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Abstract 
Building thermal simulation based parametric methods 

are computationally intensive for optimizing the building 

design. This work uses experimental design techniques, 

i.e. fractional factorial design and response surface 

methodology, for sensitivity analysis and surrogate 

modeling respectively. These techniques find the solution 

in a reasonable time. Their application for building 

design optimization has not been found in the literature 

before.  

Fractional factorial design has been used to identify the 

significant design variables. These variables are used to 

form a correlation for annual cooling load prediction, 

using response surface methodology. These methods are 

illustrated using two cases to minimize the life cycle cost 

of a single-storeyed, air-conditioned, solar powered, 

detached home, with 64 sq. m. floor area, for the warm 

and humid Mumbai climate.  

For this climate, window solar heat gain coefficient, 

window to wall ratio, overhang depth and roof reflective 

coatings turn out to be the most important among the 

design variables used for this case study. The created 

response surface models show an error of less than 5% 

for more than 99% of the test data, which is comparable 

to other such models. Strategies are suggested to bring 

the error for the entire search space to less than 10%.  

Life cycle cost minimization using the model for case 2 

does 12 million iterations as opposed to 250 iterations 

using a parametric EnergyPlus simulation run at the 

same time. The solution is better and the design achieved 

is also different. The optimum design has a cooling load 

of 55 kWh m-2 yr-1, while it varies from 46 to 118 kWh m-2 

yr-1.  

This work adds an intuitive method for building design 

and opens up possibilities for optimization.     

1. Introduction

Detailed thermal simulation programs like 

EnergyPlus, TRNSYS, etc. are needed to accurately 

estimate the cooling and heating loads in 

buildings. These programs can take from a few 

seconds to hours to find the building performance 

for each run. To find the optimal building designs 

for desired objective functions like minimum 

lifecycle cost (LCC), minimum discomfort hours, 

etc., simulation based parametric methods may not 

be viable as they are computationally intensive. 

The time taken may be in the order of years, for 

iterating over 15 design variables having 3 levels 

each, assuming 7 seconds per simulation run. A 

typical building design could easily have more 

than 30 design variables. Techniques like 

sensitivity analysis and optimization methods, 

coupled with simulation programs, are used to 

reduce the computational run time, while 

maintaining the accuracy of results. 

1.1 Literature review 

Sensitivity analysis (SA) can be used to find the 

design variables, having the most impact on the 

response variable, like the cooling load. Local SA 

involves changing one factor at a time over the 

base case. It is easy to use but does not consider the 

interactions between the variables. Global SA 

spans the entire input space and is preferred. 

Variance based methods give the most reliable 

results for global SA, as per the review paper by 

(Tian, 2013). 

After eliminating the unimportant variables using 

SA, optimization methods can be used to find the 

optimal building design.  Nguyen et al. (2014) and 

Machairas et al. (2014) provide a review of the 

building design optimization methods used. 

Genetic algorithm based direct search methods are 

Part of
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most popular (Machairas et al., 2014). Nguyen et al. 

(2014) suggest that improvements in surrogate or 

meta-models hold a lot of promise, however, there 

have only been limited studies using these models 

for building design.  

Surrogate models (SMs) overcome the high run 

time limitation of simulation based optimization 

methods by creating an approximate model or a 

correlation, using a limited simulation run for 

predicting simulation outputs. Machine learning 

models like support vector machines and artificial 

neural networks have been mostly used to develop 

surrogate or meta-models (Machairas et al., 2014). 

Once the SMs are created and validated, they can 

be used parametrically or coupled with other 

optimization algorithms to optimize the design.  

Nguyen et al. (2014) suggest that the performance 

of the optimization methods may be different for 

cold and warm climates.  

1.2 Problem definition 

This paper proposes fractional factorial design 

(Montgomery, 2007) for global SA, not used for 

building design before. This statistical method 

gives very reliable results, like other variance 

based global SA methods, but overcomes their 

limitation of high computational time by using 

only a fraction of parametric simulation runs to 

identify the most significant variables, while also 

analysing the key interactions between them. This 

technique can easily analyse 50 or more design 

variables in a short time. Gong et al. (2012) have 

used a factorial design technique called orthogonal 

method, for local SA only, to improve upon the 

base case. 

Response surface methodology (Montgomery, 

2007) has been used to create a surrogate model for 

cooling load prediction. Although response surface 

models (RSM) are the most popular surrogate 

models in general (Wikipedia, 2014), they have not 

been used for building design before. RSM is very 

intuitive to use and builds on fractional factorial 

design used for SA, to form a model for the 

significant variables, for further optimization. 

