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Abstract 
This contribution describes an urban energy modelling 

method that enables the use of dynamic performance sim-

ulation for urban-scale energy inquiries. The associated 

framework involves two components. The first component 

is tasked with the systematic reduction of the computation 

domain through clustering based sampling of the urban 

building stock. The second component recovers part of the 

lost diversity (due to the reductive procedure) via stochas-

tic variation of selected model parameters such as thermal 

properties of building components and occupancy-related 

factors. 

1. Introduction

The development of energy performance improve-
ment strategies for the built environment requires 
reliable data on the spatial and temporal distribu-
tion of energy demand and supply. This implies the 
need for modelling environments that can facilitate 
energy-related district-level inquiries (pertaining, 
for example, to candidate intervention scenarios) 
beyond the scope of individual buildings. The bot-
tom-up modelling approach (Swan and Ugursal, 
2009) has the potential to support the impact inves-
tigation of energy-relevant change and intervention 
scenarios (Kavgic et al., 2010). Thereby, results from 
thermal models of a number of sample buildings are 
up-scaled to the neighbourhood or even whole-city 
level. The effectiveness of this approach depends 
not only on the underlying performance assessment 
routines, but also on the nature of the reductive pro-
cedure adopted to reduce computational loads. 
Past efforts have frequently adopted simplified and 
reduced order algorithms in order to meet massive 
data requirements and extensive computational 
loads. This may yield a broad urban-scale energy 
view, but is unlikely to capture the temporal 

dynamics of building thermal states given transient 
internal and external (occupants and climate). On 
the other hand, most current reductive procedures 
follow stock segmentation methods that ignore a 
number of relevant morphological aspects of the 
urban stock such as adjacency relations and the 
effect of mutual shading. In our implementation of 
the reductive method, such issues were addressed 
in the adopted classification criteria, together with 
measures to include the building operational prop-
erties beyond function-related assumptions 
(Ghiassi et al., 2015).  
In this context, we have developed a reductive bot-
tom-up urban stock heating demand model, which 
relies on a Building Performance Simulation (BPS) 
tool to assess the performance of the buildings, such 
that scenario modelling capabilities and resolution 
are enhanced. To enable the large-scale adoption of 
BPS tools a two-module framework (an hourglass 
model) was conceived. The first (reductive) module 
uses data-mining methods to reduce the computa-
tional load via representative sampling. As this 
inadvertently results in some loss of diversity, a sec-
ond module was designed to partially recover lost 
diversity.  The resulting urban energy decision sup-
port environment has thus the potential to compar-
atively analyse and evaluate various change and in-
tervention scenarios pertaining to macro and micro-
climate conditions, inhabitants' demography and 
behaviour, physical and technical aspects of the 
buildings, and urban morphology. 

2. Approach

The framework architecture is depicted in Fig. 1. To 
accommodate the high informational and com-
putational requirements of BPS as the framework's 
computational engine, the first module involves the 
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selection of a sample of buildings representative of 
the energy diversity of the stock. The second mod-
ule aims to recover part of the building diversity lost 
through the reductive process. The initial reduction 
and subsequent re-diversification steps explain the 
authors’ choice of the "hourglass model" to charac-
terise their approach. 

Fig. 1 – The proposed urban energy computing framework 

3. The Reductive Module

The reductive module is designed and implemented 
as a plug-in for the open source GIS environment 
QGIS (2015). The plug-in, written in Python pro-
gramming language (2016), uses the available GIS 
data of an urban area, as well as relevant standards 
and statistical data to reach an energy-relevant sam-
ple of buildings. The prerequisite urban stock repre-
sentation includes the geometry and adjacency sta-
tus of the building enclosures; area, orientation and 
shading condition of transparent building compo-
nents; various usages present in each building, and 
relevant standard operational parameters; age-
dependent thermal properties of building compo-
nents; floor area, etc. (for more details, Ghiassi et al., 

