metadata based part

– Learned interaction based part



Feature extraction from content

• Deep learning is capable of direct feature extraction

 Work with content directly

 Instead (or beside) metadata

• Images

 E.g.: product pictures, video thumbnails/frames

 Extraction: convolutional networks

 Applications (e.g.):

o Fashion

o Video

• Text

 E.g.: product description, content of the product, reviews

 Extraction

o RNNs

o 1D convolution networks

o Weighted word embeddings

o Paragraph vectors

 Applications (e.g.):

o News

o Books

o Publications

• Music/audio

 Extraction: convolutional networks (or RNNs)



Convolutional Neural Networks (CNN)

• Speciality of images
 Huge amount of information

o 3 channels (RGB)

o Lots of pixels

o Number of weights required to fully connect a 320x240 image 
to 2048 hidden units:

– 3*320*240*2048 = 471,859,200

 Locality

o Objects’ presence are independent of their location or 
orientation

o Objects are spatially restricted



Convolutional Neural Networks (CNN)

• Image input
 3D tensor

o Width

o Height

o Channels (R,G,B)

• Text/sequence inputs
 Matrix

 of one-hot encoded entities

• Inputs must be of same size
 Padding

• (Classic) Convolutional Nets
 Convolution layers

 Pooling layers

 Fully connected layers



Convolutional Neural Networks (CNN)

• Convolutional layer (2D)

 Filter

o Learnable weights, arranged in a small tensor (e.g. 3x3xD)

– The tensor’s depth equals to the depth of the input

o Recognizes certain patterns on the image

 Convolution with a filter

o Apply the filter on regions of the image

– 𝑦𝑎,𝑏 = 𝑓 σ𝑖,𝑗,𝑘𝑤𝑖,𝑗,𝑘𝐼𝑖+𝑎−1,𝑗+𝑏−1,𝑘

• Filters are applied over all channels (depth of the input tensor)

• Activation function is usually some kind of ReLU

– Start from the upper left corner

– Move left by one and apply again

– Once reaching the end, go back and shift down by one

o Result: a 2D map of activations, high at places corresponding to the pattern recognized by the filter

 Convolution layer: multiple filters of the same size

o Input size (𝑊1 ×𝑊2 × 𝐷)

o Filter size (𝐹 × 𝐹 × 𝐷)

o Stride (shift value) (𝑆)

o Number of filters (𝑁)

o Output size: 
𝑊1−𝐹

𝑆
+ 1 ×

𝑊2−𝐹

𝑆
+ 1 × 𝑁

o Number of weights: 𝐹 × 𝐹 × 𝐷 ×𝑁

 Another way to look at it: 

o Hidden neurons organized in a 
𝑊1−𝐹

𝑆
+ 1 ×

𝑊2−𝐹

𝑆
+ 1 × 𝑁 tensor

o Weights a shared between neurons with the same depth

o A neuron processe an 𝐹 × 𝐹 × 𝐷 region of the input

o Neighboring neurons process regions shifted by the stride value

1 3 8 0

0 7 2 1

2 5 5 1

4 2 3 0

-1 -2 -1

-2 12 -2

-1 -2 -1

48 -27

19 28



Convolutional Neural Networks (CNN)

• Pooling layer
 Mean pooling: replace an 𝑅 × 𝑅 region with the mean of the values

 Max pooling: replace an 𝑅 × 𝑅 region with the maximum of the values

 Used to quickly reduce the size

 Cheap, but very aggressive operator

o Avoid when possible

o Often needed, because convolutions don’t decrease the number of inputs fast 
enough

 Input size: 𝑊1 ×𝑊2 × 𝑁

 Output size: 
𝑊1

𝑅
×

𝑊2

𝑅
× 𝑁

• Fully connected layers
 Final few layers

 Each hidden neuron is connected with every neuron in the next layer

• Residual connections (improvement) [He et. al, 2016]
 Very deep networks degrade performance

 Hard to find the proper mappings

 Reformulation of the problem: F(x)  F(x)+x

Layer

Layer

+

𝑥

𝐹 𝑥 + 𝑥

𝐹(𝑥)



