The Ørsted Satellite Project

by Peter Stauning, Danish Meteorological Institute (DMI)
Project Scientist for the Ørsted satellite

Introduction. The Ørsted satellite had no easy way to its success. The satellite was first targeted for a launch in 1995 paid for by NASA on a Delta-II rocket scheduled to launch a large American ARGOS satellite. Unfortunately, the 2700 kg heavy ARGOS satellite had grave technical difficulties. Hence the 60 kg small Ørsted satellite had to be put on the shelf to await launch. The green light came on in late 1998 and Ørsted was shipped to the Vandenberg Air Force base in California. The first launch count-down took place on 15 January 1999 but was aborted due to high winds. Then followed a lengthy series of launch attempts until finally, at 11:29:55 on 23 February, 1999, on the 11'th count down, we finally succeeded. The large Delta rocket, majestically, lifted-off from its ramp and standing on a column of fire and smoke it reached for the sky and disappeared from sight with its precious payload of the ARGOS, the Ørsted, and the South-African Sunsat satellites. At 14:20, after almost 3 hours of nerve-racking waiting, as the satellite had to be separated from the launcher and pass over Denmark, we received at the ground station at DMI the first radio signals from the small satellite. Ørsted was in its planned orbit and alive. Denmark was now represented in Space with its first national satellite.

The Ørsted satellite is still in operation, now in its 9'th year. In spite of its high age most of the satellite instrumentation and systems are still functional. The aging has reduced the power delivered from its solar panels and has diminished the efficiency of the batteries needed for satellite operation in the Earth's shadow. One of the instruments, the so-called Star Imager, needed for precise information on the satellite attitude has been worn-out by the hard radiation environment. However, great care is exercised to nurse the satellite and the remaining instruments. Hence the Ørsted satellite still supplies valuable data from its measurements in space. Now the Ørsted satellite is also theme for a DVD video and accompanying book written by Charlotte Autzen (in Danish) for educational uses. An updated publications list is included below.

Ørsted satellite and instruments. The main instrumentation onboard Ørsted is a set of two magnetometers. One is a "Compact Spherical Coil" (CSC) vector magnetometer combined with a "Star Imager" (SIM) stellar compass. Both are constructed at the Danish Technical University (DTU) and are satellite instruments of "world-class" with unsurpassed precision and stability. The absolute magnitude of the geomagnetic field is measured by an Overhauser (OVH) scalar magnetometer supplied by CNES, France.

The high-energy radiation in space, particularly in the Earth's radiation belts, is detected by a "Charged Particle Detector" (CPD) instrument constructed at DMI. In addition to a standard GPS (TANS) receiver for positioning and timing information, the satellite carries a TurboRogue GPS high precision receiver supplied from NASA to be used for profiling of atmospheric temperature and humidity and for mapping of the electron contents in the upper atmosphere.
A particularly ingenious construction is the 8 m foldable mast made of three glass-fibre longerons with interleaved wires and spacers. During assembly, tests and launch the mast including canisters for the two magnetometer systems are folded into the satellite body. The long mast keeps the sensitive magnetic instruments at a safe distance from possible disturbing stray fields from materials and current loops in the satellite body. For supply of electrical power the satellite has solar panels on all sides except the bottom side, which carry the telemetry antennas always facing the Earth. A rechargeable NiCd battery provides power during eclipse. The basic parameters are listed in Table 1.

Table 1. Ørsted satellite specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite mass</td>
<td>60.7 kg</td>
</tr>
<tr>
<td>Body dimensions</td>
<td>72x45x34 cm</td>
</tr>
<tr>
<td>Foldable mast</td>
<td>6+2 m</td>
</tr>
<tr>
<td>Average power</td>
<td>37 W</td>
</tr>
<tr>
<td>Data storage cap.</td>
<td>12 hrs</td>
</tr>
<tr>
<td>Telemetry</td>
<td>S-band 2.2 GHz</td>
</tr>
<tr>
<td>Apogee height</td>
<td>865 km</td>
</tr>
<tr>
<td>Perigee height</td>
<td>649 km</td>
</tr>
<tr>
<td>Inclination</td>
<td>96.48 deg.</td>
</tr>
<tr>
<td>Orbital period</td>
<td>100 min</td>
</tr>
</tbody>
</table>

Main field modelling. The primary task for the Ørsted satellite is the delivery of high-precision data for modelling the Earth's magnetic field, which at the Ørsted orbit varies between around 20,000 nT and 60,000 nT (1 nanoTesla=10^{-9} Vs/m²). First occasion for this application was the new "International Geomagnetic Reference Field" (IGRF) model for epoch 2000. The IGRF models are updated every 5 years. They are used for numerous technical and practical tasks all over the world. Ørsted succeeded to deliver the data in spite of the strongly delayed launch, and the IGRF2000 model issued on time was mainly based on Ørsted's measurements. In later modelling the Ørsted magnetic data are supplemented by data from the German CHAMP satellite launched in July 2000. This satellite also carries Danish magnetic instruments similar to those on Ørsted.

The models for the Earth's magnetic field are continuously refined with the most recent data. For scientific uses an "Ørsted Initial Field Model" (OIFM) was developed to provide modelling with an accuracy (RMS deviation between model and data) of around 5 nT. More recent an "Ørsted Secular Variation Model" (OSVM), which includes coefficients for the temporal development (secular variation) of the main field, has been published. The accuracy of this model is around 3 nT. Using specialized processing of Ørsted (and CHAMP) data has enabled an estimate of localized magnetic anomalies with an accuracy of around 1-2 nT.

Comparing these accurate models with models based on the data obtained 20 years earlier from Magsat (1979-80) - the only satellite prior to Ørsted providing high-precision magnetic data - makes it possible to calculate the global change in the Earth's magnetic field. The results are illustrated in figure 3. The two upper diagrams present in colour code on a scale ranging from 20,000 to 60,000 nT the global distribution of the magnetic field strength in years 2000 (Ørsted) and 1980 (Magsat), respectively. The strong fields in the Polar Regions and the weak field particularly in the South-Atlantic region are noticeable.

The bottom diagram presents on a more sensitive scale ranging from -2000 to +2000 nT the increases and decreases in field strength developed during the 20 years interval between the
observations. On the average the Earth's magnetic field has decreased by around 2% between the two missions. In some regions, among others in the so-called Bermuda Triangle, the field has decreased by over 6% during just 20 years.

