
Approaches to
Recommendation in

Industry
Xavier Amatriain

xavier@amatriain.net
@xamat

Quora/Xavier-Amatriain
Recsys 2017 Summer School

Bolzano, IT

mailto:xavier@amatriain.net

1. The Traditional Recommender Problem

2. The Netflix Prize

3. Beyond Rating Prediction

4. Lessons Learned

5. A Recsys Architectural Blueprint

6. Building a state-of-the-art recommender system in practice

7. Hands-on tutorial

8. Future research Directions

9. Conclusions

10. Some references

Outline

1.The Recommender
Problem

The “Recommender problem”

● Traditional definition: Estimate a utility function that
automatically predicts how much a user will like an
item.

● Based on:
o Past behavior

o Relations to other users

o Item similarity

o Context

o …

Recommendation as data mining

The core of the Recommendation
Engine can be assimilated to a
general data mining problem
(Amatriain et al. Data Mining Methods for Recommender
Systems in Recommender Systems Handbook)

Data Mining + all those other things

● User Interface
● System requirements (efficiency, scalability, privacy....)
● Serendipity
● Diversity
● Awareness
● Explanations
● …

● Unsought finding

● Don't recommend items the user already knows or
would have found anyway.

● Expand the user's taste into neighboring areas by
improving the obvious

● Serendipity ~ Explore/exploit tradeoff

Serendipity

Explanation/Support for Recommendations

Social Support

Personalization awareness

Diversity

DadAll SonDaughterDad&Mom MomAll Daughter MomAll?

Diversity & Awareness

What works
● Depends on the domain and particular problem
● However, in the general case it has been demonstrated

that the best isolated approach is CF.
o Other approaches can be hybridized to improve results in specific

cases (cold-start problem...)

● What matters:
o Data preprocessing: outlier removal, denoising, removal of global

effects (e.g. individual user's average)

o “Smart” dimensionality reduction using MF

o Combining methods through ensembles

2. The Netflix Prize

What we were interested in:

▪ High quality recommendations

Proxy question:

▪ Accuracy in predicted rating

▪ Improve by 10% = $1million!

2007 Progress Prize

▪ Top 2 algorithms
▪ SVD - Prize RMSE: 0.8914

▪ RBM - Prize RMSE: 0.8990

▪ Linear blend Prize RMSE: 0.88

▪ Currently in use as part of Netflix’ rating prediction
component

▪ Limitations
▪ Designed for 100M ratings, not XB ratings

▪ Not adaptable as users add ratings

▪ Performance issues

What about the final prize ensembles?

● Offline studies showed they were too computationally
intensive to scale

● Expected improvement not worth engineering effort

● Plus…. Focus had already shifted to other issues that had
more impact than rating prediction.

3. Beyond Rating
Prediction

Everything is a recommendation

Evolution of the Recommender Problem

Rating Ranking Page Optimization

4.7

Context-aware
Recommendations

Context

3.1 Ranking

Ranking

● Most recommendations are presented in a sorted list

● Recommendation can be understood as a ranking problem

● Popularity is the obvious baseline

● What about rating predictions?

Ranking by ratings

4.7 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Niche titles
High average ratings… by those who would watch it

RMSE

Popularity

Pr
ed

ic
te

d
 R

at
in

g

1

2

3
4

5

Linear Model:
f

rank
(u,v) = w

1
p(v) + w

2
 r(u,v) + b

Example: Two features, linear model

Popularity

1

2

3
4

5

Fin
al R

an
kin

g
Pr

ed
ic

te
d

 R
at

in
g

Example: Two features, linear model

Learning to rank

● Machine learning problem: goal is to construct ranking
model from training data

● Training data can be a partial order or binary judgments
(relevant/not relevant).

● Resulting order of the items typically induced from a
numerical score

● Learning to rank is a key element for personalization

● You can treat the problem as a standard supervised
classification problem

Learning to rank - Metrics

● Quality of ranking measured using metrics as
o Normalized Discounted Cumulative Gain

o Mean Reciprocal Rank (MRR)

o Fraction of Concordant Pairs (FCP)

o Others…

● But, it is hard to optimize machine-learned models directly
on these measures (e.g. non-differentiable)

● Recent research on models that directly optimize ranking
measures

Goal: Present most interesting stories for a user at a given time

Interesting = topical relevance +

social relevance + timeliness

Stories = questions + answers

ML: Personalized learning-to-rank approach

Relevance-ordered vs time-ordered = big gains in engagement

3.2 Similarity

● Displayed in
many different
contexts
○ In response to

user
actions/context
(search, queue
add…)

○ More like… rows

Similars

● Given interest in question A (source) what other

questions will be interesting?

