
Software Engineering

System Analysis

Software Engineering

2004-2005
Marco Scotto (Marco.Scotto@unibz.it)



2Software Engineering

Content

Introduction 
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks



3Software Engineering

Introduction

Impossible to provide a precise definition
A phase between requirement elicitation 
and system design
• Purposes of the system are formalized and 

put in a consistent and coherent framework 
Traditional approach

ImplementationAnalysis
Requirements elicitation

Design
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Goals, human actors, & 3 beasts
Goals

Understand requirements, 
resolve ambiguities and 
incompleteness

Lay out basic model of 
system

Understand what is needed
for development

Human actors

Customer – a stakeholder: 
orders and pays the system

Manager – a stakeholder: 
heads and controls the 
development team

Developer: 
builds the system

Analyst – specialized 
developer in system analysis

3 beasts

Uncertainty: customer does 
not know the requirements, or 
they are ambiguous, 
incomplete and unstable

Irreversibility:
Once a basic model is 
decided, changes are costly

Complexity:
Requirements and/or basic 
model too complex
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Traditional approach (1/5)
Plan-driven approach to analysis:
• Try to be as specific as possible, resolve up-

front all ambiguities, build a complete and 
consistent set of formal specifications, and 
develop a solid base on which to build the 
system
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Traditional approach (2/5)
The Specification Document
• Goal: reports unambiguously the system 

requirements
• Key contractual document: the customer 

approves and signs it
• Seldom only textual
• Data Dictionary

Key part of the document
Repository containing the definition of all the 
data and control info entities in input or output 
to the various modules of the system  
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Traditional approach (3/5)
Goal: modeling the system
• 3 Aspects to model

Data structure
Functionalities
Behaviour

• Using various types of diagrams & notations
Based on info flow, procedures (describe 
behaviour)
Based on database field (describe data 
structures)
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Traditional approach (4/5)
Most popular diagrams used in 
“structured analysis”
• Data Flow Diagram

Captures the flow of info and control

• State Diagram
Describes the possible states of the system and 
the admissible state changes

• Entity-Relationship Diagram
Describes the data structure of a database
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Traditional approach (5/5)

Formal specification techniques
• Goal: describes the system “mathematically”
• Separating “what” from “how”
• Providing a complete mathematical (formal) 

specification of the system
using proper notation and languages

• Ideally, the correctness of the system could 
be mathematically proven
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Data flow diagrams – DFD (1/3)
2 purposes
• Define data flow and transformation
• Specify functions which process and 

transform data

Major drawback: difficult to translate 
DFD into system architecture and into 
code
Drawing DFD for complex system adds 
irreversibility and complexity
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Data flow diagrams – DFD (2/3)
Basic entities
• External entity: 

produces info to be fed into system
can be a person or another program

• Transformation process
Represents a system’s activity

receives input processes & transforms produces output

• Data store
file or database table (permanent storage 
possible)

• Data flow
Refers to info between DFD entities
plain data or control info

EE1
Customer

1
Produce 

D1  Invoice file

Receipt data
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Data flow diagrams – DFD (3/3)

Example of an 
automated 
auction system

  EE1 
User

Wrong bid
 message 

Rejected user
message 1 

Control and
register bid

Bid placed

D1  Bids DB

Bid and user data

2
Accept or
reject user

4
Generate 
daily reports

3 
Accept bid
and update
Web site 

D3  Web site

D2  Users DB

Bid accepted
message 

Bid data

Summary report
Detail list 
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State diagrams (1/3)

Software systems as finite state machines
Infeasible to describe entire project with state 
diagrams
• but practical when project is broken into subsystems

UML state diagram symbols:

Terminal state 

State state

Initial state 

Transition 

Fork

Join 

listing
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State diagrams (2/3)
State in a box
• Lower portion holds listing of internal actions when 

object remains in the state

Substates
• represented in composite state
• Can be concurrent and/or sequential
• Fork used when entering composite state
• Join used when leaving composite state

State diagrams 
• useful for describing behaviour of parts of a system
• Part of object oriented analysis and design
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State diagrams (3/3)

Example: state of an item 
on sale in online auction 
management system
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Entity-relationship diagrams (1/2)

Data modeling: specification of data processed
Main goal – finding and defining:
• Primary data objects in terms attributes
• Relationships among data objects
• Constraints on the data structure

Main notation: Entity-Relationship Diagram 
(ERD)
• Focuses solely on data
• Mainly for analysis and design of database of system

DFD and State diagrams: dynamic views
ERD diagrams: static views
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Entity-relationship diagrams (2/2)
Entity: data object
• Composed of and described by attributes

Attribute is a data item simple enough to be considered 
an info unit

• Distinction between entities and attributes depends 
on the abstraction level of developers

Relationship: link among entities
• Can have attributes

 

 
Student

Entity with 
attributes 

Relationship 

Link between 
entity and 
relationship 

 
 

student code

student name

registration date 

Symbols of ERD



21Software Engineering

Cardinality and modality (1/2)
Cardinality = multiplicity
• Number of possible occurrences of one entity that can 

be related to the number of occurrences of the other 
entity

• Its value can be either one or many

Modality = necessity of participation of one 
entity in a relationship
• Either optional or mandatory

  
Entity 

 
Entity 

 
Entity 

 
Entity 

One-to-one and 
mandatory 

One-to-one and 
optional 

One-to-many 
and mandatory 

One-to-many 
and optional 
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Cardinality and modality (2/2)

Example:
• A driver can drive >= 0 car
• A car has only one driver
• A car parks at one or more parking 

spots
• A parking spot is used by one or 

more cars

 
Driver 

 
Car 

 
Parking 

spot 
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Issues & drawbacks

Enormous specification documents 
• Increases irreversibility and complexity

Analysis-paralysis: never-ending analysis phase
• Uncertainty caused by requirement changes

Loss of customer’s interest and support
Partial solution: incremental (small parts of 
system) and iterative (subsets of features) 
approach
Alternative approach: OO analysis
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