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Abstract 
Energy consumption strongly depends on the occupants’ 

behavior for all types of buildings. However, the impact 

is greatly increased in high performance building, in 

which users can freely interact with the envelope system 

(opening widows and shading management) and with 

the HVAC control systems. The robustness of a design 

solution to suboptimal user´s behaviors can thus become 

a distinguishing factor among different design 

alternatives. 

One of the main issues regards the predictability of user 

choices and actions and its codification into a plausible 

simulating algorithm.  Several strategies are presented in 

the literature, however energy modelers adopted to a 

large extent the schedule approach, to take into account 

users in energy simulations. 

This paper describes two stochastic methods 

implemented in EnergyPlus to simulate the users’ 

behaviors in managing opening surfaces and thermostat 

setpoint temperatures.  

Using these methods, the impact of different user 

behavior on the energy performance of a multistory 

building is investigated. The aim of this work is to 

quantify the impact of users´ behavior modeling on the 

results of dynamic energy simulations.  

1. Introduction

After the coming into force of the European 

Directive EPBD on energy performance of building 

(European Commission, 2010), low energy 

consumption of buildings has become an 

important target to achieve and nearly zero energy 

buildings (nZEB) as well as comfort conditions are 

becoming essential requirements for the new 

generation buildings.   

Nevertheless, sustainable and passive buildings, 

usually with a high level of thermal insulation, are 

subjected to a more active role of users’ behavior 

(Hoes et al., 2009).  Several studies in the literature 

compared energy consumption of identical 

buildings but subjected to different users. In these 

works, the ratio of the maximum over the 

minimum value is roughly in the range 1.2 ÷ 3 

(Fabi et al., 2012).  

The role of users’ behavior assumes significance 

especially in naturally vented buildings, where air 

change rates per hour (ACH) due to window 

opening by users can be up to 87% greater than the 

ACH measured during the non-occupied period 

(Iwashita and Akasaka, 1997).  

Users’ behavior has a particular significance for 

those constructions in which users can interact 

with the electric devices, shadings, lighting and 

HVAC system controls. In this way, occupants 

must be considered an integral and active part of 

the energy balance of a building, not limited to 

internal contributions due to their metabolic 

activity (Mahdavi, 2011). Scheduling occupancy is 

itself a source of uncertainty and its description 

could be dealt with non-probabilistic models rather 

than stochastic approaches (Mahdavi and 

Tahmasebi, 2015). 

The base assumption in modeling occupancy 

interaction with the building is the adaptive 

comfort principle (Humphreys and Nicol, 1998). 

According to this approach, the occupant interacts 

with the HVAC and building envelope in order to 

restore the comfort conditions. Nonetheless, the 

parameters inducing users’ interaction with the 

environment as well as the extent to which they 
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effectively manage their actions are not fully 

defined.  

This study presents a comparison between two 

different models to take into account the users in 

building energy simulations.  

The goal is to evaluate the stochastic distribution of 

results obtained from the user simulating approach 

and to compare it against the result provided by a 

scheduled approach, following the tailored rating 

simulation inputs according to the EN ISO 13790 

standard (CEN, 2008). For this purpose, two user 

behavior models were implemented in EnergyPlus 

to simulate the users’ behavior in managing 

opening surfaces and thermostat control setpoint. 

Additionally, the schedule approach proposed by 

the technical specification UNI/TS 11300 (UNI, 

2008) was also adopted. The study focused on a 

new multistory residential building with a cross-

laminated timber envelope (Xlam) built in Trento 

in 2013. 

2. Models and simulations 

2.1 Case of study 

The construction (built in Trento - Italy in 2013) is a 

five-floor residential building composed of 14 

residential units of various sizes.  

The original structure is part of a residential 

complex composed of two twin dwellings.  

 

 

Fig. 1 – Model of the analyzed residential estate 

 

Fig. 2 – Front view of the building (picture by ITEA s.p.a, 2014) 
and the geometric model used for numerical simulations  

The southern building has a cross-laminated 

timber structure with a reinforced concrete 

stairwell and low emissivity windows. The 

northern building is identical except for a platform 

frame structure. The dwellings have a naturally 

ventilated wooden roof. 

This study focused on the southern building, thus 

the north dwelling was modeled as an external 

obstruction. In the following table, the main 

parameters of the modeled envelope (transmittance 

and internal heat capacity) are reported. 