Using statistical methods like RSM can help avoid 

learning artificial intelligence techniques like 

artificial neural network or support vector 

machines, which require expert knowledge and 

have been the main reason for the limited use of 

SMs for building design so far (Machairas et al., 

2014). Some commonly used RSM designs are Box-

Behnken design and central composite designs 

(Montgomery, 2007).  

The surrogate models developed in this paper are 

also tested to assess their accuracy and strategies 

are proposed for the regions with high error.   

In addition, there is a dearth of studies on the 

application of building design optimization for 

warmer Indian climates. Hence, these methods are 

presented in an optimization framework to 

minimize LCC for an air-conditioned, single zone, 

solar powered, detached home, with a floor area of 

64 m2, based in the warm and humid Mumbai 

climate. It is inspired by the Indian team’s house 

“h-naught” from Solar Decathlon Europe 2014 

(SDE, 2014).  

2. Methodology  

Figure 1 explains the flowchart of the methodology 

used to optimize the building design. Other 

methodology related key points are addressed in 

this section. The simulation model for the base case 

is built in EnergyPlus. The design variables are 

estimated for their ranges, thermal properties and 

cost data. Local and global SA, surrogate 

modelling and optimization algorithm are applied 

as per the framework.  

For global SA, the runs for the fractional factorial 

design are limited to 512 to achieve a target of 

finishing the simulations within an hour, with each 

simulation in EnergyPlus taking 7 seconds, on 

average, for the present case study. To create the 

fractional factorial design, Box-Behnken RSM 

design and ANOVA, Design-Expert software (Stat 

Ease, 2014) has been used. For running simulations 

in a batch mode, VBA programming language is 

used. If the simulated test cases for SM show an 

error of greater than 10%, then the region of high 

error should be identified and another SM should 

be fit for this region to reduce the error. For 

optimization, the best 5 solutions should be used to 

choose the most robust design among them.  
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Fig. 1 – Flowchart for optimization methodology 

3. Case study input data 

The methodology is illustrated considering two 

cases for the Figure 2 building in Mumbai. The 

structural material for the base case is taken as 

concrete (Ramesh et al., 2012) for it to be 

representative of Indian buildings. 

 

 

Fig. 2 – Detached home in Mumbai 

Table 1 shows the important input parameters for 

the simulation. AC schedule was arrived at, from 

the survey of the load profile of the homes of 

middle class households of Gujarat, India (Garg et 

al., 2010). Other internal gains include the use of 

cooking gas, fridge and lighting.  

Table 1 – Important input parameter assumptions 

Input 

parameter 

Data assumptions 

Occupants 6 (for a middle class family) 

Occupancy 

schedule 

4 people on weekdays from 8 am to 6 

pm; 6 people during rest of the time. 

AC set points Topt: 22°C to 27°C (Manu et al., 2014) 

AC schedule 

April to June: 9 pm to 5 am, 2 pm to 4 

pm for, July to October: 2 pm to 4 pm 

(Garg et al., 2010)    

Infiltration rate 0.4 air changes per hour 

Internal mass 40 m2 (partitions), 20 m2 (furniture) 

 

Table 2 shows the 16 design variables along with 

their ranges to be used for the simulation runs. 

Insulation, thermal mass and PCM thickness have 

3 variables each for wall, roof and floor. The WWR 

lower limit was fixed as per the requirements for 

LEED IEQ credit 8.1 (IGBC, 2011) using day-

lighting simulation in EnergyPlus.  Day-lighting 

controls in the simulation maintain the lighting 

levels in the house to greater than 100 lux. Curtains 

are used only when the solar radiation is greater 

than 500 W/m2 to avoid the glare from the direct 

solar radiation. Glasswool is used for thermal 

insulation, having a density of 48 kg/m3 (Twiga, 
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2014) and water is used for thermal mass. The base 

case run yields a cooling load of 100 kWh m-2 yr-1. 