● Not only about similarity, but also “interestingness”

● Features such as:
○ Textual

○ Co-visit

○ Topics

○ …

● Important for logged-out use case

Graph-based similarities

0.8

0.2

0.3
0.
4

0.3

0.
7

0.
3

Example of graph-based similarity: SimRank

● SimRank (Jeh & Widom, 02): “two objects are
similar if they are referenced by similar objects.”

Similarity ensembles

● Similarity can refer to different dimensions
○ Similar in metadata/tags
○ Similar in user play behavior
○ Similar in user rating behavior
○ …

● Combine them using an ensemble
○ Weights are learned using regression over existing response
○ Or… some MAB explore/exploit approach

● The final concept of “similarity” responds to what users vote as
similar

3.3 Social
Recommendations

Recommendations - Users

● Goal: Recommend new users to follow

● Based on:

○ Other users followed

○ Topics followed

○ User interactions

○ User-related features

○ ...

User Trust/Expertise Inference

● Goal: Infer user’s trustworthiness in relation

to a given topic

● We take into account:

○ Answers written on topic

○ Upvotes/downvotes received

○ Endorsements

○ ...

● Trust/expertise propagates through the network

● Must be taken into account by other algorithms

Social and Trust-based recommenders

● A social recommender system recommends items that are “popular”
in the social proximity of the user.

● Social proximity = trust (can also be topic-specific)

● Given two individuals - the source (node A) and sink (node C) -
derive how much the source should trust the sink.

● Algorithms

o Advogato (Levien)

o Appleseed (Ziegler and Lausen)

o MoleTrust (Massa and Avesani)

o TidalTrust (Golbeck)

Other ways to use Social

● Social connections can be used in combination with
other approaches

● In particular, “friendships” can be fed into collaborative
filtering methods in different ways
○ replace or modify user-user “similarity” by using social network

information
○ use social connection as a part of the ML objective function as

regularizer
○ ...

3.4 Explore/Exploit

● One of the key issues when building any kind of
personalization algorithm is how to trade off:
○ Exploitation: Cashing in on what we know about the user right

now
○ Exploration: Using the interaction as an opportunity to learn

more about the user

● We need to have informed and optimal strategies to
drive that tradeoff
○ Solution: pick a reasonable set of candidates and show users

only “enough” to gather information on them

Explore/Exploit

● Given possible strategies/candidates (slot machines) pick the arm that has
the maximum potential of being good (minimize regret)

● Naive strategy: ε-greedy
○ Explore with a small probability ε (e.g. 5%) -> choose an arm at random
○ Exploit with a high probability (1 - ε) (e.g. 95%) -> choose the best-known arm so far

● Translation to recommender systems
○ Choose an arm = choose an item/choose an algorithm (MAB testing)

● Thompson Sampling

Given a posterior distribution, sample on each iteration and choose the action that
maximizes the expected reward

Multi-armed Bandits

Multi-armed Bandits

3.5 Page
Optimization

10,000s of
possible

rows …
10-40
rows

Variable number of
possible videos per

row (up to thousands)

1 personalized page

per device

Page Composition

Page Composition

From “Modeling User Attention and
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)

User Attention Modeling

From “Modeling User Attention and
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)

vs.Accurate Diverse
vs.Discovery Continuation
vs.Depth Coverage
vs.Freshness Stability
vs.Recommendations Tasks

Page Composition

● To put things together we need to combine different elements
o Navigational/Attention Model
o Personalized Relevance Model
o Diversity Model

3.6 Beyond user/rating

N-dimensional model

HOSVD: Higher Order Singular
Value Decomposition

Tensor Factorization

Tensor Factorization

Where:

● We can use a simple squared error loss function:

● Or the absolute error loss

● The loss function over all users becomes

Factorization Machines

• Generalization of regularized matrix (and tensor)
factorization approaches combined with linear (or
logistic) regression

