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1.The Recommender 
Problem



The “Recommender problem”

● Traditional definition: Estimate a utility function that 
automatically predicts how much a user will like an 
item. 

● Based on:
o Past behavior

o Relations to other users

o Item similarity

o Context

o …



Recommendation as data mining 

The core of the Recommendation 
Engine can be assimilated to a 
general data mining problem
(Amatriain et al. Data Mining Methods for Recommender 
Systems in Recommender Systems Handbook)



Data Mining + all those other things

● User Interface
● System requirements (efficiency, scalability, privacy....)
● Serendipity
● Diversity
● Awareness
● Explanations
● …



● Unsought finding

● Don't recommend items the user already knows or 
would have found anyway.

● Expand the user's taste into neighboring areas by 
improving the obvious

● Serendipity ~ Explore/exploit tradeoff

Serendipity



Explanation/Support for Recommendations

 

Social Support



 

Personalization awareness

Diversity

DadAll SonDaughterDad&Mom MomAll Daughter MomAll?

Diversity & Awareness



What works
● Depends on the domain and particular problem
● However, in the general case it has been demonstrated 

that the best isolated approach is CF.
o Other approaches can be hybridized to improve results in specific 

cases (cold-start problem...)

● What matters:
o Data preprocessing: outlier removal, denoising, removal of global 

effects (e.g. individual user's average)

o “Smart” dimensionality reduction using MF

o Combining methods through ensembles



2. The Netflix Prize



What we were interested in:

▪ High quality recommendations

Proxy question:

▪ Accuracy in predicted rating 

▪ Improve by 10% = $1million!



2007 Progress Prize

▪ Top 2 algorithms
▪ SVD - Prize RMSE: 0.8914

▪ RBM - Prize RMSE: 0.8990

▪ Linear blend Prize RMSE: 0.88

▪ Currently in use as part of Netflix’ rating prediction 
component

▪ Limitations
▪ Designed for 100M ratings, not XB ratings

▪ Not adaptable as users add ratings

▪ Performance issues



What about the final prize ensembles?

● Offline studies showed they were too computationally 
intensive to scale

● Expected improvement not worth engineering effort

● Plus…. Focus had already shifted to other issues that had 
more impact than rating prediction.

 



3. Beyond Rating 
Prediction



Everything is a recommendation

 



Evolution of the Recommender Problem

Rating Ranking Page Optimization

4.7

Context-aware
Recommendations

Context



3.1 Ranking



Ranking

● Most recommendations are presented in a sorted list

● Recommendation can be understood as a ranking problem

● Popularity is the obvious baseline

● What about rating predictions?



Ranking by ratings

4.7 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Niche titles
High average ratings… by those who would watch it



RMSE
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Learning to rank

● Machine learning problem: goal is to construct ranking 
model from training data

● Training data can be a partial order or binary judgments 
(relevant/not relevant).

● Resulting order of the items typically induced from a 
numerical score

● Learning to rank is a key element for personalization

● You can treat the problem as a standard supervised 
classification problem

 



Learning to rank - Metrics

● Quality of ranking measured using metrics as 
o Normalized Discounted Cumulative Gain

o Mean Reciprocal Rank (MRR)

o Fraction of Concordant Pairs (FCP)

o Others…

● But, it is hard to optimize machine-learned models directly 
on these measures (e.g. non-differentiable)

● Recent research on models that directly optimize ranking 
measures

 



Goal: Present most interesting stories for a user at a given time

Interesting = topical relevance + 

social relevance + timeliness

Stories = questions + answers

ML: Personalized learning-to-rank approach

Relevance-ordered vs time-ordered = big gains in engagement



3.2 Similarity



● Displayed in 
many different 
contexts
○ In response to 

user 
actions/context 
(search, queue 
add…)

○ More like… rows

Similars



● Given interest in question A (source) what other 

questions will be interesting?