2015; Ghiassi and Mahdavi, 2016a; 2016b, 2016c). 
Once the representation is created, key energy-
relevant features of the buildings are aggregated 
into descriptive indicators (Table 1) that constitute 
the criteria adopted for the segmentation of the 
building stock. The resulting matrix of indicator 
values for all buildings is subjected to Multivariate 
Cluster Analysis, MCA (Hair et al., 2010), to identify 
groups of buildings with similar properties. Three 
different MCA techniques, K-means (MacQueen, 
1967), model-based (Fraley and Raftery, 2002), and 
hierarchical agglomerative (Hair et al., 2010) were 
examined towards their efficiency for the segmenta-
tion of building stock. Preliminary performance 
tests, carried out using the results of steady state 
heating demand calculations on the neighbourhood 
based on the previously derived stock representa-
tion, suggest that the representatives emerging from 
the application of the k-means method on the pre-
sented set of classification criteria, performs best in 
predicting the monthly heating energy demand of 
the neighbourhood (according to ÖNORM, 2014). 

4. The Re-Diversification Module

The re-diversification module was developed to 
reintroduce part of the diversity lost due to the 
reductive step and to obtain more realistic represen-
tations of energy demand's spatial and temporal 
distribution. Once the reductive module selects the 
representative buildings, reference simulation mod-
els are developed using EnergyPlus (2016) and 
detailed building plans. In reference models, opera-
tional parameters are represented through standard 
schedules. 
Constructions are specified according to available 
plans or the common practice of the construction 
period of the buildings. Ventilation is modelled as 
dependent on the occupants’ presence. The re-
diversification module, also developed in Python 
programming language, requires these reference 
models as an input.  
Given the extensive time and effort required for the 
acquisition of building information and generation 
of the geometric building models (Mahdavi and El-
Bellahy, 2005), the reductive module limits the 
modelling domain to a manageable (user-defined) 
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number of buildings. The re-diversification module 
readjusts a number of non-geometric parameters of 
the reference simulation models. For this purpose, 
for all buildings within the study domain, permu-
tations of the relevant reference simulation models 
are created with the modified parameters. Building 
parameters subjected to diversification include:  
- Schedules of the occupants’ presence and 

activity, lighting, and equipment use; 
- Thermal properties of building envelope; 

- Internal loads (inhabitants, equipment and 
lighting power); 

- Ventilation (air change) rates. 
 This diversification process is guided by the 
information contained in the initially generated 
building stock representation. The reference simu-
lation model is modified based on descriptive indi-
cators defined in Table 2. Simulation models gen-
erated by the re-diversification module are subject-
ed to computations with hourly resolution.  

Table 1 – Descriptive energy-related indicators of buildings' characteristics as the classification criteria by the reductive module 

Abbr. Variable Description Formula Parameters 

G
eo

m
et

ry
 

Vn Net Volume [m3] 
An indicator of the size of 
the building 

 Vn=Σ(Afeat,I . hfeat,i) . fn Afeat,i

hfeat,i

fn 

Area of footprint feature [m] 
Height of foot print feature [m] 
Net to gross volume ratio 

he Effective floor height [m] 
Ratio of the building volume 
to the floor area  

he=Vn / (Af,I . nf) Af,i 
nf 

Total floor area [m] 
Number of floors 

Ct Thermal compactness [m] 
Ratio of the net building vol-
ume to the thermally 
effective envelope area 

Ct=Vn / Ae 

Ae =Σ(Ai . ft,i) 

Ae

Ai

ft,i 

Thermally effective envelope area [m]  
Area of element [m] 
Corresponding temperature correction 
factor 

So
la

r 
G

ai
ns

 

GRe Effective glazing ratio 
Average glazing to wall ratio 
weighted by orientation and 
corrected for the shading 
effect of the surroundings 
Weights associated with 
orientations were based on 
reference climate data 

GRe=WWR . GWR . g . 
Σ(Aow,i . fo,i . SVFi)/ ΣAow,i   

WWR 
GWR 
Aow,i

fo,i

g 
SVFi 

Window to wall ratio 
Glass to window ratio 
Area of outside wall [m] 
Corresponding orientation correction 
factor 
Solar factor of glazing  
Sky View Factor near the wall 

Th
er

m
al

 Q
ua

lit
y Ue Effective average envelope 

U-value [W.m-2.K-1] 
Average u-value of the 
envelope corrected for 
adjacency relations and 
weighted by the 
corresponding areas 

 Ue = Σ(Ui . Ai . ft,i) / Ae Ui U-value of element [W.m-2.K-1] 