The main field models provide terms to calculate the variations in field strength with distance from the centre of the Earth. The material in the "Mantle" 3000 km downward from the surface is viscous mineral, magma. This medium is poorly conductive for electrical currents and has such a high temperature (above the Curie temperature) that the material is non-magnetic. In this case the field model can be extrapolated all the way down to the core of fluid metal (Iron and Nickel) to provide the distribution of field strengths at the "Core-Mantle Boundary" (CMB).

Comparing Ørsted and Magsat models for the CMB fields provides an estimate of the changes during the 20 years interval. The changes can be converted into material motions, which may reach magnitudes of typically 20 km/year in vortex-like patterns. These vortex patterns can be interpreted to represent the projection to the CMB of rotating cylinders in the fluid core material. Such data-based models combined with the most recent theories for self-magnetizing dynamos have given completely new insight in the processes acting in the interior of the Earth that create its variable magnetic field. Using realistic models it has now been possible to reconstruct the changes involved in magnetic field reversals where the northern and southern magnetic poles exchange their positions. On the average such reversals have occurred every 250,000 years. The most recent field reversal occurred 780,000 years ago as the magnetic field first weakened and then almost completely disappeared to finally recover in the opposite direction.

Figure 4. Varying position of the northern magnetic pole since 1550.
On a smaller scale such changes of the dynamo processes are responsible for the secular variations in the global distribution of the strength of magnetic fields and for the changes in the position of the geomagnetic poles. Figure 4 displays the variable position of the northern magnetic pole through almost 500 years. The most recent positions have been determined from Magsat data (1980) and Ørsted data (2000) and from extrapolation using the new field models (2010-2020). Such changes affect the compass north direction everywhere. In Thule, for instance, the present temporal change in magnetic declination is around 1 degree/year.

Crustal magnetism. The highly accurate satellite-based models of the main field has enabled the precise determination of the magnetism in the Crust, the outermost solid layer of the Earth, which has a thickness of around 30-50 km. Figure 5 displays in colour code the results of the global mapping of the crustal magnetism. The dark red colour indicates mountainous regions where the crust is thick. In the oceans the crust is generally much thinner. The striped structure is the combined result of the drift of the continental plates and magnetic field reversals. As the plates drift apart they leave an open rift from which fresh magma emerge. As the magma cools off to temperatures below the Curie point it then becomes magnetized in a direction depending on the actual magnetic field polarity, which may reverse from time to time.

Another use of the precise modelling of the crustal magnetism is the modelling of the heat flux from the Earth’s interior to the surface. The level of crustal magnetism is used to calculate the depth to the layer where the temperature exceeds the Curie temperature, which for most magnetic minerals is in the range from 500 to 600 degrees, above which the material is non-magnetic. With an estimate of this depth it is now possible to calculate the heat flux from the interior to the surface, which could be the bottom side of the ice caps in Antarctica and Greenland. Figure 6 presents an
analysis of the crustal thickness and the derived heat flux beneath the ice cap in Greenland. The analysis is the result of geomagnetic modelling based on measurements from the Ørsted satellite.

Modelling of the heat flux to the bottom of ice caps is extremely important for the interpretation of ice cores drilled at various places in Greenland and in Antarctica. The analysis of ice cores provides us detailed information on the climatic conditions and atmospheric composition in the past. Such information is vital for predictions of the future climatic developments. In some locations the heat flux is strong enough to melt the bottom ice. The overlying ice cap is no longer firmly attached to the bed rock and may thus become extremely unstable to break off and slide away.

Radiation belts. The geomagnetic observations and the detection of high-energy particle radiation have helped us to understand the properties of the Earth's radiation belts. In these regions, the so-called Van Allen belts, high-energy electrons and ions may move around but they are still kept in place by the geomagnetic field. In regions where the magnetic field is weak these high-energy particles may approach the Earth and thus be detected by the Ørsted satellite in its rather low orbit (c.f., Table 1). This hard radiation may penetrate into the electronic units and cause damage on sensitive satellite systems like memory circuits. Figure 7 presents in colour code the global distribution of high-energy radiation at the satellite orbit and also the occurrences of memory bit errors detected by the satellite computer (EDAC events). These events are particularly frequent within the above-mentioned South-Atlantic anomaly, where the geomagnetic field is weak. Such EDAC events also occur in places like the polar regions, where the geomagnetic field is open toward the outer space and thus gives access to high energy particles from external sources like, for instance, the active Sun.

![Figure 7. Ørsted detection of high-energy radiation (colour code) and occurrences of computer memory bit flips (dots).](image)
Summary. The results from the Ørsted satellite mission can be summarized in the following points:
- The precise magnetic measurements conducted from the Ørsted satellite have provided basis for International Geomagnetic Reference Field models, which are used for many technical and scientific tasks, among other, to develop models for the internal geo-dynamo and its secular variations, to provide mapping of magnetic anomalies in the crust, and to estimate geothermal heat flux to the bottom of ice caps.
- The accurate magnetic measurements made at high time resolution have provided detailed mapping of electric currents in Space and have been used to study the coupling of the solar wind to the Earth's magnetosphere.
- The detection of high-energy particles from Ørsted has helped us to understand the properties of the radiation belts and the effects of high-energy radiation on satellite-borne computer circuits.
- The precise detection of the phases and amplitudes of GPS signals have helped the development of satellite-based methods to measure the atmospheric temperature and humidity profiles, which are essential parameters in meteorology.
- Ørsted has provided basis for more than 200 scientific publications in international journals and for more than 400 talks or posters presented at international scientific conferences.