• Problem: Each new adaptation of matrix or tensor
factorization requires deriving new learning algorithms
– Hard to adapt to new domains and add data sources

– Hard to advance the learning algorithms across approaches

– Hard to incorporate non-categorical variables

• Approach: Treat input as a real-valued feature vector
– Model both linear and pair-wise interaction of k features (i.e. polynomial regression)

– Traditional machine learning will overfit

– Factor pairwise interactions between features

– Reduced dimensionality of interactions promote generalization

– Different matrix factorizations become different feature representations

– Tensors: Additional higher-order interactions

• Combines “generality of machine learning/regression
with quality of factorization models”

Factorization Machines

• Each feature gets a weight value and a factor vector

– O(dk) parameters

• Model equation:

O(d2)

O(kd)

Factorization Machines

From Rendle (2012) KDD Tutorial

▪ Two categorical variables (u, i) encoded as real values:

▪ FM becomes identical to MF with biases:

Factorization Machines

▪ Makes it easy to add a time signal

▪ Equivalent equation:

From Rendle (2012) KDD Tutorial

Factorization Machines

• L2 regularized
– Regression: Optimize RMSE

– Classification: Optimize logistic log-likelihood

– Ranking: Optimize scores

• Can be trained using:
– SGD

– Adaptive SGD

– ALS

– MCMC

Gradient:

Least squares SGD:

Factorization Machines (Rendle, 2010)

• Learning parameters:

– Number of factors
– Iterations
– Initialization scale
– Regularization (SGD, ALS) – Multiple
– Step size (SGD, A-SGD)
– MCMC removes the need to set those

hyperparameters

Factorization Machines (Rendle, 2010)

3.7 Deep Learning
(See Balázs Hidasi’s slides)

4. Lessons Learned

1. Implicit signals beat
explicit ones

(almost always)

Implicit vs. Explicit

● Many have acknowledged

that implicit feedback is more

useful

● Is implicit feedback really always

more useful?

● If so, why?

● Implicit data is (usually):

○ More dense, and available for all users

○ Better representative of user behavior vs.

user reflection

○ More related to final objective function

○ Better correlated with AB test results

● E.g. Rating vs watching

Implicit vs. Explicit

● However

○ It is not always the case that

direct implicit feedback correlates

well with long-term retention

○ E.g. clickbait

● Solution:

○ Combine different forms of

implicit + explicit to better represent

long-term goal

Implicit vs. Explicit

2. be thoughtful about your
Training Data

● Training a simple binary classifier for
good/bad answer

○ Defining positive and negative labels ->
Non-trivial task

○ Is this a positive or a negative?
■ funny uninformative answer with many

upvotes

■ short uninformative answer by a well-known
expert in the field

■ very long informative answer that nobody
reads/upvotes

■ informative answer with grammar/spelling
mistakes

■ ...

3. Your Model will learn
what you teach it to learn

Training a model

● Model will learn according to:

○ Training data (e.g. implicit and explicit)

○ Target function (e.g. probability of user reading an answer)

○ Metric (e.g. precision vs. recall)

● Example 1 (made up):

○ Optimize probability of a user going to the cinema to

watch a movie and rate it “highly” by using purchase history

and previous ratings. Use NDCG of the ranking as final

metric using only movies rated 4 or higher as positives.

Example 2 - Quora’s feed

● Training data = implicit + explicit

● Target function: Value of showing a

story to a

user ~ weighted sum of actions:

v = ∑a va 1{ya = 1}
○ predict probabilities for each action, then compute expected

value: v_pred = E[V | x] = ∑a va p(a | x)

● Metric: any ranking metric

4. Explanations might matter
more than the prediction

Explanation/Support for Recommendations

Social Support

5. Learn to deal with
Presentation Bias

More likely
to see

Less likely

● User can only click on what you decide to show
○ But, what you decide to show is the result of what your model

predicted is good

● Simply treating things you show as negatives is not
likely to work

● Better options
○ Correcting for the probability a user will click on a position ->

Attention models

○ Explore/exploit approaches such as MAB

6. If You Have to Pick one single
approach, Matrix factorization is your

best bet

Matrix Factorization

● MF can be interpreted as
○ Unsupervised:

■ Dimensionality Reduction a la PCA

■ Clustering (e.g. NMF)

○ Supervised:

■ Labeled targets ~ regression

● Very useful variations of MF
○ BPR, ALS, SVD++

○ Tensor Factorization, Factorization Machines

● However...