O
pe

ra
tio

n 
Pa

ra
m

et
er

s Ou Fraction of time the building 
is used annually 

Ou = tuse,a / ta tuse,a

ta 
Annual use hours [h] 
Total hours in a year[h] 

Igd Daily area related internal 
gains [Wh.m-2.d-1] 

Igd = Σ (qi,h . tuse,d . fi) qi,h

tuse,d

fi 

Usage-based internal gains rate [W.m-2] 
Daily use hours [h] 
Share of the usage in the overall 
building volume 

Acd Daily air-change rate [d-1] Acd = Σ(nv . tuse,d. fi) nv Usage-based hourly air-change rate [h-

1] 

4.1 Diversification of schedules 

Reference schedules suggested by standards (e.g. 
ASHRAE, 2013), represent the temporal distribution 
of internal gains in aggregate terms. Use of these 
average profiles for detailed demand assessments

on a large scale, however, will result in 
unrealistically monotonous internal load profiles 
and identical peak hours across the computation 
domain. To achieve a more realistic representation 
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of occupancy-related factors, for each building, a set 
of randomized schedule files are created, based on 
the reference schedules for various days of the 
week. To diversify each schedule, for every time 
step, the value provided by the reference schedule 
is considered as the mean of a Gaussian probability 

distribution. A default Coefficient of Variance (CV) 
is used along with the mean value to generate this 
distribution (Mahdavi and Tahmasebi, 2015). Based 
on the generated distribution for each time step, a 
value is randomly selected for the schedule. 

Table 2 – Descriptive indicators for the re-diversification process 

Abbr. Variable Description Formula Parameters 

Ue,r Effective roof/ceiling U-
value [W.m-2.K-1]  
 

Ue,r = Σ(Ui,r . Ai,r . fi,r) / Ae 
 
   

Ui,r 

Ai,r 

fi,r 

 
Ae 

U-value of roof/ceiling element [W.m-

2.K-1] 
Area of roof/ceiling element [m] 
Corresponding temperature correction 
factor 
Effective envelope area [m] (Table 1) 

Ue,f Effective floor U-value  
[W.m-2.K-1]  

Ue,f = Σ(Ui,f . Ai,f . fi,f) / Ae 
 
   

Ui,f 

Ai,f 

fi,f 

 

U-value of floor element [W.m-2.K-1] 
Area of floor element [m] 
Corresponding temperature correction 
factor 

Ue,w Effective wall U-value  
[W.m-2 .K-1]  

Ue,f = Σ(Ui,w . Ai,w . fi,w) / 
Ae 
 
   

Ui,f 

Ai,f 

fi,f 
 

U-value of wall element [W.m-2.K-1] 
Area of wall element [m] 
Corresponding temperature correction 
factor 

Igd Daily area related internal 
gains [Wh.m-2.d-1] 

 See Table 1 
Acd Daily air-change rate [d-1] 

4.2 Readjustment of internal loads and 
ventilation rates 

The diversified operational parameters (i.e. refer-
ence values for equipment and lighting power, 
number of occupants, and air change rate) are 
computed for each building such that the aggre-
gated internal gains and ventilation rates, match the 
values of the daily area-related internal gains and 
daily air change rate computed for the building.  
For this purpose, annual area-related internal gains 
are computed based on the average daily values and 
the number of annual use days provided by 
standards (e.g. ÖNORM, 2011). Similarly, the aver-
age hourly air change rate across the year is calcu-
lated. The annual value of internal gains is dis-
aggregated into occupants, lighting and equipment 
gains, based on the share of these items in contrib-
uting to the internal gains according to literature 
(e.g. Kemna and Moreno Acedo, 2014). 

4.3 Readjustment of thermal properties 

The readjustment of the thermal properties of the 
main building elements is informed by the respec-
tive effective element U-values. The buildings that 
belong to the same construction period, with dif-
ferent geometries and adjacency situations, have 
different effective component U-values.  
This diversification step modifies each simulation 
model, so that the resulting effective U-values of the 
major envelope components match the expected 
values calculated for every building. Since the 
geometry of the simulation model associated with 
every building is identical to that of the 
corresponding reference model, any deviations 
from the effective U-values of the reference building 
must be accounted for by modifying the U-values of 
the constructions in the new model. For this 
purpose, the differences between the effective U-
values of the elements of the reference building and 
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the building undergoing diversification are calcu-
lated. Subsequently, the thermal properties of the 
main constructions in the new model (external 
walls, uppermost and lowermost enclosures) are 
determined so that they reflect the deviation in 
effective U-values from those of the reference 
model. Since a modification of the thermal mass of 
the building was not intended, only the thermal 
conductivity of the main layer (massive load bear-
ing element or insulating element) is readjusted.  

