
Software Engineering

System Analysis

Software Engineering

2004-2005
Marco Scotto (Marco.Scotto@unibz.it)

2Software Engineering

Content

Introduction
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks

3Software Engineering

Introduction

Impossible to provide a precise definition
A phase between requirement elicitation
and system design
• Purposes of the system are formalized and

put in a consistent and coherent framework
Traditional approach

ImplementationAnalysis
Requirements elicitation

Design

4Software Engineering

Content

Introduction
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks

5Software Engineering

Goals, human actors, & 3 beasts
Goals

Understand requirements,
resolve ambiguities and
incompleteness

Lay out basic model of
system

Understand what is needed
for development

Human actors

Customer – a stakeholder:
orders and pays the system

Manager – a stakeholder:
heads and controls the
development team

Developer:
builds the system

Analyst – specialized
developer in system analysis

3 beasts

Uncertainty: customer does
not know the requirements, or
they are ambiguous,
incomplete and unstable

Irreversibility:
Once a basic model is
decided, changes are costly

Complexity:
Requirements and/or basic
model too complex

6Software Engineering

Content

Introduction
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks

7Software Engineering

Traditional approach (1/5)
Plan-driven approach to analysis:
• Try to be as specific as possible, resolve up-

front all ambiguities, build a complete and
consistent set of formal specifications, and
develop a solid base on which to build the
system

8Software Engineering

Traditional approach (2/5)
The Specification Document
• Goal: reports unambiguously the system

requirements
• Key contractual document: the customer

approves and signs it
• Seldom only textual
• Data Dictionary

Key part of the document
Repository containing the definition of all the
data and control info entities in input or output
to the various modules of the system

9Software Engineering

Traditional approach (3/5)
Goal: modeling the system
• 3 Aspects to model

Data structure
Functionalities
Behaviour

• Using various types of diagrams & notations
Based on info flow, procedures (describe
behaviour)
Based on database field (describe data
structures)

10Software Engineering

Traditional approach (4/5)
Most popular diagrams used in
“structured analysis”
• Data Flow Diagram

Captures the flow of info and control

• State Diagram
Describes the possible states of the system and
the admissible state changes

• Entity-Relationship Diagram
Describes the data structure of a database

11Software Engineering

Traditional approach (5/5)

Formal specification techniques
• Goal: describes the system “mathematically”
• Separating “what” from “how”
• Providing a complete mathematical (formal)

specification of the system
using proper notation and languages

• Ideally, the correctness of the system could
be mathematically proven

12Software Engineering

Content

Introduction
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks

13Software Engineering

Data flow diagrams – DFD (1/3)
2 purposes
• Define data flow and transformation
• Specify functions which process and

transform data

Major drawback: difficult to translate
DFD into system architecture and into
code
Drawing DFD for complex system adds
irreversibility and complexity

14Software Engineering

Data flow diagrams – DFD (2/3)
Basic entities
• External entity:

produces info to be fed into system
can be a person or another program

• Transformation process
Represents a system’s activity

receives input processes & transforms produces output

• Data store
file or database table (permanent storage
possible)

• Data flow
Refers to info between DFD entities
plain data or control info

EE1
Customer

1
Produce

D1 Invoice file

Receipt data

15Software Engineering

Data flow diagrams – DFD (3/3)

Example of an
automated
auction system

 EE1
User

Wrong bid
 message

Rejected user
message 1

Control and
register bid

Bid placed

D1 Bids DB

Bid and user data

2
Accept or
reject user

4
Generate
daily reports

3
Accept bid
and update
Web site

D3 Web site

D2 Users DB

Bid accepted
message

Bid data

Summary report
Detail list

16Software Engineering

State diagrams (1/3)

Software systems as finite state machines
Infeasible to describe entire project with state
diagrams
• but practical when project is broken into subsystems

UML state diagram symbols:

Terminal state

State state

Initial state

Transition

Fork

Join

listing

17Software Engineering

State diagrams (2/3)
State in a box
• Lower portion holds listing of internal actions when

object remains in the state

Substates
• represented in composite state
• Can be concurrent and/or sequential
• Fork used when entering composite state
• Join used when leaving composite state

State diagrams
• useful for describing behaviour of parts of a system
• Part of object oriented analysis and design

18Software Engineering

State diagrams (3/3)

Example: state of an item
on sale in online auction
management system

19Software Engineering

Entity-relationship diagrams (1/2)

Data modeling: specification of data processed
Main goal – finding and defining:
• Primary data objects in terms attributes
• Relationships among data objects
• Constraints on the data structure

Main notation: Entity-Relationship Diagram
(ERD)
• Focuses solely on data
• Mainly for analysis and design of database of system

DFD and State diagrams: dynamic views
ERD diagrams: static views

20Software Engineering

Entity-relationship diagrams (2/2)
Entity: data object
• Composed of and described by attributes

Attribute is a data item simple enough to be considered
an info unit

• Distinction between entities and attributes depends
on the abstraction level of developers

Relationship: link among entities
• Can have attributes

Student

Entity with
attributes

Relationship

Link between
entity and
relationship

student code

student name

registration date

Symbols of ERD

21Software Engineering

Cardinality and modality (1/2)
Cardinality = multiplicity
• Number of possible occurrences of one entity that can

be related to the number of occurrences of the other
entity

• Its value can be either one or many

Modality = necessity of participation of one
entity in a relationship
• Either optional or mandatory

Entity

Entity

Entity

Entity

One-to-one and
mandatory

One-to-one and
optional

One-to-many
and mandatory

One-to-many
and optional

22Software Engineering

Cardinality and modality (2/2)

Example:
• A driver can drive >= 0 car
• A car has only one driver
• A car parks at one or more parking

spots
• A parking spot is used by one or

more cars

Driver

Car

Parking

spot

23Software Engineering

Content

Introduction
Goals, human actors, & 3 beasts
Traditional approach
Diagrams
Issues & drawbacks

24Software Engineering

Issues & drawbacks

Enormous specification documents
• Increases irreversibility and complexity

Analysis-paralysis: never-ending analysis phase
• Uncertainty caused by requirement changes

Loss of customer’s interest and support
Partial solution: incremental (small parts of
system) and iterative (subsets of features)
approach
Alternative approach: OO analysis

	System Analysis
	Content
	Introduction
	Content
	Goals, human actors, & 3 beasts
	Content
	Traditional approach (1/5)
	Traditional approach (2/5)
	Traditional approach (3/5)
	Traditional approach (4/5)
	Traditional approach (5/5)
	Content
	Data flow diagrams – DFD (1/3)
	Data flow diagrams – DFD (2/3)
	Data flow diagrams – DFD (3/3)
	State diagrams (1/3)
	State diagrams (2/3)
	State diagrams (3/3)
	Entity-relationship diagrams (1/2)
	Entity-relationship diagrams (2/2)
	Cardinality and modality (1/2)
	Cardinality and modality (2/2)
	Content
	Issues & drawbacks