The construction of the satellite and the analysis of data have been accomplished through a close collaboration between three universities (Danish Technical University, University of Copenhagen, Ålborg University), eight private companies (Terma A/S, CRI, Copenhagen Optical Company, DDC International, Innovision, Per Udsen Co., Rescom, and Ticra), two institutes (DNSC and DMI). The international collaboration has included the large Space Agencies, NASA, ESA, CNES and DLR, and more than 40 universities and research institutes all over the world. This successful collaboration is perhaps the most brilliant accomplishment in the Ørsted satellite project.
Ørsted's many unique results

1. Frontpage illustrations in international science journals
2. Ørsted-based geomagnetic models

International Geomagnetic Reference Model IGRF2000
Degree/order of main field 13
Deg/order of secular variations 8
Deg/order of external field 0
References: Olsen, Sabaka and Tøffner-Clausen, Earth, Planets and Space, 52, 1175-1182, 2000

Orsted Initial Field Model (OFIM)
Degree/order of main field 19
Deg/order of secular variations 8
Deg/order of external field 0

Orsted Main and Secular Variation Model (OSVM)
Degree/order of main field 29
Deg/order of secular variations 13
Deg/order of external field 0

CHAMP-Oersted (CO2) Model
Degree/order of main field 29
Deg/order of secular variations 13
Deg/order of external field 2

Comprehensive Model CM3e_J-2
Degree/order of main field 65
Deg/order of secular variations 13
Deg/order of external field special handling

International Decade Earth Magnetic Model (IDEMM)
Degree/order of main field 49
Deg/order of secular variations 16
Deg/order of external field 2

CHAMP, Oersted, SAC-C model (CHAUOS)
Degree/order of main field 50
Deg/order of secular variations 16
Secular acceleration 16
Deg/order of external field special handling

International Geomagnetisk Reference Model IGRF2005
Degree/order of main field 32
Deg/order of secular variations 16
Secular acceleration 8
Deg/order of external field 2

3. Ørsted Publications (1999-2007)

Outreach and education publications (2003-07)

P. Stauning, Ørsted, the Danish Miracle in Space, Nordic Space; 15, (2), 2007.

P. Stauning: “Ørstedsatellitten – 6 års succes i rummet”. Dansk Rumfart, nr. 63, 2005

Ørsted Scientific (reviewed) Publications

Publications 2007

Publications 2006

Publications 2005

Fox Maule, C., Purucker, M., Olsen, N., and K. Mosegaard,

Han, D.-S., Longitudinal structure of low-latitude Pi2 pulsations obtained from the ground and Oersted observations, Ph.D. thesis of Kyoto University, March 2005.

Jung, H., Estimation Problems for Satellite Orbit and Attitude Determination and for GPS-Based Remote Ionospheric Sensing, Ph.D. Thesis, Field of Aerospace Engineering, Cornell University, 2005

Olsen,N., H. Lühr, Terence J. Sabaka, M. Manda, M. Rother, L. Teffner-Clausen, S. Choi, CHAOS – A Model of Earth’s Magnetic Field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data, accepted for publ. in Geophys. J. Int.

Stauning, P., F. Christiansen, J. Watermann, and O. Rasmussen: Detection of intense fine-scale field-aligned current structures in the cusp region from the Ørsted satellite, in: Earth Observation with CHAMP, Results from Three Years in Orbit, C. Reiger et al., Eds., p. 381 Springer-Verlag, 2005.

Stauning, P., F. Christiansen, J. Watermann, and O. Rasmussen: On the modelling of field-aligned currents from magnetic observations by polar orbiting satellites, in: Earth Observation with CHAMP, Results from Three Years in Orbit, C. Reiger et al., Eds., p. 371, Springer-Verlag, 2005.

Stauning, P., F. Christiansen, and J. Watermann, On the modelling of field-aligned currents from magnetic...

Voorhies, C. V., A Geomagnetic Estimate of Mean Paleointensity, EOS, Trans. AGU, 85, (47), Fall Meeting Suppl. GP1C-0843, F635-6, 2004

Voorhies, C.V., Correction to Ibid, JGR, 109, B03106, 10.1029/2003JB002833, 2004

Published 2003.

Published 2002.

Publications 2001

Publications 2000

Publications 1999 and earlier.

4. Ørsted Conference Proceedings and Reports

Proceedings and Reports 2006:

Proceedings and Reports 2005:

Proceedings and Reports 2004:

Proceedings and Reports 2003:

Proceedings articles herein:

Cain, J.C., D. Mozzoni, and B. Ferguson, Where do we stand on geomagnetic modeling.

Iyemori, T., and V. Papitashvili, Storm time field-aligned currents detected by Oersted and CHAMP.

Kotzé, P.B., Secular variation characteristics over Southern Africa as revealed by observatory and satellite data.

Loves, F.J., and N. Olsen, A realistic estimate of the variances of the Ørsted OSVM (Ørsted 10b/01) spherical harmonic field model.

Macmillan, S., V. Lesur, Use of observatory data in geomagnetic field models and derivation of a crustal total intensity map.

Neubert, T., F. Sedgemore, F. Christiansen, and J. Watermann, Current filamentation observed with Ørsted.

Papitashvili, V.O., and F. Christiansen, Quiet, moderate, and storm-time high-latitude field-aligned currents from Ørsted and CHAMP magnetic field observations.

Parucker, M., T. Sabaka, N. Olsen, and S. Maus, How have Ørsted, CHAMP, and SAC-C improved our knowledge of the oceanic regions.

Parucker, M., and N. Olsen, Modeling of the Earth's magnetic field and its variations with Ørsted, CHAMP, and Oersted-2/SAC-C.

Risbo, T., J.L. Jørgensen, and F. Primdahl, Ørsted calibration mission: Status and overview.

Sabaka, T., and N. Olsen, Comprehensive modelling of the Earth's magnetic field: Current status and future prospects.

Stauning, P., Detection of currents in space by Ørsted, SAC-C and CHAMP geomagnetic missions.

Stauning, P., F. Primdahl, F. Christiansen, and J. Watermann, Detection of fine-scale field-aligned current structures from Ørsted.

Stauning, P., J. Watermann, G.B. Larsen, and M.B. Sørensen, Ørsted GPS-based detection of ionospheric structures and
their comparison with other ground and satellite based observations and with models.

Thomson, A., Satellite data selection and weighting for core field modelling in the presence of estimated external fields.

von Frese, R.R.B., Advances in crustal and subcrustal studies from new generation satellite geopotential field missions.

Wardinski, I. and R. Holme, Modelling secular variation of main geomagnetic field.

Proceedings and Reports 2002:

Proceedings and Reports 2001:

Proceedings and Reports 2000:

Proceedings articles herein:

Bondar,T.N., I.A., Burdelnaja, V.P. Golovkov, T.I. Zvereva, Main geomagnetic field model and space-time structure of external internal and induced geomagnetic variations derived from satellite magnetic survey.