Table 1 – Thermal transmittance (U value) and internal heat 
capacity (Cm) of the main envelope surfaces (* for Envelope 
walls the data refer to inner side; for Floors the data refers to the 
decking) 

Surface type 
U Cm* 

Wm-2K-1 kJ m-2K-1 

Envelope 

walls 

Floor 0, 1 0.16 46.70 

Floor 2, 3, 4 0.16 27.50 

Floor 4, terrace 

side 
0.13 51.28 

Internal 

walls 

Room-room 0.49 31.10 

Room-bathroom 0.45 34.70 

Room-common 

space 
0.21 46.70 

Room-common 

space 
0.20 46.70 

Flat-flat 0.23 36.50 

Semi-exposed 0.32 232.00 

Floors 

Wood finishes 

semi-exposed 
0.29 171.21 

Ceramic finishes 

semi-exposed 
0.29 188.48 

Wood finishes 

internal 
0.31 215.70 

Ceramic finishes 

internal 
0.31 232.98 

Ceiling exposed 

terrace 
0.41 13.75 

Roof 
Wooden naturally 

vented  
0.18 81.07 

  

The heating system is based on a centralized 

condensing boiler, with an outdoor reset control of 

the water supply temperature. The boiler produces 

the hot water that feeds the radiant floor systems. 

During the heating period, a mechanical 

ventilation system provides fresh air to the 

dwellings (with a lower threshold of 18°C for the 

supply air temperature). However, the occupants 
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can freely interact with the envelope by opening 

and closing the windows. The ambient 

temperature controllers are set to the constant 

value of 20°C during occupied time, with a setback 

temperature of 16°C.  The infiltration and 

ventilation leakages have been modeled by means 

of the airflow network. 

The building has been modeled with the dynamic 

simulation engine EnergyPlus 8.1 in which two 

calculation methods were implemented: a Standard 

Input Model (SIM) and a Stochastic Advanced 

Model (SAM). In the SIM approach the internal 

gains, the ventilation rates and the occupancy 

schedules are defined according to the standard 

EN ISO 13790 (CEN, 2008) and to the technical 

specification UNI/TS 11300 (UNI, 2008).  The 

following tables summarize the scheduled internal 

lumped gains and heating radiant plant timesheet 

related to zone occupancy.  

Table 2 – Internal gains profile in SIM model (CEN, 2008) 

Days Hours 

Living 

Room plus 

kitchen 

(ϕint,Oc+ϕint,A

) 

/Af 

Other 

conditioned 

areas  

(ϕint,Oc+ϕint,A) 

/Af 

W/m2 W/m2 

Monday-

Friday 

07:00-17.00 8.0 1.0 

17:00-23:00 20.0 1.0 

23:00-07:00 2.0 6.0 

Average 9.0 2.67 

Saturday-

Sunday 

07:00-17:00 8.0 2.0 

17:00-23:00 20.0 4.0 

23:00-07:00 2.0 6.0 

Average 9.0 3.83 

Average 9.0 3.0 

Table 3 – Hourly thermostat setting in SIM model 

Days Hours 
Living 

Area 

Sleeping 

Area 

Monday-Sunday 

07:00-17:00 Setpoint Setback 

17:00-23:00 Setpoint Setback 

23:00-07:00 Setback Setpoint 

 

 

In the SAM method, the user‘s behavior was 

implemented through a stochastic algorithm while 

internal gains and schedules are defined with an 

occupant-tailored approach. The daily mean 

internal gain rate due to lighting system, electric 

devices and occupancy presence are equivalent in 

the two models. 

2.2 Stochastic Advanced Model (SAM) 

The SAM model simulates the user stochastic 

control of both the window opening and the 

adjustment of the thermostat setpoint temperature. 

The simulating process is obtained combining a 

series of sensors, programs and actuators 

organized to control independently each single 

zone and opening. These programs were 

implemented in EnergyPlus via the Energy 

Management System (EMS) module. 

2.2.1 Windows Opening control algorithm  
Humphreys’ stochastic control algorithm 

(Humphreys and Nicol, 1998) was modeled to 

simulate user managing of the windows. The 

control system manages the window open factor, 

which, in our model, can be set to 0 or 1 with the 

hypothesis of a fully closed/open window. The 

algorithm can be summarized in the following 

steps: 

 

1) The daily mean values of outdoor running 

temperature (Trm) were calculated according to the 

relation provided by the standard EN 15251 (CEN, 

2007) and based on the previous 20 days as follow: 

Trm = (1-α)·{Θed-1 + α·Θed-2 + α2·Θed-3 +...}        (1) 

where Θed-1 is the daily mean outdoor air 

temperature of the "i-th" day before the current day 

of calculus and the constant parameter α assumes 

the suggested value of 0.8. 