Convolutional Neural Networks (CNN)

• Some examples

• GoogLeNet [Szegedy et. al, 2015]

• Inception-v3 model [Szegedy et. al, 2016]

• ResNet (up to 200+ layers) [He et. al, 2016]



Images in recommenders

• [McAuley et. Al, 2015]

 Learns a parameterized distance metric over visual features

o Visual features are extracted from a pretrained CNN

o Distance function: Eucledian distance of „embedded” visual features

– Embedding here: multiplication with a weight matrix to reduce the number of dimensions

 Personalized distance

o Reweights the distance with a user specific weight vector

 Training: maximizing likelihood of an existing relationship with the target item 

o Over uniformly sampled negative items

• Visual BPR [He & McAuley, 2016]

 Model composed of

o Bias terms

o MF model

o Visual part

– Pretrained CNN features

– Dimension reduction through „embedding”

– The product of this visual item feature and a learned user feature vector is used in the model

o Visual bias

– Product of the pretrained CNN features and a global bias vector over its features

 BPR loss

 Tested on clothing datasets (9-25% improvement)



Music representations

• [Oord et. al, 2013]
 Extends iALS/WMF with audio features

o To overcome cold-start

 Music feature extraction

o Time-frequency representation

o Applied CNN on 3 second samples

o Latent factor of the clip: average predictions on consecutive 
windows of the clip

 Integration with MF

o (a) Minimize distance between music features and the MF’s 
feature vectors

o (b) Replace the item features with the music features (minimize 
original loss)



Textual information improving 
recommendations

• [Bansal et. al, 2016]
 Paper recommendation

 Item representation

o Text representation

– Two layer GRU (RNN): bidirectional layer followed by a unidirectional layer

– Representation is created by pooling over the hidden states of the sequence

o ID based representation (item feature vector)

o Final representation: ID + text added

 Multi-task learning

o Predict both user scores

o And likelihood of tags

 End-to-end training

o All parameters are trained simultaneously (no pretraining)

o Loss

– User scores: weighted MSE (like in iALS)

– Tags: weighted log likelihood (unobserved tags are downweighted)
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Recurrent Neural Networks & 
Session-based recommendations



Recurrent Neural Networks

• Input: sequential information ( 𝑥𝑡 𝑡=1
𝑇 )

• Hidden state (ℎ𝑡): 

 representation of the sequence so far

 influenced by every element of the sequence up to t

• ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏



RNN-based machine learning

• Sequence to value
 Encoding, labeling

 E.g.: time series classification

• Value to sequence
 Decoding, generation

 E.g.: sequence generation

• Sequence to sequence
 Simultaneous

o E.g.: next-click prediction

 Encoder-decoder architecture

o E.g.: machine translation

o Two RNNs (encoder & decoder)

– Encoder produces a vector describing the sequence

• Last hidden state

• Combination of hidden states (e.g. mean pooling)

• Learned combination of hidden states

– Decoder receives the summary and generates a new sequence

• The generated symbol is usually fed back to the decoder

• The summary vector can be used to initialize the decoder

• Or can be given as a global context

o Attention mechanism (optionally)
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Exploding/Vanishing gradients

• ℎ𝑡 = 𝑓 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏

• Gradient of ℎ𝑡 wrt. 𝑥1
 Simplification: linear activations

o In reality: bounded


𝜕ℎ𝑡

𝜕𝑥1
=

𝜕ℎ𝑡

𝜕ℎ𝑡−1

𝜕ℎ𝑡−1

𝜕ℎ𝑡−2
⋯

𝜕ℎ2

𝜕ℎ1

𝜕ℎ1

𝜕𝑥1
= 𝑈𝑡−1𝑊

o 𝑈 2 < 1 vanishing gradients

– The effect of values further in the past is neglected

– The network forgets

o 𝑈 2 > 1 exploding gradients

– Gradients become very large on longer sequences

– The network becomes unstable



Handling exploding gradients

• Gradient clipping
 If the gradient is larger than a threshold, scale it back to the 

threshold

 Updates are not accurate

 Vanishing gradients are not solved

• Enforce 𝑈 2 = 1
 Unitary RNN

 Unable to forget

• Gated networks
 Long-Short Term Memory (LSTM)