Cain, J.C., O. Ajayi, D. Mozzoni, and C. Musat, Comparing an Ørsted-Observatory magnetic field model with the IGRF's.

Cerisier, J.-C., C. Senior, and A. Marchaudon, Plasma convection and currents parallel to the earth magnetic field at the Ørsted orbit.

Christensen, T., P. Stauning, F. Christiansen, and J. Thayer, Event study of high-energy electron precipitation by comparison of Ørsted data and ground-based observations.

Cohen, Y., V. Doumouya, B. Langlais, and P.Ultré-Guérard, Monitoring and reducing the magnetic contribution of the equatorial electrojet to Ørsted data.

Constable, C. and S. Constable, Observing geomagnetic induction in magnetic satellite measurements.

Cyamukungu, M., Gh. Grégoire, P. Stauning and J. Lemaire, The charged particle detector (CPD): Data Analysis Methodology.

Friis-Christensen, E., T. Moretto, and N. Olsen, Direct Estimation of Average Field-Aligned Current Patterns From High-Precision Magnetic Satellite Data.

Gjerlov, J.W., R. Fuji, M. Sugino, and Y. Ogawa, The Ørsted-EISCAT Conjunction Study

Grammatica, N., M. Menvielle, and P. Tarits, Study of the diurnal variation at a global scale.

Holme, R., Modelling of attitude error in Ørsted vector data.

Hulot, G., A., A. Chulliat, A. Pais, B. Langlais, and M. Mande, Core surface flows derived from Ørsted data, tests and first estimates.

Jadhav, G., M. Rajaram and R. Rajaram, Identification of external current variations in Ørsted data.

Kotcé, P.B., Modelling and Analysis of Ørsted Magnetic Field Data over southern Africa.

Langlais, B., M. Mande, G. Hulot, A. Chulliat, P. Ultr-Guerard and Y. Cohen, From Magsat to Ørsted: Comparison of the 1980 and 1999 main magnetic field models.

Lowes, F., The explanation of some covariances in the Ørsted model (9/99).

Larsen, G.B., X. Zhang, P. Høeg, S. Syndergaard , M.B. Sørensen, J. Grove-Rasmussen, S. Fukao, K. Igarashi, and S. Kawamura, Comparison of electron density profiles from Ørsted GPS occultation data and ground-based radar observations.

Macmillan, S. and A. Thomson, Main field modelling at BGS using Ørsted satellite data.

Menvielle, M., About the meaning of longitude sector indices.

Moretto, T. and N. Olsen, Investigating the Auroral Electrojet with Ørsted data.

Moretto, T., F. Christiansen, and N. Olsen, Detection of ionospheric and field-aligned current patterns - A comparison of different methods.

Newitt, L.R., The use of Ørsted data in regional magnetic field modeling.

Neubert, T. Ørsted Commissioning, Status and Future.

Olsen, N., ØRSTED-2/SAC-C

Papitashvili, V., F. Christiansen, and T. Neubert, Field-aligned currents patterns from Ørsted observations.

Paris, J. and M. Menvielle, Derivation and dissemination of the longitude sector indices.

Parucke, M.E., Evidence for a new current system at the geomagnetic poles in summer (or) the longest magnetic anomaly in the world explained: The Pacific margin of early paleozoic Gondwana.

Schlesier, A.C., A. Rius, A. Escuder, F. Rubek, G.B. Larsen, S. Syndergaard and P.Høeg., Ionosphere tomography using Ørsted GPS occultation data and comparisons with ground-based radar observations.

Stampe, A.M., S. Vennenstrøm, N. Olsen, Contamination of models by ionospheric polar cap currents: A study in data selection.

Stauning, P., F. Primdahl, J. Watermann, O. Rasmussen, Correlation of field-aligned currents derived from Ørsted magnetometer data and polar dayside ionospheric convection patterns.

Stauning, P., P. Davidsen, and M. Cyamukungu, Ørsted CPD High-energy particle observations and radiation effects in Ørsted instruments and systems.

Tarits, P., Preliminary investigation of the Ørsted data for induction studies.

Taylor, P., R. R. B. von Frese and H. R. Kim, Results of a comparison between Ørsted and Magsat anomaly fields over the Kursk magnetic anomaly.

Toeffner-Clausen, L. Ørsteds data products.

Watermann, J.W., O. Rasmussen, P. Stauning, V. Papatishvili and J. Thayer, Observations of field-aligned and ionospheric currents during space weather month, September 1999.

Yamashita, S., T. Iyemori, S. Nakano, M. Takeda, T. Kamei, A. Saito, T. Araki and M. Sugiyama, Middle latitude field-aligned current effects observed by Ørsted and a comparison with the Magsat and DE-2 observations.

5. Ørsted Conference Presentations

Conferences 2007

Conferences 2006

Conferences 2005

Fall meeting of American Geophysical Union (AGU), San Francisco, USA, 2005.

Gaya-Pique, L.R., D. Ravat, A. De Santis, and J. Torta, 2005, New Model Alternatives for Improving the Representation of the Core Magnetic Field of Antarctica

Hemant, K., E. Thebault, M. Mande, D. Ravat, S. Maus, 2005, Merging airborne, marine and ground-based magnetic anomaly maps with satellite derived lithospheric field models.

Stauning, P., Ørsted satellite measurements - small scale features in the field-aligned currents in the ionosphere.

IAGA 2005 Scientific Assembly meeting, Toulouse, France, July 18-29, 2005

Stauning, P., Modelling high-latitude FAC on different scales.

Stauning, P., The Ørsted satellite mission through a solar cycle.

EGU General Assembly, Vienna, April 2005

Lagergaard, A.M.S., S Vennerstrom and E. Friis-Christensen, Observed and simulated field-aligned currents during northward IMF.

Stauning, P., Modelling of polar field-aligned current systems.

Stauning, P., Properties of IMF By-related Cusp currents.

Conferences 2004

Fall meeting of American Geophysical Union (AGU), San Francisco, USA, 2004.

Ravat, D., Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms.

3nd CHAMP and GRACE Joint Scientific Meeting, Potsdam, Germany, 5-9 July, 2004.

Stauning, P., IMF By-related cusp currents on different scales.

35’té COSPAR Scientific Assembly, Paris, France, 18-25 July, 2004

Stauning, P., and J. Watermann, Modelling of high-latitude magnetosphere-ionosphere field-aligned coupling currents and their atmospheric effects.