● Not only about similarity, but also “interestingness”

● Features such as:
○ Textual

○ Co-visit

○ Topics

○ …

● Important for logged-out use case



Graph-based similarities
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Example of graph-based similarity: SimRank

● SimRank (Jeh & Widom, 02): “two objects are 
similar if they are referenced by similar objects.”



Similarity ensembles

● Similarity can refer to different dimensions
○ Similar in metadata/tags
○ Similar in user play behavior
○ Similar in user rating behavior
○ …

● Combine them using an ensemble
○ Weights are learned using regression over existing response
○ Or… some MAB explore/exploit approach 

● The final concept of “similarity” responds to what users vote as 
similar



3.3 Social 
Recommendations



Recommendations - Users

● Goal: Recommend new users to follow

● Based on:

○ Other users followed

○ Topics followed

○ User interactions

○ User-related features

○  ...



User Trust/Expertise Inference

● Goal: Infer user’s trustworthiness in relation 

to a given topic

● We take into account:

○ Answers written on topic

○ Upvotes/downvotes received

○ Endorsements

○ ...

● Trust/expertise propagates through the network

● Must be taken into account by other algorithms



Social and Trust-based recommenders

● A social recommender system recommends items that are “popular” 
in the social proximity of the user.

● Social proximity = trust (can also be topic-specific)

● Given two individuals - the source (node A) and sink (node C) - 
derive how much the source should trust the sink.

● Algorithms

o Advogato (Levien)

o Appleseed (Ziegler and Lausen)

o MoleTrust (Massa and Avesani)

o TidalTrust (Golbeck)



Other ways to use Social

● Social connections can be used in combination with 
other approaches

● In particular, “friendships” can be fed into collaborative 
filtering methods in different ways 
○ replace or modify user-user “similarity” by using social network 

information
○ use social connection as a part of the ML objective function as 

regularizer
○ ...



3.4 Explore/Exploit



● One of the key issues when building any kind of 
personalization algorithm is how to trade off:
○ Exploitation: Cashing in on what we know about the user right 

now
○ Exploration: Using the interaction as an opportunity to learn 

more about the user

● We need to have informed and optimal strategies to 
drive that tradeoff
○ Solution: pick a reasonable set of candidates and show users 

only “enough” to gather information on them

Explore/Exploit



● Given possible strategies/candidates (slot machines) pick the arm that has 
the maximum potential of being good (minimize regret)

● Naive strategy: ε-greedy
○ Explore with a small probability ε  (e.g. 5%) -> choose an arm at random
○ Exploit with a high probability (1 - ε ) (e.g. 95%) -> choose the best-known arm so far

● Translation to recommender systems 
○ Choose an arm = choose an item/choose an algorithm (MAB testing)

● Thompson Sampling

Given a posterior distribution, sample on each iteration and choose the action that 
maximizes the expected reward

Multi-armed Bandits



Multi-armed Bandits



3.5 Page 
Optimization



10,000s of 
possible 

rows …
10-40 
rows

Variable number of 
possible videos per 

row (up to thousands)

1 personalized page

per device

Page Composition



Page Composition

From “Modeling User Attention and 
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
 



User Attention Modeling

From “Modeling User Attention and 
Interaction on the Web” 2014 - PhD Thesis by Dmitry Lagun (Emory U.)
 



vs.Accurate Diverse
vs.Discovery Continuation
vs.Depth Coverage
vs.Freshness Stability
vs.Recommendations Tasks

Page Composition

● To put things together we need to combine different elements
o Navigational/Attention Model
o Personalized Relevance Model
o Diversity Model



3.6 Beyond user/rating



N-dimensional model



HOSVD: Higher Order Singular 
Value Decomposition

Tensor Factorization



Tensor Factorization

Where:

● We can use a simple squared error loss function:

● Or the absolute error loss

● The loss function over all users becomes 



Factorization Machines

• Generalization of regularized matrix (and tensor) 
factorization approaches combined with linear (or 
logistic) regression

• Problem: Each new adaptation of matrix or tensor 
factorization requires deriving new learning algorithms
– Hard to adapt to new domains and add data sources