Table 2 – Design variables and their range 

Design 

Variable 

Range 

WWR  15% to 40% (IGBC, 2011) 

Window U value   1 to 6  

Window SHGC 0.2 to 0.8 

Overhang depth 0 to 1 m (BIS, 2005) 

Fin depth 0 to 0.5 m 

Curtains SHGC  0.2 to 1.0  

Cool roof ρ 0.25 to 0.85 (SSEF, 2014) 

Insulation t 0-0.1 m (Wall), 0-0.2 m (Roof, Floor) 

Thermal mass t 0-0.1 m (Wall), 0-0.2 m (Roof, Floor) 

PCM t 0-0.1 m (Wall), 0-0.2 m (Roof, Floor) 

4. Application of optimization method 

Each step in the optimization method is applied as 

per Figure 1 for two cases, case 1 and case 2. The 

difference between the two cases is in the number 

of design variables. Case 1 has the 16 design 

variables, as per Table 2. For case 2, the design 

variables, namely, WWR, window U-value, 

overhang-depth, fin-depth and window SHGC 

have been made different for each façade. For 

example, WWR would be treated as four design 

variables, namely, WWR for north, east, west and 

south facades, respectively. This would result in a 

total of 31 design variables. Case 1 is easier to 

understand, whereas case 2 shows how SM could 

be used for designs with many design variables. 

4.1 Local sensitivity analysis 

As per the local sensitivity analysis and payback 

analysis of the costly items, shown in Table 3, it is 

seen that PCM would not be cost effective as its 

SPP is far greater than 10 years, as per scenarios 

run over the base case to find its cooling load 

reduction benefit, with utility rates of € 0.13 per 

kWh. So, it is eliminated at this step. This leaves 13 

design variables for case 1 and 28 design variables 

for case 2. 

Table 3 – Cost analysis for variables (1 € = 75 Indian rupees) 

Variable Cost (in €) SPP  

PCM 6000 100 years 

Low solar gain windows 660 10 years 

Cool roof 800 8 years 

Glasswool insulation 260 4 years 

4.2 Global sensitivity analysis 

For case 1, with the range of 13 design variables as 

per Table 2, the fractional factorial design chosen is 

resolution VI 213-4 design with a single replicate. 

This design can estimate the main effects and two 

factor interactions. It was created in Design-Expert 

software (Stat Ease, 2014). 512 simulation runs 

based on this design were automated using VBA, 

calling EnergyPlus batch file for each simulation 

and took a time of 55 minutes on an Intel® Core™ 

i7-2670QM processor. The cooling load varied from 

43 to 143 kWh m-2 yr-1, with a mean of 81 kWh m-2 

yr-1.  

For case 2, for the 28 design variables, the factorial 

design has a resolution V. 408 simulation runs 

based on this design took a time of 45 minutes. The 

cooling load varied from 45 to 138 kWh m-2 yr-1, 

with a mean of 83 kWh m-2 yr-1. 

The normal probability plot of residuals is well 

behaved for both the cases, suggesting that the 

normality assumptions hold.     

Figure 3 shows that case 1 and case 2 have the 

same significant variables selected, albeit with 

different contribution levels. Window SHGC, 

WWR, cool roof ρ, overhangs and the interactions 

involving them explain more than 85% of the total 

variance in the model for both the cases. The most 

significant positive interaction is between the cool 

roof ρ and the roof insulation, which suggests that 

when the cool roof ρ is high, then the roof 

insulation has little effect. Figure 4 shows the 

breakup of facade-wise contribution for case 2.  

The west and east facade contribution for SHGC is 
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higher than the north and south facade as the 

direct radiation is able to enter at a lower altitude 

angle for these facades. 

Fig. 3 – Percent contribution of design variables to cooling load  

Fig. 4 – Breakup of variables for the façade wise contribution  

The thermal mass, wall insulation and window U-

value variables do not have a major effect as the 

temperature in Mumbai is fairly constant 

throughout the year. Curtains can be useful to 

avoid solar radiation but they also lead to blocking 

of daylight and views so they are only used to 

avoid harsh direct radiation, which happens only 

for a little time, when the AC is used. The 

variables, which are left out, are set at base case 

values in the simulation model. In most cases, it 

would mean removing these variables from further 

analysis. For example, thermal mass is removed 

but window is set at U-value of 6 W/m2-K. 

To create the surrogate model, the floor and the 

roof insulation are left out. The presence of floor 

insulation has a negative effect on the cooling load 

and it does not have any interaction with any other 

variables to be concerned about. For the roof, cool 

roof material is better suited than the roof 

insulation as per Figure 3. Thus, for case 1, four 

design variables, namely, cool roof ρ, window 

SHGC, overhang depth and WWR, and for case 2, 

the same variables for all four facades would be 

used to form the surrogate model, making it a total 

of 13 design variables.  

4.3 Surrogate Model 

4.3.1 SM for Case 1 
Using RSM, a second order polynomial is fit to the 

4 design variables to obtain the surrogate model, 

using the range from Table 2. Box-Behnken design 

is created in Design-Expert software using 3 levels 

for each factor, taking the lower and upper limit 

and the middle value of the range. For example, for 

the overhang depth, levels correspond to 0 m, 0.5 

m and 1 m. The design leads to 29 simulation runs, 

which takes less than 3 minutes of computational 

time.  