Spring meeting of Joint Canadian Geosciences Union (CGU) & American Geophysical Union (AGU), Montreal, Canada, 2004.

Kim, H. R. R. B. von Frese, P. T. Taylor, “Magnetic satellite explorations of lithospheric anomalies over Kursk, Bangui, and Antarctic: from Magsat to CHAMP.

Voorhies, C.V., A Geomagnetic Estimate of Mean Paleointensity.

Voorhies, C.V., Magnetic Probing of Core Geodynamics

EGU Conference, Nice, France, 25 April – 2 May, 2004

Kim, H. R., R. R. B. von Frese, P. T. Taylor, L. R. Gaya-Pique
and J. W. Kim, CHAMP, ØRSTED and MAGSAT magnetic anomalies of the Antarctic crust.

Stauning, P., Field-aligned currents from satellite magnetic observations.

Stauning, P. and J. Watermann, Fine-scale field-aligned current structures in the cusp region, EGU Assembly, Nice, France.

Other Conferences, 2004.

Conferences 2003

AGU Meeting in San Francisco December 8-12, 2003

Christiansen, F., V.O. Papitashvili, IMF-dependent maps of the high-latitude field-aligned currents de-rived from Ørsted and CHAMP high-precision magnetic field measurements.

Papitashvili, V., and D. Weimer, New terminology for the high-latitude field-aligned current systems.

Champ Second Science Meeting, Potsdam, 1-4 September 2003

Christiansen, F., and T. Neubert, Small-scale, field-aligned currents at the top-side ionosphere.

Christiansen, F., and V. Papitashvili, Modelling of high-latitude geomagnetic field disturbances at satellite altitudes for various IMF conditions.

Hoeg, P., Applications of GPS radio occultation for weather prediction and climate research.

Langlais, B., M. Purucker, and S. Vennerstrom, Polar lithospheric field from multiple satellite observations.

Lesur, V., S. Macmillan, and A. Thomson, Alternative parameterisation of the external magnetic field and its induced counterpart for 2001 and 2002 using Ørsted, CHAMP and observatory data.

Maulde, C. F., M. Purucker, N. Olsen, and K. Mosengaard, Magnetic crustal thicknesses in Greenland from CHAMP and ØRSTED data.

Olsen, N., Temporal Variations of the Geomagnetic Field.

Sabaka, T.J., and N. Olsen, The lithospheric field from the latest comprehensive model.

Stauning, P., F. Christiansen, J. Watermann, and O. Rasmussen, Comparison of different methods and models to detect field-aligned currents from magnetic observations by polar orbiting satellites.

Stauning, P., F. Christiansen, J. Watermann, and O. Rasmussen, Detection of intense fine-scale field-aligned current structures in the cusp region from the Ørsted satellite and from ground.

Wardinski, I., and R. Holme, New insights into the secular variation between MAGSAT and CHAMP/ØRSTED.

Watermann, J., P. Stauning, F. Christiansen, O. Rasmussen, H. Lühr, K. Schlegel, J.P. Thayer, and P.T. Newell, The low-altitude cusp seen from various perspectives: Multi-instrument observations during the February 2002 SIRCUS campaign.

IUGG/AGA Meeting in Sapporo, June 30 - July 11, 2003

Anderson, J.B., F. Christiansen, C.L. Waters, and V. Papitashvili, Intercomparison of Iridium Derived Magnetic Perturbation Maps with Oersted Observations.

Atanasiu, L.-N. E., and M. Mande, Analysis of the Regional Magnetic Field and Its Secular Variations over the Romanian Territory.

Chambodut, A., M. Mandea, and B. Langlais, Geomagnetic Field Models for Epochs 1995 and 2000.

Cohen, Y., V. Doumouya, and M. Hamoudi, Influence of the Equatorial Electrojet on Main Field Models.

Gaya-Pique, L.R., A. De Santis, and J.M. Torta, Improvement of the Antarctic Geomagnetic Reference Model by Using New Sets of.

Golovkov, V.P., T.N. Bondar, S.V. Yakovleva, Space-Time Model for Obtaining Candidate Models for DGRF’95, and IGRF SV 00.

Hulot, G., Core Dynamics Revealed by Space Magnetic Observations.

Hoeg, P., G.B. Larsen, M.B. Sorensen, J.G. Rasmussen, GPS Profiling of Tropospheric Temperature and Water Vapor from the Oersted Satellite.

Iyemori, T., S. Nakano, and S. Yamashita, Net Field-Aligned Current Systems and Their Effects on the Ground.

Kim, H. R., R. R. B. von Frese, A. V. Golyansky, P. T. Taylor, J. W. Kim, Magnetization modeling of the Maud Rise crust in the Southwest Indian Ocean.

Kim, H. R., R. R. B. von Frese, P. T. Taylor, J. W. Kim, Utility of satellite magnetic observations for estimating near-surface magnetic anomalies.

Kotze, P.B., Ørsted/CHAMP-based Spherical Cap Model for Southern Africa.

Langlais, B., Magnetic Field Secular Variation: The Satellite Perspective.
Langlais, B., M. Purucker, and S. Vennerstrom, Polar Lithospheric Field from Multiple Satellite Observations.

Macmillan, S., A. Thomson, and V. Lesur, Improved Separation of Sources Using Satellite and Ground-Based Data and Daily Dipole Estimates.

Olsen, N., and T. Sabaka, DGRF Candidates Based on Observations from Oersted, CHAMP and SAC-C.

Papitashvili, V., and F. Christiansen, Modeling of High-Latitude Geomagnetic Field Disturbances at Satellite Altitudes for Various IMF Conditions

Rajaram, R., M. Rajaram, and G. Jadhav, Development of Satellite Based Index of the Equatorial Electrojet.

Stauning, P., F. Primdahl, F. Christiansen, and J. Watermann, Fine-Structure and Dynamics of Field-Aligned Currents in the Ionospheric Cusp Region.

Tarits, P., Using Satellite Magnetic Data for Probing the Electrical Structure of the Earth.

Tsuda, T., Application of GPS Occultations for Studies of Atmospheric Waves in the Middle Atmosphere and Ionosphere.

Turner, J., D. Ivers, and D. Winch, Mix and Match, Multiple Satellite Derived, Global and Australian Regional Main Field Models.