– Hard to advance the learning algorithms across approaches

– Hard to incorporate non-categorical variables



• Approach: Treat input as a real-valued feature vector
– Model both linear and pair-wise interaction of k features (i.e. polynomial regression)

– Traditional machine learning will overfit

– Factor pairwise interactions between features

– Reduced dimensionality of interactions promote generalization

– Different matrix factorizations become different feature representations

– Tensors: Additional higher-order interactions

• Combines “generality of machine learning/regression 
with quality of factorization models”

Factorization Machines



• Each feature gets a weight value and a factor vector

– O(dk) parameters

• Model equation:

O(d2)

O(kd)

Factorization Machines



From Rendle (2012) KDD Tutorial

▪ Two categorical variables (u, i) encoded as real values:

▪ FM becomes identical to MF with biases:

Factorization Machines



▪ Makes it easy to add a time signal

▪ Equivalent equation:

From Rendle (2012) KDD Tutorial

Factorization Machines



• L2 regularized
– Regression: Optimize RMSE

– Classification: Optimize logistic log-likelihood

– Ranking: Optimize scores

• Can be trained using:
– SGD

– Adaptive SGD

– ALS

– MCMC

Gradient:

Least squares SGD:

Factorization Machines (Rendle, 2010)



• Learning parameters:

– Number of factors
– Iterations
– Initialization scale
– Regularization (SGD, ALS) – Multiple
– Step size (SGD, A-SGD)
– MCMC removes the need to set those 

hyperparameters

Factorization Machines (Rendle, 2010)



3.7 Deep Learning
(See Balázs Hidasi’s slides)



4. Lessons Learned



1. Implicit signals beat 
explicit ones 

(almost always)



Implicit vs. Explicit

● Many have acknowledged 

that implicit feedback is more 

useful

● Is implicit feedback really always 

more useful?

● If so, why?



● Implicit data is (usually):

○ More dense, and available for all users

○ Better representative of user behavior vs. 

user reflection

○ More related to final objective function

○ Better correlated with AB test results

● E.g. Rating vs watching

Implicit vs. Explicit



● However

○ It is not always the case that 

direct implicit feedback correlates 

well with long-term retention

○ E.g. clickbait

● Solution:

○ Combine different forms of 

implicit + explicit to better represent 

long-term goal

Implicit vs. Explicit



2. be thoughtful about your 
Training Data



● Training a simple binary classifier for 
good/bad answer

○ Defining positive and negative labels -> 
Non-trivial task

○ Is this a positive or a negative?
■ funny uninformative answer with many 

upvotes

■ short uninformative answer by a well-known 
expert in the field

■ very long informative answer that nobody 
reads/upvotes

■ informative answer with grammar/spelling 
mistakes

■ ...



3. Your Model will learn 
what you teach it to learn 



Training a model

● Model will learn according to:

○ Training data (e.g. implicit and explicit)

○ Target function (e.g. probability of user reading an answer)

○ Metric (e.g. precision vs. recall)

● Example 1 (made up):

○ Optimize probability of a user going to the cinema to 

watch a movie and rate it “highly” by using purchase history 

and previous ratings. Use NDCG of the ranking as final 

metric using only movies rated 4 or higher as positives.



Example 2 - Quora’s feed

● Training data = implicit + explicit

● Target function: Value of showing a 

story to a 

user ~ weighted sum of actions:   

v = ∑a va 1{ya = 1}
○ predict probabilities for each action, then compute expected 

value:  v_pred = E[ V | x ] = ∑a va p(a | x)

● Metric: any ranking metric



4. Explanations might matter 
more than the prediction



Explanation/Support for Recommendations

 

Social Support



5. Learn to deal with 
Presentation Bias



More likely 
to see

Less likely



● User can only click on what you decide to show
○ But, what you decide to show is the result of what your model 

predicted is good

● Simply treating things you show as negatives is not 
likely to work

● Better options
○ Correcting for the probability a user will click on a position -> 

Attention models

○ Explore/exploit approaches such as MAB



6. If You Have to Pick one single 
approach, Matrix factorization is your 

best bet



Matrix Factorization

● MF can be interpreted as
○ Unsupervised: 

■ Dimensionality Reduction a la PCA

■ Clustering (e.g. NMF)

○ Supervised:

■ Labeled targets ~ regression

● Very useful variations of MF
○ BPR, ALS, SVD++

○ Tensor Factorization, Factorization Machines

● However...