7. Everything is an ensemble

Ensembles

● Netflix Prize was won by an ensemble
○ Initially Bellkor was using GDBTs

○ BigChaos introduced ANN-based ensemble

● Most practical applications of ML run an

ensemble
○ Why wouldn’t you?

○ At least as good as the best of your methods

○ Can combine different approaches (e.g. CF and content-based)

○ Can use different models at the ensemble layer: LR, GDBTs, RFs,

ANNs...

Ensembles & Feature Engineering

● Ensembles are the way to turn any model

into a feature!

● E.g. Don’t know if the way to go is to use Factorization

Machines, Tensor Factorization, or RNNs?

○ Treat each model as a “feature”

○ Feed them into an ensemble

8. Building Recommender Systems is
also about Feature Engineering

Need for feature engineering

In many cases an understanding of the domain will lead to

optimal results.

Feature Engineering Example - Quora Answer Ranking

What is a good Quora answer?

• truthful

• reusable

• provides explanation

• well formatted

• ...

Feature Engineering Example - Quora Answer Ranking

How are those dimensions translated

into features?
• Features that relate to the answer

quality itself

• Interaction features

(upvotes/downvotes, clicks,

comments…)

• User features (e.g. expertise in topic)

Feature Engineering

● Properties of a well-behaved

ML feature:

○ Reusable

○ Transformable

○ Interpretable

○ Reliable

9. Why you should care about
answering questions

(about your recsys)

Model debuggability
● Value of a model = value it brings to the product

● Product owners/stakeholders have expectations on

the product

● It is important to answer questions to why did

something fail

● Model debuggability is so important it can

determine:

○ Particular model to use

○ Features to rely on

○ Implementation of tools

Model debuggability
● E.g. Why am I seeing or not seeing

this on my homepage feed?

10. Data and Models are great. You know
what’s even better?

The right evaluation approach!

Offline/Online testing process

11. You don’t need to distribute your
Recsys

Distributing Recommender Systems

● Most of what people do in practice can fit

into a multi-core machine

○ As long as you use:

■ Smart data sampling

■ Offline schemes

■ Efficient parallel code

● (… but not Deep ANNs)

● Do you care about costs? How about latencies or

system complexity/debuggability?

12. The UI is the only communication
channel with what matters the most:

Users

UI->Algorithm->UI

● The UI generates the user feedback
that we will input into the algorithms

● The UI is also where the results of
our algorithms will be shown

● A change in the UI might require a
change in algorithms and viceversa

5. A Recsys Architectural
Blueprint

Feature & Training
Data Generation

Pipeline

6. Building a state-of-the-art
Recsys

6.1 Training, testing,
and metrics

Training, testing, metrics

● As mentioned in the lessons, this is essential

● Choose implicit data and metrics that connect to your

business goal

● Sample negatives smartly

● Select validation and test set carefully (e.g. avoid time

traveling)

Training, testing, metrics

● For metrics, prefer ranking or ranking-related metrics

6.2 Implicit Matrix
Factorization

Implicit Matrix Factorization

● Experience says, best single (simple) approach:

implicit matrix factorization:

○ ALS. Alternating Least Squares (Hu et al. 2008)

○ BPR. Bayesian Personalized Ranking (Rendle et

al. 2009)

Recommended Implementations

● Quora’s QMF

○ Efficient compiled C++ code

○ Supports many evaluation metrics

Recommended Implementations

● Implicit

○ Efficient

○ Python

○ Well-maintained

Others?

● Sorry to say, but I cannot recommend any others (no,

not Mahout)

6.3 A/B Test

AB Test

● So, you have your first implementation

○ Have tuned hyperparameters to optimize offline

metric

○ How do you know this is working?

● Run AB Test!