Wardinski, I., and R. Holme, New Insights into the Secular Variation between MAGSAT and CHAMP/Oersted.

Watermann, J., O. Rasmussen, F. Christiansen, P. Stauning, and J.P. Thayer, Field-Aligned and Ionospheric Currents Inferred from Temporally and Spatially Coincident Oersted Satellite, Ground-Based Magnetometer and Sondrestrom Incoherent Scatter Radar Measurements.

EGS-AGU-EUG Meeting in Nice, April 6-11, 2003

Bondar, T., V. Golovkov and S. Yakovleva, Secular variations around 2000 obtained from satellite and observatory data

Christiansen, F., and V. O. Papitashvili, Modeling high-latitude field-aligned currents from high-precision magnetic satellite survey data: comparisons between models and observations

Fris-Christensen, E., Magnetometry missions during the international decade of geopotential field research: results, opportunities, and challenges.

Lowes, F.J. and N. Olsen, Realistic estimates of the variances of spherical harmonic geomagnetic field models derived from satellite data.

Lu, G., A.D. Richmond, S. Vennerstrom, N. Olsen, H. Luehr, and M. Rother, Exploring the external geomagnetic field using space- and ground-based magnetometers.

Mauta, A., A. Richmond, T. Sabaka, N. Olsen, Comparison of ionospheric dynamo currents and magnetic perturbations modeled by the tiejem with cm3e model results.

Olsen, N. and R. Holme, Secular variation and secular acceleration determined from Ørsted satellite data.

Purucker, M., Intercalibration of the magnetometers on sac-c with those on CHAMP and Oersted.

Sabaka, T. and N. Olsen, The present state of geomagnetic comprehensive models and their applications.

Stauning, P., F. Primdahl, F. Christiansen, J. Watermann, Detection of high-latitude fine-scale field-aligned current structures from Ørsted, EGS-AGU Conference, Nice, 6-11 April, 2003.

Stauning, P., J. Watermann, GPS-based detection of high-latitude ionospheric structures from satellites and their comparison with other ground and satellite based observations and with models, Nice, 6-11 April, 2003.

Stauning, P., D. Weimer, V. Papitashvili, and F. Christiansen, Detection of currents in space by Oersted, SAC-C and CHAMP geomagnetic missions, Nice, 6-11 April, 2003.

Conferences 2002.

Bloxham, J., Geodynamo Modelling and Geomagnetic Field Modelling: A two-way street.

Constable, C., Comprehensive magnetic field modeling: Two applications.

Jackson, A., New analysis of old satellite data

Mandea, M., A compilation of existing geomagnetic field models, external field models, and a bibliography.

Maus, S., Isolating crustal anomalies and other smaller scale features from satellite magnetic data: advantages and drawbacks of along-track filtering, cross-correlation, and line-leveling techniques.

Purucker, M., Intercalibration of the scalar and vector magnetometers on SAC-C with those on CHAMP and Ørsted.

Purucker, M., Modeling of lithospheric fields.

Sabaka, T., (The CM User Group), The utility and availability of the comprehensive magnetic field model.

Vennerstorm, S., Ionospheric contributions to satellite based internal field modeling: New selection criteria?

Cain, J.C., D. Mozzoni, and B. Ferguson, Where do we stand on geomagnetic modeling.

Christiansen, F., and V. Papitashvili, Storm time field-aligned currents detected by Oersted and CHAMP.

Iyemori, T., S. Yamashita, and S. Nakano, Noon-midnight current systems.

Purucker, M., T. Sabaka, N. Olsen, and S. Maus, How have Papitashvili, V.O., Stauning, P., Risbo, T., Sabaka, T., Rasmussen Magnetic local time and latitude dependence of field-aligned currents from Ørsted and CHAMP magnetic field observations.

Purucker, M., T. Sabaka, N. Olsen, and S. Maus, How have Ørsted, CHAMP, and SAC-C improved our knowledge of the oceanic regions.

Purucker, M., and N. Olsen, Modeling of the Earth's magnetic field and its variations with Ørsted, CHAMP, and Ørsted-2/SAC-C.

Risko, T., J.L. Jorgensen, and F. Primdahl, Ørsted calibration mission: Status and overview.

Sabaka, T., and N. Olsen, Comprehensive modelling of the Earth's magnetic field: Current status and future prospects.

Stauning, P., Detection of currents in space by Ørsted, SAC-C and CHAMP geomagnetic missions.

Stauning, P., F. Primdahl, F. Christiansen, and J. Watermann, Detection of fine-scale field-aligned current structures from Ørsted.

Stauning, P. J. Watermann, G.B. Larsen, and M.B. Sorensen, Ørsted GPS-based detection of ionospheric structures and their comparison with other ground and satellite based observations and with models.

Thomson, A., Satellite data selection and weighting for core field modelling in the presence of estimated external fields.

von Frese, R.R.B., Advances in crustal and subcrustal studies from new generation satellite geopotential field missions.

Wardinski, I. and R. Holme, Modelling secular variation of main geomagnetic field.

Moretto, T. et al., Investigating ionospheric current systems with Ørsted, CHAMP, and Ørsted-2 magnetic field measurements.

Ghidella, M. et al., Low altitude magnetic anomaly compilation in Argentina: its comparison with satellite data.

McCready, H., The equatorial electrojet as seen from satellites.

Connors, M., Nonlinear optimization for low altitude satellite data inversion.

Webers, W., How important is downward field continuation when satellite magnetic field data are studied?

Vennerstroem, S. et al., Multi-satellite observations of FACs in the day-side cusp and polar cap.

EGS Meeting, Nice, April 2002.

Christiansen, F., and V.O. Papitashvili, Storm Time Field-Aligned Currents Detected by the Ørsted and CHAMP Satellites.

Olsen, N., F. Christiansen, T. Moretto, and M. Rother, Investigation of External Current Systems with Low Latitude, Polar Orbiting Satellites (Solicited).

Stauning, P., Modelling of the electrojet over Northern Europe during large geomagnetic storms.

Stauning, P., T. Christensen, F. Christiansen, J. Watermann, and O. Rasmussen, Modeling of polar cap ionospheric horizontal and field-aligned currents during northward IMF.

Watermann, J., F. Christiansen, P. Stauning, and O. Rasmussen Magnetic local time and latitude dependence of the field-aligned/ionospheric current ratio - Ørsted satellite and Greenland magnetometer observations.