 

2) A comfort temperature has been derived from 

the previous step, according to the relations 

proposed by Rijal et al., 2007. 

if Trm > 10°C : Tcomf  = 0.33·Trm + 18.8°C        (2) 

if Trm ≤ 10°C : Tcomf  = 0.09·Trm + 22.6°C        (3) 

 

3) The comfort temperature has been used to 

define a 4 K wide comfort band, whose limits are 

defined increasing and decreasing the comfort 
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temperature by 2 K. In this way, it is possible to 

define for each timestep whether the zone 

operative temperature, Top, belongs to the comfort 

range and, consequently, the users are in a comfort 

condition. Otherwise, if the zone operative 

temperature is outside the comfort zone, a 

discomfort condition of cold/heat arises.  

 

4) When the zone operative temperature is outside 

the comfort band, a certain probability (pw) to open 

(if Top > Tcomf + 2 K) or close (if Top < Tcomf – 2 K) the 

windows is calculated by the following empirical 

equation proposed by Rijal et al., 2007. 

logit(pw) = 0.171·Top + 0.166·Tout - 6.4 K        (4) 

logit(pw) = ln [ pw / (1-pw) ]         (5) 

 

5) The probability, pw, is compared with a pseudo 

random generated number between 0 and 1, pw,lim, 

to define if a zone window is effectively opened or 

closed. If pw is greater than pw,lim, the Top is greater 

than Tcomf + 2 K and the window is closed, then its 

open factor is changed from the value of 0 to 1. If 

pw is less than pw,lim, the Top is less than Tcomf – 2 K 

and the window is open, then its open factor 

changes from the value of 1 to 0. In the other cases, 

the value of the open factor is not changed. 

 

6) A minimum ventilation rate for sanitary 

purposes was set in addition to the Humphreys 

behavioral algorithm. In agreement with the 

hypothesis according to which the windows are 

open for 1% of the time, a rule that provides for the 

opening of the windows if they had been closed for 

the previous 8 hours was implemented. Once the 

window was open, its control falls within the 

provision of the Humphreys algorithm. Window 

control is performed only during the occupied 

hours and the value of the open factor during the 

unoccupied time is set to 0. Window control is 

performed with a frequency of 10 time steps per 

hour.  

2.2.2 Temperature controller algorithm  
The setpoint control algorithm, developed in this 

paper, is inspired by the Fanger comfort 

formulation. The user's control on the heating 

system is simulated with the possibility to increase 

or decrease the setpoint temperature by a pseudo 

random numbers of degrees and in relation with 

defined conditions.  The simulating system works 

under certain main hypothesis: 

 

1) The setpoint modification is permitted between 

6:00AM and 11:00PM (avoiding non-realistic 

temperature controller adjustments during night 

sleep-time) and only during the occupied period; 

 

2) The increment (or decrement) of the temperature 

setpoint is kept for 1 hour from the moment of the 

setting (emulating the "party or saving mode" 

available for many temperature controllers); 

 

3) The increment (or decrement) of the temperature 

setpoint is available no more than once every 2 

hours. 

 

The following points explain the main steps of the 

algorithm: 

1) The metabolic rate and clothing level are 

evaluated at each timestep using some coefficients 

to emulate the different thermal perception: 

 

1.1) a random variation of ±10% from the original 

value is adopted for the metabolic rate. 

MetSTO = MetDET ± 10%          (6) 

 

1.2) the clothing level, CloDET, is randomly changed 

by a coefficient (mclo) in the range 0.9÷1.5, when a 

value of CloDET=1 is adopted (wintertime), or 

0.6÷1.9, when a value of CloDET=0.5 is adopted 

(summertime).  These values are derived from the 

standard EN ISO 9920 (CEN, 2009) indications. 

CloSTO = mclo · CloDET          (7) 

 

2) Since the setpoint adjustment is not a certain 

event, a probability of the event should be defined. 

The proposed algorithm assumes the value of 

percentage of dissatisfied users, PPD, as the 

probability of setpoint temperature change, Pt, for 

a defined thermal zone. The temperature controller 

adjustment is defined by comparing the value of 

this probability, Pt, with a random number, Pt,lim, 

generated by a pseudo random uniform 

distribution. If the action probability, Pt, is greater 

than the random generated value, Pt,lim, the change 

of the setpoint temperature is actually performed. 
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Otherwise, the setpoint temperature is not 

changed. The potential setpoint temperature 

change (the comparison between Pt and Pt,lim), is 

applied with an hourly timestep.   