7. Everything is an ensemble



Ensembles

● Netflix Prize was won by an ensemble
○ Initially Bellkor was using GDBTs

○ BigChaos introduced ANN-based ensemble

● Most practical applications of ML run an 

ensemble
○ Why wouldn’t you?

○ At least as good as the best of your methods

○ Can combine different approaches (e.g. CF and content-based)

○ Can use different models at the ensemble layer: LR, GDBTs, RFs, 

ANNs...



Ensembles & Feature Engineering

● Ensembles are the way to turn any model 

into a feature!

● E.g. Don’t know if the way to go is to use Factorization 

Machines, Tensor Factorization, or RNNs?

○ Treat each model as a “feature”

○ Feed them into an ensemble



8. Building Recommender Systems is 
also about Feature Engineering



Need for feature engineering

In many cases an understanding of the domain will lead to 

optimal results. 



Feature Engineering Example - Quora Answer Ranking

What is a good Quora answer?

• truthful

• reusable

• provides explanation

• well formatted

• ... 



Feature Engineering Example - Quora Answer Ranking

How are those dimensions translated 

into features?
• Features that relate to the answer 

quality itself

• Interaction features 

(upvotes/downvotes, clicks, 

comments…)

• User features (e.g. expertise in topic)



Feature Engineering

● Properties of a well-behaved 

ML feature:

○ Reusable

○ Transformable

○ Interpretable

○ Reliable



9. Why you should care about 
answering questions 

(about your recsys)



Model debuggability
● Value of a model = value it brings to the product

● Product owners/stakeholders have expectations on 

the product

● It is important to answer questions to why did 

something fail

● Model debuggability is so important it can 

determine:

○ Particular model to use

○ Features to rely on

○ Implementation of tools



Model debuggability
● E.g. Why am I seeing or not seeing 

this on my homepage feed?



10. Data and Models are great. You know 
what’s even better? 

The right evaluation approach!



Offline/Online testing process   



11. You don’t need to distribute your
Recsys



Distributing Recommender Systems

● Most of what people do in practice can fit 

into a multi-core machine

○ As long as you use:

■ Smart data sampling

■ Offline schemes

■ Efficient parallel code

● (… but not Deep ANNs)

● Do you care about costs? How about latencies or 

system complexity/debuggability?





12. The UI is the only communication 
channel with what matters the most: 

Users



UI->Algorithm->UI  

● The UI generates the user feedback 
that we will input into the algorithms

● The UI is also where the results of 
our algorithms will be shown

● A change in the UI might require a 
change in algorithms and viceversa



5. A Recsys Architectural 
Blueprint 





Feature & Training 
Data Generation 

Pipeline





6. Building a state-of-the-art 
Recsys 



6.1 Training, testing, 
and metrics



Training, testing, metrics 

● As mentioned in the lessons, this is essential

● Choose implicit data and metrics that connect to your 

business goal

● Sample negatives smartly

● Select validation and test set carefully (e.g. avoid time 

traveling)



Training, testing, metrics 

● For metrics, prefer ranking or ranking-related metrics



6.2 Implicit Matrix 
Factorization



Implicit Matrix Factorization 

● Experience says, best single (simple) approach: 

implicit matrix factorization:

○ ALS. Alternating Least Squares (Hu et al. 2008)

○ BPR. Bayesian Personalized Ranking (Rendle et 

al. 2009)



Recommended Implementations

● Quora’s QMF

○ Efficient compiled C++ code

○ Supports many evaluation metrics



Recommended Implementations

● Implicit

○ Efficient

○ Python

○ Well-maintained



Others? 

