
Software Engineering

Requirements elicitation

Software Engineering
2004-2005

Marco Scotto (Marco.Scotto@unibz.it)

2Software Engineering

Content

Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three beasts

3Software Engineering

Introduction

Deciding precisely what to build is most
important and most difficult
Requirements are often buried under
layers of assumptions, misconceptions,
and politics
Thorough understanding and constant
communication with customers are
essential

4Software Engineering

Content

Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three beasts

5Software Engineering

Requirements engineering
Development, specification, and validation of
requirements
Elicitation and modeling
Elicitation
• Fact-finding, communication, and fact-validation
• Output: requirements document

Understood by customers unambiguously

Modeling (based on requirements document)
• Representation and organization
• Requirements in a form understood by software

engineers unambiguously

6Software Engineering

Content

Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three beasts

7Software Engineering

Stakeholder
Key representative of the groups who …
• Have vested interest in the system to be

developed
• Have direct and indirect influence on the

requirements
Examples: customers who pay, users who use,
and technicians who maintain
Each stakeholder has different perspectives and
needs which have to be captured
Involvement:
• Spread throughout development life cycle (agile

process)
• at front-end of life cycle (plan-driven process)

8Software Engineering

Types of requirements
Functional requirements
• Services provided, reaction to specified inputs, behaviour

in specified circumstances
Non-functional requirements
• User-visible properties relating to system as a whole
• Security, privacy, usability, reliability, availability, and

performance
• Defects are expensive and hard to fix

Constraints
• Imposed by client, restricting implementation
• No direct effect on users’ view of system
e.g. programming language, development platform

9Software Engineering

Security & privacy
Protection’s focus: what, from whom, and for how long
Examining the security and privacy policies of the
organization
Privacy policy
• Privacy rights of users and information usage

Security policy
• Interaction of internal and external users, computer

architecture topology, location of computer assets
Reasons for engineers to understand the policies
• Able to ask right questions early
• Able to spot inconsistencies between policies and

requirements

10Software Engineering

10 problems of requirements
elicitation

1. The boundary of the system is ill-defined.

2. Unnecessary design information may be given.

3. Stakeholders have incomplete understanding of their
needs.

4. Stakeholders have poor understanding of computer
capabilities and limitations.

5. Software engineers have poor knowledge of problem
domain.

6. Stakeholder and software engineers speak different
languages.

7. “Obvious” information is omitted.

8. Different stakeholders have conflicting views.

9. Requirements are vague and untestable, such as
“user friendly” and “robust”.

10.Requirements are volatile and change over time.

11Software Engineering

Content

Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three beasts

12Software Engineering

9 info gathering techniques (1/5)
First 6 techniques: initial requirements capture

Interviews
• Structured interview

Pre-determined questions and clear planned agenda
Questions: open-ended (stakeholders say what they want) or closed
ended (multiple choice, ranking, rating)

• Unstructured interview
No questions prepared (free discussion)

Observation
• Passive

no interruption to or direct involvement in business activities or via
studies audio/video recordings

• Active
Participation and/or becoming part of the team

13Software Engineering

9 info gathering techniques (2/5)
Examining existing documents and artifacts
• Any form, automation, and policies
Joint application design (JAD) sessions
• Guide users and relevant experts through defining

requirements, process, data models, and mock-ups
• 6 roles of the JAD participants in a session:

Executive sponsor: supports or pays the project

Facilitator: moderates the meeting

Project leader: leader of the development team

Participants: stakeholders and engineers

Scribe: records and publishes proceedings

Development team members: “the quiet guys at the back”

14Software Engineering

9 info gathering techniques (3/5)
Groupware
• Software tool for distributed requirements

gathering
• Supports communication through video and

audio conferencing, interactive chat, and
email

Questionnaires
• Reaching a wide range of people
• Obtaining honest, anonymous input
• Hard to analyze open-ended questions
• Less control over results

15Software Engineering

9 info gathering techniques (4/5)
Last 3 techniques:

• During development process
• For collecting feedbacks &

additional requirements

Prototypes
• Partially-developed demonstration

system
• For interactions with stakeholders
• Paper prototype or automated

prototype

16Software Engineering

9 info gathering techniques (5/5)
Customer focus groups
• Reviewing interim results
• Obtaining feedback on quality and

effectiveness of the system
• Documentation of requirements changes
• Prioritization on future work

On-site customer
• Customer or stakeholder available nearby
• Providing valuable clarification and feedbacks

as soon as the need arises

17Software Engineering

Content
Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three
beasts

18Software Engineering

SRS
Means for documenting requirements for
relatively large projects with fairly stable
requirements
Templates
• Often adopted by organizations as a standard form to

specify requirements
• Easier for readers to understand

Other forms of requirements documentation
• Based on use cases
• Based on user stories (agile approach)