3) The sign of the PMV in each thermal zone is 

used to define the type of potential action on the 

temperature controller for a zone (temperature 

increase or decrease). A positive PMV indicates a 

perception of "warm", thus the temperature 

adjustment will be negative (a decrement). A 

negative PMV implies the increment of the setpoint 

temperature while the PMV equal to zero implies 

no variation. If the potential action on the 

temperature controller is actually performed 

(Pt>Pt,lim), the absolute value of the 

increment/decrement is chosen generating a 

random integer number between (1-3) K using a 

uniform distribution. 

2.3 Standard Input Model (SIM) 

The implemented Standard input model is based 

on standard input provided by the EN ISO 13790 

(CEN, 2008) and by the technical specification 

UNI/TS 11300 (UNI, 2008). It includes scheduled 

profiles regarding occupancy, internal gains and 

ventilation rates (both infiltration and ventilation).  

The following table summarizes the main 

differences between the two calculation methods. 

Table 4 – Natural ventilation and setpoint temperature in SAM 
and SIM  

    SAM SIM 

Natural 

ventilation 

From 

opening 

windows 

Humphreys 

Algorithm Scheduled 

0.3 ACH 

Infiltration 
Airflow 

Network 

Setpoint thermostat 

temperature 

Stochastic 

Algorithm 
Constant 

2.4 Evaluation of Robustness 

The effect of user behavior can be quantified by 

observing the standard deviation, σ, and the ratio 

of the maximum over the minimum value of 

annual energy consumption. In order to make a 

comparison between the robustness of different 

models, the use of a robustness index is proposed.  

The robustness index signals the sensitivity of the 

building energy performance with respect to 

occupants’ behavior. The robustness index is the 

reciprocal of the non-dimensional coefficient of 

variation for the stochastic data set: 

i  = σ*-1 = μ/ σ           (8) 

The numerical quantification of robustness is 

deeply related to the stochastic simulation model 

and the choice of a realistic simulation algorithm is 

of primary importance. 

3. Results and Discussions 

The hourly simulation was recursively run with 

different seed in the pseudo random generation in 

order to model different users’ behaviors.  The 

annual and monthly energy performance (EP) was 

computed for each of the 90 runs, starting from the 

hourly energy consumption of the heating and 

ventilation systems. 

3.1 Annual energy consumption 

The first result deals with the dispersion of the 

building annual EP caused by user behavior (Fig. 

3).  The interactions of the occupants with the 

thermostats and the windows opening induce a 

variability of the annual energy performance 

roughly equal to ±1 kWh m-2 y-1 with respect to the 

mean value that means ±950 kWh y-1. 

 

Fig. 3 – Distribution of annual EP of the building. 

It should be stressed that this result has been 

obtained by considering independent user 

behaviors for each room of the building. This 

means that the variability of the EP takes into 

account the offsetting between virtuous and 
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negative behaviors. Hence, the results do not 

represent a quantification of the maximum 

variation of the EP and, consequently, it is not a 

quantification of the maximum risk of an incorrect 

assessment of the energy label of the building. The 

graph in Fig. 3 highlights the sensitivity of the 

building to user behavior. Table 5 summarizes the 

output data values for SIM and SAM. 

Table 5 – Simulation results 

SAM data values  

  MAX Yearly EP 26.77 [kWh m-2y-1] 

  MIN Yearly EP 25.06 [kWh m-2y-1] 

  MAX/MIN Ration 1.07 [-] 

  μ Yearly mean value 25.81 [kWh m-2y-1] 

  σ Standard deviation 0.508 [kWh m-2y-1] 

SIM data values   

  Yearly EP 26.78 [kWh m-2y-1] 

Evaluation of robustness 

σ* = σ/μ  0.020 [-] 

Robustness Index  50.826 [-] 

 

The SIM and SAM models show similar results in 

terms of yearly energy consumption (the difference 

is roughly equal to 3.6%). The SAM model shows a 

lower energy consumption from 0.02% up to 6.41% 

if compared with the SIM model result. This result 

seems to indicate that the scheduled approach, 

according to the aforementioned technical 

standard, gives precautionary resultant energy 

consumption. Some conclusions on the sensitivity 

of the building can be drawn by analyzing the 

distribution of the results of the SAM model. The 

standard deviation, σ, assumes the value of 0.5 

kWh m-2 y-1, and the ratio of the maximum over the 

minimum value is 1.07. 

The robustness index for the analyzed building, 

according to (8), are reported in Table 5. 