The fitted model has an adjusted R-squared of 0.99. 

The variables A, B, C and D have been defined in 

the nomenclature section. 

AnnualCoolingLoad = 63.6 – 3.5A + 64.8B – 

43.8C + 0.8D – 17.0 AB – 11.7 AC – 0.3 AD + 

11.8 BC + 0.8 BD + 0.5 CD + 11.5 A2 – 44.5 B2 – 

11.4 C2      (1) 

4.3.2 SM for Case 2 
Like in section 4.3.1, a second order polynomial is 

fit for cooling load as the response, using RSM. 

Box-Behnken design leads to 220 simulation runs. 

The Box-Cox plot in Design-Expert software 

recommends a power transform to meet the 

normality assumptions for the residuals, as shown 

for the cooling load on the LHS of equation (2). The 

fitted model on the RHS of equation (2) has linear, 

quadratic and interaction terms between the 

variables for all façades. The fitted model achieves 

an adjusted R-squared of 0.99.  

AnnualCoolingLoad2.1 = f(overhang depth, 

window SHGC, WWR, cool roof ρ)  (2)    

4.3.3 Validation of SM 
Table 4 shows the testing datasets created for the 

two cases. For case 1, the variables are varied 

parametrically. For example, WWR is varied from 

15% to 40% in steps of 5%. For case 2, since the 

variables are large, so 4 fractional designs, with 512 

runs each, have been created, to test for the entire 

range of variable values. WWR, window SHGC, 

overhang for all four facades and cool roof ρ would 

be varied at 0 & 100%, 10 & 90%, 25 & 75% and 40 
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& 60% of the range for the 4 fractional designs 

respectively. For example, WWR (%) for all facades 

would be 15 & 40, 17.5 & 37.5, 21.25 & 33.75, 25 & 

30 respectively for the four fractional designs with 

512 runs each. Table 4 shows a case 2 design.  

Total test cases for case 1 and case 2 are 2058 and 

512x4 = 2048 respectively. The error statistic MAPE 

for the difference between the simulated vs. SM 

predicted cooling load is less than 1% for both 

cases. The data point with minimum error for case 

1 and case 2 are -12% and -36% respectively. The 

maximum error is less than 5% for each case. The 

areas with high error need to be analysed further.  

Table 4 – Range of variables for testing  

Variable                    Case 1  Case 2 (design 1) 

WWR (in %) 15-40 step 5  15, 40 

Window SHGC 0.2-0.8 step 0.1 0.2, 0.8 

Overhang (in m) 0-1 step 0.17 0, 1 

Cool roof ρ 0.25-.85 step 0.1 0.25, 0.85 

Fig. 5 – Error frequency for the surrogate model prediction 

Figure 5 shows that about 98% of the test data have 

errors of less than 5%. These results are promising 

and validate the effectiveness of the surrogate 

model. However, for case 2, 0.5% of the test cases 

have errors higher than 10% and ways need to be 

found to reduce this error as well to make the SM 

valuable for the entire search space.  

The analysis of high error points shown using 

Figure 6 suggests that the error has a tendency to 

increase on the negative side, with the reduction in 

the simulated cooling load, resulting in the 

underprediction of cooling load. This problem is 

fixed by using a reduced variable SM, having the 

same form as case 1, for the region of case 2 with 

CL less than 60 kWh m-2 yr-1 (as shown in Figure 6 

with a vertical dotted line). This region accounts 

for 3.5 % of the total search space. The only 

difference between the reduced model and the case 

1 model is the range for cool roof reflectivity, 

which is 0.65 to 0.85 for the reduced model. This 

strategy brings the error for all test data for case 2 

to less than 10% but the detailed design ability of 

case 2 would be lost for this region.   

To avoid compromising on the detail that case 2 

offers, while keeping the error low, the 

optimization algorithm in the next section is made 

to search the space with CL less than 60 kWh m-2 

yr-1, for both the reduced case 1 model with less 

error and case 2 model with higher detail. The best 

5 solutions are found from both the models and the 

optimum among them is chosen.  

Fig. 6 – Error reduction for Case 2 (‘-‘) with reduced model (‘+’)  

4.4 Optimization for LCC 

Using the surrogate model, LCC is optimized 

parametrically. As per the cost functions given in 

Table 5 and discount factor of 10%, the results for 

the minimum LCC design in constant euros are 

given in Table 6. The base case cost includes the 

construction cost of the house and the cost of the 

solar thermal hot water system. The life of the 

building components is given in Table 5. 