19Software Engineering

Content
Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three
beasts

20Software Engineering

Properties of good requirements
(1/4)

Understandable
• No confusion and misunderstanding

domain-specific language and terms confuse
developers
Technical terms confuse stakeholders

• Using short, declarative statements
• Examples, figures, and tables for clarification

Non-prescriptive
• Stating what customer wants, not how

programmer will do it

21Software Engineering

Properties of good requirements
(2/4)

Concise
• Facilitating customer’s validation of requirements
• Prevents developers from skimming through info
• Use KISS principle

Consistent language
• “Shall” statement a “contract” or mandatory
• “Should”/“may” statement desirable but optional

Consistent
• No contradiction between requirements

Correct and complete
• Exhaustive list of requirements

22Software Engineering

Properties of good requirements
(3/4)

Unambiguous testable
• Writing test cases during requirements elicitation

Involve customers early

• Specify a quantitative description for each adverb
and adjective

• Replace pronouns with specific names of entities
• Every noun is defined in exactly one place in the

requirement document

Traceable
• Requirements assigned with unique identifiers
• Easing the future reference to requirements

23Software Engineering

Properties of good requirements
(4/4)

Ranked for importance and stability
• Should be decided together by team and

stakeholders
• Requirements negotiation process for determining:

Realistic priorities
How likely a requirement will change

Feasible
• Infeasible requirements found in elicitation phase

To be explained by stakeholder immediately
• Infeasible requirements found in analysis phase

Stakeholder notified and requirements document
updated

24Software Engineering

Content
Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three
beasts

25Software Engineering

Requirements validation review

Neutral and formal meetings
Ensuring the document clearly and
accurately reflect actual requirements
Validation checklists used as reminder of
what to look for in SRS
Realistic about the number of
requirements that can be reviewed in one
meeting before the team gets tired

26Software Engineering

A sample checklist for a cell phone
It turns on and off
It sends and receive emails
It sends and receives SMSs
It sends and received MMSs
It sends and receives calls
It takes pictures
It lets you review the pictures
It traces meeting
It records contacts
It reproduces MP3
It records videos
It plays video
It works with UMTS networks
It connects to the Internet via GPRS
It connects to the Internet via UMTS
It supports bluetooth
It supports infrared
It receives FM radios

27Software Engineering

Content

Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the three beasts

28Software Engineering

Requirements volatility
Describing amount of change
in requirements between the
beginning and end of project
Over time …
• Users’ needs may mature due

to increased knowledge about
the system

• Users may shift to new set of
needs due to unforeseen
pressures

29Software Engineering

Iterative requirements formulation
Re-examining requirements with stakeholders
periodically
Allow requirements to evolve over time
Some efficiency is lost when changes are allowed
Wrong assumptions detected & corrected faster
One-time requirements formulation
• Poor practice
• Getting what stakeholders want initially, but not what

they actually want

30Software Engineering

Taming requirements volatility
Change control board
• A group of managers, clients, and developers

together to decide the fate of proposed changes
• Trade-off between rejecting changes and possible

dissatisfaction of stakeholders with the product later
Using a defined methodology for requirements
analysis and modeling & frequent
communication with customers
• Requirements less volatile

Scope creep must be controlled
• Don’t give customers complete freedom in redefining

requirements

31Software Engineering

Content
Introduction
Requirements engineering
Requirements elicitation
Requirements gathering
Software requirements specification
“Good” requirements
Requirements validation review
Requirements volatility
Requirements engineering and the
three beasts

32Software Engineering

Requirements engineering &
the three beasts

Uncertainty
• Difficult to formulate and document accurately and

completely the desired system; volatility

Irreversibility
• Poor requirements are usually deeply embedded in

the system; a lot of rework due to cascading effect

Complexity
• Having to deal with different stakeholders with

different perspectives

The beasts can be tamed by good requirement
engineering practices

	Requirements elicitation
	Content
	Introduction
	Content
	Requirements engineering
	Content
	Stakeholder
	Types of requirements
	Security & privacy
	10 problems of requirements elicitation
	Content
	9 info gathering techniques (1/5)
	9 info gathering techniques (2/5)
	9 info gathering techniques (3/5)
	9 info gathering techniques (4/5)
	9 info gathering techniques (5/5)
	Content
	SRS
	Content
	Properties of good requirements (1/4)
	Properties of good requirements (2/4)
	Properties of good requirements (3/4)
	Properties of good requirements (4/4)
	Content
	Requirements validation review
	A sample checklist for a cell phone
	Content
	Requirements volatility
	Iterative requirements formulation
	Taming requirements volatility
	Content
	Requirements engineering & the three beasts