Cerisier, J.-C., and A. Marchaudon, Currents parallel to the Earth magnetic field at the Champ orbit: application to the electrodynamics of the ionosphere.

Christiansen, F., et al., Modeling field-aligned currents derived from high-precision satellite magnetic field data.

Grove-Rasmussen, J., Comparison of DMI retrieval of Champ occultation data with ECMWF.

Hemant, K. and S. Mauz, A comparison of global lithospheric models derived from satellite data.

Hulot, G., et al., Small-scale structure of the geodynamo inferred from Øersted and Magsat data.

Jackson, A., New views of the core magnetic field from Champ and other satellites.

Larsen, G.B., et al., GPS atmosphere and ionosphere profiling methods used on Ørsted data and application on Champ data.

Martinec, Z., Two-dimensional spatio-temporal electromagnetic induction along a satellite trajectory.

Mozzoni, D., et al., Combined modelling of Ørsted and Champ magnetic field data with help from observatory secular change.

Olsen, N., et al., Monitoring the magnetic signature of the magnetospheric ring-current with Øersted, Champ and Øersted-2/SAC-C.

Stampe, A.M., et al., Current systems in the polar region during quiet geomagnetic conditions- Multi-satellite observations.
Stauning, P., et al., Detection of fine-scale field-aligned current structures from Ørsted.
Stauning, P., et al., Mapping of field-aligned current patterns during northward IMF.
Tarits, P., Preliminary investigation of the Champ magnetic data for induction studies.
Taylor, P., et al., Comparing Magsat, Ørsted and Champ crustal magnetic anomaly data over the Kursk magnetic anomaly, Russia.
Vennerstrom, S., et al., Multi-satellite observations of currents in the day-side cusp and polar cap.
Wardinski, I. and R. Holme, Decadal and subdecadal secular variation of main geomagnetic field.
Watermann, J., et al., Field-aligned currents inferred from low-altitude Earth-orbiting satellites and ionospheric currents inferred from ground-based magnetometers - do they render consistent results?

Conferences 2001.

Christiansen, F., et al., Storm Time Field-Aligned Currents Detected by the Ørsted Satellite.
Stauning, P., et al., Observations of Field-Aligned Currents and Particle Precipitation Patterns During Events of Strongly Northward IMF.
Watermann, J., et al., Are Field-Aligned Currents Inferred From the Ørsted Satellite Consistent With Ionospheric Currents Inferred From Greenland Ground-Based Magnetometers?
Stauning, P., and J. Watermann, High-voltage power-line disturbances and electrojet modelling during large geomagnetic storms.

Papitashvili, V.O., et al., Maps of field-aligned currents for various IMF conditions derived from Ørsted magnetic field observations.

Stauning, P. and F. Primdahl, Detection of global dawn-dusk ionospheric current intensities by using Ampère’s integral law on Ørsted satellite orbits.
Stauning, P., et al., IMF By-related Cusp currents observed from the Ørsted satellite and from ground.
Stauning, P., Investigations of high-latitude ionospheric disturbances detected from Ørsted and other satellites and from ground.

Conferences 2000.

ESA Utilization Workshop, ESTEC, 12 December 2000.
Bloxham, J. Insights into the Geodynamo from Ørsted Magnetic Field Observations and Numerical Modelling.
Christensen, T., et al., Ørsted and Ground-Based Observations of High-Energy Electron Precipitation.
Doumouya, V., and Y. Cohen Correction of Satellite Magnetic Data from the EEJ Contribution Using Ground Based Data and an Empirical EEJ Model.
Kim, H.R., et al., Ørsted Lithospheric Anomaly Components
Macmillan, S., and A.W. Thomson Aspects of Main-Field and Secular Variation Models Derived from Ørsted and Contemporary Ground-Based Data.
Merayo, J.M.G., et al., The Ørsted Satellite High-Precision Magnetic Vector Measurements
Olsen, N., et al., Combined Interpretation of Internal and External Magnetic Sources Using Observatory and Satellite Data.
Olsen, N., A Model of the Main Field and its Secular Variation for Epoch 2000 Estimated from Ørsted Data.
Papitashvili, V.O., et al., Quiet Time Field-Aligned Currents Detected by Ørsted Satellite.
Purucker, M., et al., Magnetic Fields of High Degree Measured by Ørsted and their Interpretation.
Schl¨{o}tzer, A., et al., Ionosphere Tomography using Ørsted GPS Occultation Data and Comparisons with Ground-Based Radar Observations.
Stauning, P., et al., Observations from ground and from satellites of polar ionospheric effects of the 14 July 2000 solar storm event.
Syndergaard, S., et al., Validation of Ørsted-GPS Occultation Data in the Lower Atmosphere.
Vennerstrom, S., et al., Cusp Currents Observed with Ørsted Forohties, C.V.: The Radius of Earth’s Core from Ørsted, Magsat, or SV.
Walker, M.R., et al., Magnetic Field Model for Core-Motion Studies
S-RAMP conference, Sapporo, 2-6 October 2-6, 2000.
Neubert, T., et al., Field-aligned Current Distributions Observed from Ørsted.
Stauning, P., et al., Correlation of radiation effects in Ørsted satellite instruments and systems with high-energy particle observations.
Stauning, P., et al., Statistical and case studies of DPY currents based on Ørsted satellite and polar ground-based observations.
Yamashita, S., et al., An Effect of Anti-sunward Current System Observed by the Ørsted satellite.

Thomson, A., and S. Macmillan, Geomagnetic models derived from ground-based observations and satellites.

Stauning, P., Observations of Field-Aligned Currents and High-Energy Particle Radiation Associated with Small-Scale High-Latitude Disturbances.
Stauning, P., and P. Davidsen Detection of Radiation-Induced Anomalies in the Memory Circuits of the Ørsted Satellite Using EDAC.

Stauning, P., et al., Morphology of Ionospheric and Field-Aligned DPY Currents as Detected by Ground-Based Instruments and from the Ørsted Satellite.

Papitashvili, V.O., et al., Field-Aligned Currents Distributions Observed from Ørsted and MagSat.

Syndergaard, S., et al., Results from the Ørsted-GPS Occultation Experiment,

GEM workshop, Snowmass, USA, 19-23 June, 2000.
Watermann, J., et al., Magnetic Field Measurements from the Ørsted Satellite and from Greenland Ground Stations: Do Field-Aligned and Ionospheric Electric Currents Match?