○ Make sure offline metric (somewhat) correlates to

online effect

AB Test

● Ideally, you would run several AB tests with different

offline metrics and data sampling strategies

6.4 Ensemble

Ensemble

● Now, it’s time to turn the model into a signal

● Brainstorm about some simple potential features that

you could combine with implicit MF

○ E.g. user tenure, average rating for the item, price

of the item…

● Add to MF through an ensemble

Ensemble

● What model to use at the ensemble layer?
○ Always favor most simple -> L2-regularized Logistic

Regression

○ Eventually introduce models that can benefit from non-linear

effects and many features -> Gradient Boosted Decision

Trees

○ Explore Learning-to-rank models -> LambdaRank

6.5 Iterate,
Feature Engineering

Iterate

● Experiment/add more features

● Experiment with more complex models

● Do both things in parallel

● Continue AB testing

7. Practical exercise

Exercise

● Train an ALS implicit matrix factorization

recommender system

● Do basic feature engineering to add other features

● Add the mix to an XGBoost-based ensemble

● This is very close to what you could be using in

real-life (minus scalability/performance issues)

8. Future Research
Directions

1. Indirect feedback

2. Value-awareness

3. Full-page optimization

4. Personalizing the how

Others

● Intent/session awareness

● Interactive recommendations

● Context awareness

● Deep learning for recommendations

● Conversational interfaces/bots for

recommendations

● …

Many interesting future directions

Challenges
 User can only click on what you show

 But, what you show is the result of what your
model predicted is good

 No counterfactuals
 Implicit data has no real “negatives”

Potential solutions
 Attention models
 Context is also indirect/implicit feedback
 Explore/exploit approaches and learning across

time
 ...

click

upvote
downvote

expand

share

Indirect Feedback

● Recsys optimize for probability of action

● Not all clicks/actions have the same “reward”

○ Different margin in ecommerce

○ Different “quality” of content

○ Long-term retention vs. short-term clicks (clickbait)

○ …

● In Quora, the value of showing a story to a user is approximated by weighted sum of actions:

● v = ∑a va 1{ya = 1}

● Extreme application of value-aware recommendations: suggest items to create that have the

highest value

 Netflix: Which shows to produce or license

 Quora: Answers and questions that are not in the service

Value-aware recommendations

● Recommendations are rarely displayed in isolation
○ Rankings are combined with many other elements to make a

page

● Want to optimize the whole page

● Jointly solving for set of items and their placement

● While incorporating
○ Diversity, freshness, exploration

○ Depth and coverage of the item set

○ Non-recommendation elements (navigation, editorial, etc.)

● Needs work hand-in-hand with the UX

Full-page optimization

● Algorithm level: Ideal balance of diversity, novelty, popularity, freshness, etc. may depend

on the person

● Display level: How you present items or explain recommendations can also be personalized

○ Select the best information and presentation for a user to quickly decide whether or

not they want an item

● Interaction level: Balancing the needs of lean-back users and power users

Personalizing how we recommend (not just what)

R
o

w
s

Hero
Image

Predicted
rating

Evidence

Synopsis

Horizontal
Image

Row Title

Metadata

Ranking

Example rows and beyond

9. Conclusions

● Recommendation is about much more than just
predicting a rating

● All forms of recommendation require of a tight
connection with the UI
○ Capture the right kind of feedback

■ Explicit/implicit feedback
■ Correct for presentation bias
■ ...

○ Present the recommendations correctly
■ Explanations
■ Diversity
■ Exploration/Exploitation
■ ….

Conclusions

● For the algorithm:
○ Use implicit feedback if possible
○ Build a Matrix Factorization recommender system
○ Think of using ensembles and turning your problem into a

feature engineering problem
○ Always think of the metric you are optimizing to and the data

you are using
● Whatever you do in the lab, you should trust your AB tests

Conclusions

10. References

● 4 hour video of my lecture at MLSS at CMU (Youtube)

● “Recommender systems in industry: A netflix case study” (X. Amatriain, J. Basilico) in

Recommender System Handbook

● “Past, Present, and Future of Recommender Systems: An Industry Perspective” (X. Amatriain,

J. Basilico. Recsys 2016)

● “Mining large streams of user data for personalized recommendations” (X. Amatriain) - ACM

SigKDD Explorations Newsletter

● “Big & personal: data and models behind netflix recommendations” (X. Amatriain) - ACM

Workshop on Big Data

● Visit my slideshare page: https://www.slideshare.net/xamat

Other resources