As per Table 6, parametric EnergyPlus run method, 

case P is able to search 256 combinations of input 

parameters only as compared to 12 million 

iterations for case 2 in the same time. If the 

iterations for case 2 were done parametrically, it 

would have taken 2.7 years. In this case, SM is able 

to search 50000 times more solution space than 

parametric methods. This is where the real power 

of SM based methods lies.  
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Table 5 – Cost functions for design variables 

Material Cost function (in €) 

Base cost of house 13.3 per sq. ft. (50 years life) 

Solar PV 1066.7 per kWp (25 years life) 

AC 400 per TR of capacity (10 years life) 

Windows  10000/75x(0.6-1.35B+0.85B2)xWWR 

Overhangs  12 per m2 

Cool roof ρ (12ρ/0.85) per m2 

Table 6 – Comparing results for optimized building design 

 Case P Case 1 Case 2 

Method used Parametric SM SM 

Total iterations  256 0.3 mn 12 mn 

Time taken (hrs) 0.5  0.05  0.5  

LCCoptimum (in €)  13973 13824 13757 

Overhang depth 0.7 m 0.9 m 0, 1, 1, 1 m* 

Window SHGC 0.6 0.375 0.2, 0.6, 0.6, 0.6* 

WWR  15% 15% 15, 15, 15, 15%* 

Cool roof ρ 0.65 0.85 0.85 

CL for this design 69.3 51.8 55.1 

*for N, E, W, S facades respectively 

 

For case 2, since the cooling load for the minimum 

LCC lies in high error region as per Figure 6, so 

both the case 2 and reduced models were run in 

this region but the case 2 model gave a better 

solution in this instance. The minimum LCC for 

case 2 is 1.6% less than case P. The design is also 

different for all variables except WWR.  

4.5 Applicability 

For this paper, all variables chosen were 

continuous variables but this framework can be 

used for discrete variables in the same manner. In 

this case, for SM, for each combination of discrete 

variable values, there will be a separate equation. 

SM was used for cooling load prediction only as 

heating is not required for the Mumbai climate but 

the methodology could be easily extended for cold 

climates as well.  

SMs can be used as a correlation for mass housing 

projects for a given climate by architects or other 

building industry professionals, who do not have a 

background in building simulation.   

5. Conclusion and next steps 

A building simulation assisted optimization 

methodology has been presented for a single 

storeyed house in Mumbai. Fractional factorial 

design was used to find the significant variables 

for cooling load prediction. A correlation for 

cooling load prediction was fit for these variables 

and was used to optimize the life cycle cost. The 

entire process was completed in a couple of hours. 

The surrogate model used to find the correlation 

was found to be thousands of times faster than the 

parametric method. The test data also showed that 

the prediction error could be kept to be less than 

10% for the entire search space. This correlation, 

when used for optimization, also found a better 

solution with a different building design.   

The case study revealed that for the Mumbai 

climate, window solar heat gain, window to wall 

ratio, roof reflective coatings and overhang depth 

are the most important design variables.  

This work adds an intuitive optimization method 

into the building design kit. This approach opens 

up a lot of possibilities for building design 

optimization and could be used for the prediction 

of any simulation output. This method can also be 

extended to consider the effect of uncertainty in 

parameters like infiltration rate, occupancy 

schedule, etc. on building design. 
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6. Nomenclature 

Symbols 

ρ    reflectance 

A, B, C, 

D  

overhang depth to window height,                             

window SHGC, cool roof ρ, WWR 

AC    air conditioning 

CL cooling load (in kWh m-2 yr-1) 

hrs hours 

INS, WIN insulation, windows 

k, U thermal conductivity, overall heat 

transfer coefficient (in W m-2 K-1) 

kWp kilo-watt peak 

LCC life cycle cost 

LHS, RHS left hand side, right hand side 

m metre 

mn million 

MAPE mean absolute percentage error 

min, max minimum, maximum 

N, E, W, S north, east, west, south 

PCM phase change material 

PV photo-voltaic 

RSM response surface methodology 

SA sensitivity analysis 

SHGC solar heat gain coefficient 

SM surrogate model 

SPP simple payback period 

sq. ft. square feet 

t thickness 

Topt operative temperature (Celsius) 

VBA Visual Basic for Applications 

WWR window to wall ratio 

Subscripts/Superscripts 

opt operative temperature 
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