3.2 Monthly energy consumption 

The analysis on the distribution of monthly energy 

needs gives information about the different 

sensitivity of the building to the user´s behavior. In 

order to compare the distributions of monthly EP, 

the deviation of each simulation run of the SAM is 

normalized in relation to the mean value.   

The graph in figure 4 shows the distribution of the 

normalized EP deviation obtained in February. 

Notice that the EP deviation is distributed 

according to a Gaussian distribution. The graph 

also highlights as the deviations are in the range of 

±2.5 % around the mean EP. The limited percentage 

variation is closely related to the external air 

temperature. The cold external air in winter 

months greatly decreases the number and duration 

of windows opening by users.  

Besides, this result stresses the role of the insulated 

envelope and of the correct energy system design 

in increasing the indoor thermal comfort. Thus, the 

number of setpoint adjustments by users is limited 

in the hourly energy simulations due to the low 

number of dissatisfied ones.  

The shape of the distribution of monthly EP 

deviations is different for intermediate and warmer 

months. For instance, Figure 5 shows the 

distributions obtained in March. Note that the 

variance increases from 0.57 in February to 1.92 in 

March. 

 

 

Fig. 4 – Distribution of February EP deviation caused by 
occupants 

 

Fig. 5 – Distribution of March EP deviation caused by occupants 
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Fig. 6 – Distribution of April EP deviation caused by occupants 

Therefore, the Gaussian distribution, which 

approximates the distribution of experimental 

data, demonstrates a greater dispersion of results 

around the mean value. In this case, the EP of the 

SAM runs are distributed around ± 3.7 % of the 

mean values.  The distances increases up to ± 5 % 

at the beginning and ending of the heating season, 

i.e. in October and April.  

These results highlight the greater impact on the 

EP variation of the window opening effect with 

respect to the setpoint adjustment. In fact, the data 

dispersion increases with a lower difference 

between internal and external temperatures. The 

behavior would be the opposite if the contribution 

due to the setpoint adjustment were larger than 

dispersions for ventilation. 

The higher data dispersion in temperate months is 

linked to the intermittent operation of the energy 

systems that decrease the system efficiency. In fact, 

the manual window opening by occupants often 

induces the activation of the heating system. 

Probably, the use of a more sophisticated control of 

the setpoint temperature would ensure a greater 

sturdiness of the building in these months. 

4. Conclusion 

This study investigates the extent to which user 

behavior affects the predicted energy performance 

of a multistory building. For this purpose, a 

stochastic algorithm simulating the user´s 

interaction with the temperature controller setpoint 

and the windows opening was implemented in 

EnergyPlus through the Energy Management 

System sensors and rules.  

For the test case, the average EP predicted by 

means of the stochastic method is about 3.6 % 

lower than the EP obtained using scheduled 

ventilation rate and thermostats setpoints. The two 

methods therefore show a good agreement when 

the same daily average is used.  

The randomness of user behaviors causes a 

variability of annual EP roughly equal to ± 1 % 

around the mean values. This limited variation is 

linked to the stochastic nature of the model. 

Virtuous user behaviors in some rooms or in some 

periods balance out the increase in energy demand 

caused by some negative effects from occupant 

behavior. In fact, the results show how the 

behavior of the occupants tends to affect much 

more the forecasts of consumption over limited 

periods of time, such as a monthly time base.  
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6. Nomenclature 

Subscripts/Superscripts 

clo of clothing  

DET defined in a deterministic approach 

i current day of calculus 

lim Limit 

STO Stochastic 

t of thermostat management 

w of window management 

Symbols 

Α coefficient (-) 

CloDET clothing level (clo) 

CloSTO clothing level (clo) 

i robustness index (-) 

μ mean value  

mclo clothing coefficient (-) 

MetDET metabolic rate (W) 

MetSTO metabolic rate (W) 



Marco Aldegheri, Alessandro Prada, Paolo Baggio, Michela Chiogna 

338 

PMV predicted mean vote (-) 

PPD predicted percentage of dissatisfied 

(%) 

pt probability of setpoint temperature 

change (%) 

pt,lim limit probability of setpoint 

temperature change (%) 

pw probability of open windows (%) 

pw,lim limit probability of open windows (%) 

σ standard deviation 

σ* coefficient of variation 

Tcomf comfort temperature (°C) 

Top operative temperature (°C) 

Tout site outdoor drybulb temperature (°C 

Trm daily running mean temperature (°C) 

Θed site outdoor daily mean drybulb 

temperature (°C) 
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