● Sorry to say, but I cannot recommend any others (no, 

not Mahout)



6.3 A/B Test



AB Test

● So, you have your first implementation

○ Have tuned hyperparameters to optimize offline 

metric

○ How do you know this is working?

● Run AB Test!

○ Make sure offline metric (somewhat) correlates to 

online effect



AB Test

● Ideally, you would run several AB tests with different 

offline metrics and data sampling strategies



6.4 Ensemble



Ensemble

● Now, it’s time to turn the model into a signal

● Brainstorm about some simple potential features that 

you could combine with implicit MF

○ E.g. user tenure, average rating for the item, price 

of the item…

● Add to MF through an ensemble



Ensemble

● What model to use at the ensemble layer?
○ Always favor most simple -> L2-regularized Logistic 

Regression

○ Eventually introduce models that can benefit from non-linear 

effects and many features -> Gradient Boosted Decision 

Trees

○ Explore Learning-to-rank models -> LambdaRank



6.5 Iterate, 
Feature Engineering



Iterate

● Experiment/add more features

● Experiment with more complex models

● Do both things in parallel

● Continue AB testing



7. Practical exercise



Exercise

● Train an ALS implicit matrix factorization 

recommender system

● Do basic feature engineering to add other features

● Add the mix to an XGBoost-based ensemble

● This is very close to what you could be using in 

real-life (minus scalability/performance issues)



8. Future Research 
Directions



1. Indirect feedback 

2. Value-awareness

3. Full-page optimization

4. Personalizing the how

Others

● Intent/session awareness

● Interactive recommendations

● Context awareness

● Deep learning for recommendations

● Conversational interfaces/bots for 

recommendations

● …

Many interesting future directions



Challenges
 User can only click on what you show

 But, what you show is the result of what your 
model predicted is good

 No counterfactuals
 Implicit data has no real “negatives”

Potential solutions
 Attention models
 Context is also indirect/implicit feedback
 Explore/exploit approaches and learning across 

time
 ...

click

upvote
downvote

expand

share

Indirect Feedback



● Recsys optimize for probability of action

● Not all clicks/actions have the same “reward”

○ Different margin in ecommerce

○ Different “quality” of content 

○ Long-term retention vs. short-term clicks (clickbait)

○ …

● In Quora, the value of showing a story to a user is approximated by weighted sum of actions:                  

● v = ∑a va 1{ya = 1}

● Extreme application of value-aware recommendations: suggest items to create that have the 

highest value

 Netflix: Which shows to produce or license

 Quora: Answers and questions that are not in the service

Value-aware recommendations



● Recommendations are rarely displayed in isolation
○ Rankings are combined with many other elements to make a 

page

● Want to optimize the whole page

● Jointly solving for set of items and their placement

● While incorporating
○ Diversity, freshness, exploration

○ Depth and coverage of the item set

○ Non-recommendation elements (navigation, editorial, etc.)

● Needs work hand-in-hand with the UX

Full-page optimization



● Algorithm level: Ideal balance of diversity, novelty, popularity, freshness, etc. may depend 

on the person

● Display level: How you present items or explain recommendations can also be personalized

○ Select the best information and presentation for a user to quickly decide whether or 

not they want an item

● Interaction level: Balancing the needs of lean-back users and power users

Personalizing how we recommend (not just what)
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Example rows and beyond



9. Conclusions 



● Recommendation is about much more than just 
predicting a rating

● All forms of recommendation require of a tight 
connection with the UI
○ Capture the right kind of feedback

■ Explicit/implicit feedback
■ Correct for presentation bias
■ ...

○ Present the recommendations correctly
■ Explanations
■ Diversity
■ Exploration/Exploitation
■ ….

Conclusions



● For the algorithm:
○ Use implicit feedback if possible
○ Build a Matrix Factorization recommender system
○ Think of using ensembles and turning your problem into a 

feature engineering problem
○ Always think of the metric you are optimizing to and the data 

you are using
● Whatever you do in the lab, you should trust your AB tests

Conclusions
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