 Gated Recurrent Unit (GRU)

 (and a some other variants)



Long-Short Term Memory (LSTM)

• [Hochreiter & Schmidhuber, 1999]

• Instead of rewriting the hidden state during update, add 
a delta

 𝑠𝑡 = 𝑠𝑡−1 + Δ𝑠𝑡
 Keeps the contribution of earlier inputs relevant

• Information flow is controlled by gates

 Gates depend on input and the hidden state

 Between 0 and 1

 Forget gate (f): 0/1  reset/keep hidden state

 Input gate (i): 0/1  don’t/do consider the contribution of the 
input

 Output gate (o): how much of the memory is written to the 
hidden state

• Hidden state is separated into two (read before you 
write)

 Memory cell (c): internal state of the LSTM cell

 Hidden state (h): influences gates, updated from the memory 
cell

𝑓𝑡 = 𝜎 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓
𝑖𝑡 = 𝜎 𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖
𝑜𝑡 = 𝜎 𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜

ǁ𝑐𝑡 = tanh 𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ ǁ𝑐𝑡
ℎ𝑡 = 𝑜𝑡 ∘ tanh 𝑐𝑡

𝐶

ℎ
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+
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Gated Recurrent Unit (GRU)

• [Cho et. al, 2014]

• Simplified information flow

 Single hidden state

 Input and forget gate merged  update gate (z)

 No output gate

 Reset gate (r) to break information flow from previous hidden 

state

• Similar performance to LSTM
ℎ

r

IN

OUT

z

+

𝑧𝑡 = 𝜎 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧
𝑟𝑡 = 𝜎 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟

෨ℎ𝑡 = tanh 𝑊𝑥𝑡 + 𝑟𝑡 ∘ 𝑈ℎ𝑡−1 + 𝑏

ℎ𝑡 = 𝑧𝑡 ∘ ℎ𝑡 + 1 − 𝑧𝑡 ∘ ෨ℎ𝑡



Session-based recommendations

• Sequence of events

 User identification problem

 Disjoint sessions (instead of consistent user history)

• Tasks

 Next click prediction

 Predicting intent

• Classic algorithms can’t cope with it well

 Item-to-item recommendations as approximation in live systems

• Area revitalized by RNNs



GRU4Rec (1/3)

• [Hidasi et. al, 2015]

• Network structure
 Input: one hot encoded item ID

 Optional embedding layer

 GRU layer(s)

 Output: scores over all items

 Target: the next item in the session

• Adapting GRU to session-based 
recommendations
 Sessions of (very) different length & lots of short 

sessions: session-parallel mini-batching

 Lots of items (inputs, outputs): sampling on the output

 The goal is ranking: listwise loss functions on 
pointwise/pairwise scores

GRU layer

One-hot vector

Weighted output

Scores on items

f()

One-hot vector

ItemID (next)

ItemID



GRU4Rec (2/3)

• Session-parallel mini-batches

 Mini-batch is defined over sessions

 Update with one step BPTT

o Lots of sessions are very short

o 2D mini-batching, updating on longer sequences 
(with or without padding) didn’t improve accuracy

• Output sampling

 Computing scores for all items (100K – 1M) in 
every step is slow

 One positive item (target) + several samples

 Fast solution: scores on mini-batch targets

o Items of the other mini-batch are negative 
samples for the current mini-batch

• Loss functions

 Cross-entropy + softmax

 Average of BPR scores

 TOP1 score (average of ranking error + 
regularization over score values)

𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4

𝑖2,1 𝑖2,2 𝑖2,3

𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6

𝑖4,1 𝑖4,2

𝑖5,1 𝑖5,2 𝑖5,3

Session1

Session2

Session3

Session4

Session5

𝑖1,1 𝑖1,2 𝑖1,3

𝑖2,1 𝑖2,2

𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5

𝑖4,1

𝑖5,1 𝑖5,2

Input

Desired 

output

…

𝑖1,2 𝑖1,3 𝑖1,4

𝑖2,2 𝑖2,3

𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6

𝑖4,2

𝑖5,2 𝑖5,3

…

𝑖1 𝑖5 𝑖8

ො𝑦1
1 ො𝑦2

1 ො𝑦3
1 ො𝑦4

1 ො𝑦5
1 ො𝑦6

1 ො𝑦7
1 ො𝑦8

1

ො𝑦1
3 ො𝑦2

3 ො𝑦3
3 ො𝑦4

3 ො𝑦5
3 ො𝑦6

3 ො𝑦7
3 ො𝑦8

3

ො𝑦1
2 ො𝑦2

2 ො𝑦3
2 ො𝑦4

2 ො𝑦5
2 ො𝑦6

2 ො𝑦7
2 ො𝑦8

2

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

𝑋𝐸 = − log 𝑠𝑖 , 𝑠𝑖 =
𝑒ෝ𝑦𝑖

σ
𝑗=1

𝑁𝑆 𝑒
ෝ𝑦𝑗

𝐵𝑃𝑅 =
−σ

𝑗=1
𝑁𝑆 log 𝜎 ො𝑦𝑖 − ො𝑦𝑗

𝑁𝑆

𝑇𝑂𝑃1 =
σ
𝑗=1
𝑁𝑆 𝜎 ො𝑦𝑗 − ො𝑦𝑖 + σ

𝑗=1
𝑁𝑆 𝜎 ො𝑦𝑗

2

𝑁𝑆



GRU4Rec (3/3)

• Observations
 Similar accuracy with/without embedding

 Multiple layers rarely help

o Sometimes slight improvement with 2 layers

o Sessions span over short time, no need for multiple time scales

 Quick conversion: only small changes after 5-10 epochs

 Upper bound for model capacity

o No improvement when adding additional units after a certain 
threshold

o This threshold can be lowered with some techniques

• Results
 20-30% improvement over item-to-item recommendations



Improving GRU4Rec

• Recall@20 on RSC15 by GRU4Rec: 0.6069 (100 units), 0.6322 (1000 units)

• Data augmentation [Tan et. al, 2016]

 Generate additional sessions by taking every possible sequence starting from the beginning of a session

 Randomly remove items from these sequences

 Long training times

 Recall@20 on RSC15 (using the full training set for training): ~0.685 (100 units)

• Bayesian version (ReLeVar) [Chatzis et. al, 2017]

 Bayesian formulation of the model

 Basically additional regularization by adding random noise during sampling

 Recall@20 on RSC15: 0.6507 (1500 units)

• New losses and additional sampling [Hidasi & Karatzoglou, 2017]

 Use additional samples beside minibatch samples

 Design better loss functions: BPRmax = − log σ𝑗=1
𝑁𝑆 𝑠𝑗𝜎 𝑟𝑖 − 𝑟𝑗 + 𝜆σ𝑗=1

𝑁𝑆 𝑟𝑗
2

 Recall@20 on RSC15: 0.7119 (100 units)



Extensions

• Multi-modal information (p-RNN model) [Hidasi et. al, 2016]

 Use image and description besides the item ID

 One RNN per information source

 Hidden states concatenated

 Alternating training

• Item metadata [Twardowski, 2016]
 Embed item metadata

 Merge with the hidden layer of the RNN (session representation)

 Predict compatibility using feedforward layers

• Contextualization [Smirnova & Vasile, 2017]

 Merging both current and next context

 Current context on the input module

 Next context on the output module

 The RNN cell is redefined to learn context-aware transitions

• Personalizing by inter-session modeling

 Hierarchical RNNs [Quadrana et. al, 2017], [Ruocco et. al, 2017]

o One RNN works within the session (next click prediction)

o The other RNN predicts the transition between the sessions of the user
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