Danish Physical Society, 8-9 June, 2000.
Christensen, T., et al., High-energy Electron Precipitation Study Using Ørsted Satellite and Ground-based Data,

Cain, J.C., et al., Virtues and Problems of the IGRF2000
Papitashvili, V., et al., Parameterization of Field-Aligned Currents Detected at the Ørsted Satellite by the IMF Strength and Direction

Bloxham, J., Ørsted magnetic field observations and geodynamo modelling.
Cerisier, J.-C., The SuperDARN network of HF radars.
Cerisier, J.-C., and C. Senior, Currents parallel to the earth magnetic field at the Ørsted orbit.
Christensen, T., et al., Event study of high-energy electron precipitation by comparison of Ørsted data and ground-based observations.
Cohen, Y., et al., Monitoring and reducing the magnetic contribution of the equatorial electrojet to Ørsted data.
Cohen, Y., et al., Monitoring and reducing the magnetic contribution of the equatorial electrojet to Ørsted data.
Constable, C. and S. Constable, Observing geomagnetic induction in magnetic satellite measurements.
Cyamukungu, M., et al., The charged particle detector (CPD): Data Analysis Methodology.
Fedorova, N., et al., Long wavelength magnetic anomalies produced by lithosphere according to airborne and satellite data.
Friis-Christensen, E., SWARM - A necessary continuation of high-precision magnetic measurements.
Friis-Christensen, E. and T. Moretto Direct Estimation of Average Field-Aligned Current Patterns From High-Precision Magnetospheric Convection during Northern auroral oval.
Gjerlov, J.W., et al., The Ørsted-EISCAT Conjunction Study

Golovkov, V.P., et al., Main geomagnetic field model and space-time structure of external internal and induced geomagnetic variations derived from satellite magnetic survey.

Grammatica, N., et al., Study of the diurnal variation at a global scale.
Holme, R., Modelling of attitude error in Ørsted vector data.
Hulot, G., A., et al., Core surface flows derived from Ørsted data, tests and first estimates.
Højeg, P., et al., Atmosphere and ionosphere profiling results from the Ørsted mission.
Jadhav, G., et al., Identification of external current variations in Ørsted data.
Kotzé, P.B., Modelling and Analysis of Ørsted Magnetic Field Data over southern Africa.
Langlais, B., et al., From MagSat to Ørsted: Comparison of the 1980 and 1999 main magnetic field models.
Larsen, G.B., et al., Comparison of electron density profiles from Ørsted GPS occultation data and ground-based radar observations.
Macmillan, S. and A. Thomson, Main field modelling at BGS using Ørsted data.
Menvielle, M., About the meaning of longitude sector indices.
Moretto, T. and N. Olsen Investigating the Auroral Electrojet with Ørsted data.
Moretto, T., F. Christiansen, and N. Olsen, Detection of ionospheric and field-aligned current patterns - A comparison of different methods.
Newitt, L.R., The use of Ørsted data in regional magnetic field modeling.
Neubert, T. Ørsted Commissioning, Status and Future.
Olsen, N., ØRSTED-2/SAC-C
Papitashvili, V., et al., Field-aligned currents patterns from Ørsted observations.
Paris, J. and M. Menvielle, Derivation and dissemination of the longitude sector indices.
Prumdhali, F. The Ørsted Science Instruments.
Parukker, M.E, Evidence for a new current system at the geomagnetic poles in summer.
Rasmussen, O., et al., Ground-based geomagnetic data to support the Ørsted mission.
Schlesier, A.C., et al., Ionospheric tomography using Ørsted GPS occultation data and comparisons with ground-based radar observations.
Stauning, P., et al., Correlation of field-aligned currents derived from Ørsted magnetometer data and polar dayside ionospheric convection patterns.
Stauning, P., et al., Ørsted CPD High-energy particle observations and radiation effects in Ørsted instruments and systems.
Tarits, P., Preliminary investigation of the Ørsted data for induction studies.
Tarits, P., et al., AMPERE and French contribution to the 'Decade of Geopotential Research'.
Taylor, P., et al., Results of a comparison between Ørsted and MagSat anomaly fields over the region of Kursk magnetic anomaly.
Toeffner-Clausen, L. Ørsted data products.

Yamashita, S., et al., Middle latitude field-aligned current effects observed by Ørsted and a comparison with the Magsat and DE-2 observations.

EGS Meeting, Nice, 25-29 April, 2000.

Christiansen, F. and V.O. Papitashvili, High-latitude Field-aligned Currents from Ørsted Observations for Various IMF Conditions.

Neubert, T., et al., The Ørsted Geomagnetic Satellite: Mission Status and First Results.

Stauning, P., et al., Polar ionospheric convection patterns and magnetic field morphology during northward IMF conditions.

Stauning, P., et al., Morphology of Ionospheric and Field-aligned DPY Currents as Detected by Ground-based Instruments and from the Ørsted Satellite.

Stauning, P., and P. Davidsen, Observations of Radiation-induced Anomalies in the Memory Circuits of the Ørsted Satellite.

Stauning, P., The Ørsted Satellite. A Real Danish Fairy Tale,

Thomson, A.W.P., Geomagnetic Main Field Models.

Conferences 1999.

Kursinski, E. and R. Hajj, G. Status Report on the Ørsted and SUNSAT GPS Occultation Experiments.

Langlais, B., et al., The Earth's magnetic field in 1999: preliminary results from the Ørsted Satellite.

Neubert, T., et al., The Ørsted Geomagnetic Satellite: Mission Status and First Results.

Popov, V.A., et al., Geomagnetic Disturbances and Equivalent Ionospheric Currents over Greenland and Antarctica during Very Low Solar Wind Density Event.

Cain, J., and D. Mozzoni, How Can Global Spherical Harmonics Assist in Map Constructions?

Christensen, T., et al., High-Enery Electrons Precipitation and Field-aligned Currents in the Cusp Region Measured from Ørsted Satellite and Correlated Ground-based Observations of Ionospheric Convection and Absorption.

Christiansen, F., et al., High-Latitude Ionospheric Convection Field-aligned Currents Detected from Ground Magnetometers and from the Ørsted Satellite during Northward IMF Conditions.