5. Illustrative Example  

5.1 Case Study 

The utility of the developed computational frame-
work was tested via a case study in the city of 
Vienna, Austria (located in the centre of the city, 
featuring over 740 buildings of various usages and 
construction periods). Following data was incorpo-
rated: 
- Land Use Plan (ViennaGIS, 2015) 
- Digital Elevation Model (ViennaGIS, 2015) 
- Building Inventory (ViennaGIS, 2015) 
- Building Usage (Open Street Map, 2015) 
- Sky View Factor map generated by DEMTools 

plug-in for QGIS (Hammerberg, 2014) 
- Austrian standard: Model of climate and user 

profiles (ÖNORM, 2011) 
- Austrian standard: Principles and verification 

methods, heating demand and cooling demand 
(ÖNORM, 2014) 

- Guidelines: Energy-technical behaviour of 
buildings (OIB, 2015)  

5.2 Modelled Scenarios 

To assess the impact of the diversification process, 
predictions of the non-diversified model were 
compared with the predictions resulting from 
models with two levels of diversification. The non-
diversified model is based on the reference simula-
tion files. The first level of diversification involves 
only operational schedules. The second level in-
cludes all diversification steps introduced in the 
method (Table 3).  
 
 

Table 3 –Overview of the investigated models with various levels 
of diversification. (D: Diversified, ND: Not Diversified) 

Abbr. Schedules Thermal 
properties 

Internal 
gains 

Number of 
simulations 

NDM ND ND ND 7 

DM-1 D ND ND 744 

DM-2 D D D 744 

 
Three simple illustrative scenarios pertaining to 
changes in the operational parameters of buildings 
(occupant behaviour) were designed. The first sce-
nario follows the standard assumptions for internal 
temperature and HVAC availability hours. The 
second scenario assumes a setback heating setpoint 
for the vacant hours in non-residential spaces, 
which is closer to the actual building operation 
tendencies. The third scenario, emulating the be-
haviour of a more energy-aware population, main-
tains the setback threshold, and modifies the inter-
nal heating setpoint temperatures in proportion to 
the occupancy rate of the building in every time 
step. These scenarios were simulated with the NDS 
and DS-2 models. Table 4 provides an overview of 
the modelled scenarios. 

6. Results and Discussion 

6.1 Reductive Module 

The implementation of the reductive method for the 
case study area resulted in 7 clusters. The buildings 
representing these clusters include three residential 
buildings, two office buildings, as well as two mixed 
use residential and gastronomy building (Fig. 2). 
As mentioned before, the representational perfor-
mance of the reductive module was tested using the 
results of simplified steady state demand calcu-
lations (ÖNORM, 2014). The volume related heating 
demand of the buildings in every cluster as well as 
that of the representing building is shown in Fig. 3. 
Buildings grouped together in each cluster, feature 
similar performances. The most representative 
building performance is close to the cluster mean, 
however, the representatives of Clusters 3 and 6 
underestimate their respective categories demand. 
To investigate the representativeness of the selected 
sample, the volume-related demand of the rep-
resentative buildings along with the volume of 
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buildings in every cluster were used to predict the 
heating demand of the represented buildings. These 
predictions were compared to the standard-based 

values (Fig. 4), suggesting an acceptable building-
level predictive performance. 

Table 4 – An overview of the modelled behaviour change scenarios 

6.2 Re-Diversification Module 

The impact of the diversification process is illus-
trated for an office building in Fig. 5, where ref-
erence schedules are compared to a one-week data 
generated for one building. The generated sched-
ules maintain the overall tendencies of the reference 
schedules, but provide, due to their probabilistic 
nature, unique profiles for various buildings. The 
diversification of the schedules results in minor 
modifications in the annual peak load (+1 %) and 
the aggregated annual demand of the neigh-
bourhood (-1 %). The additional readjustment of the 
building thermal properties, internal loads, and 
ventilation rates causes more significant changes in 
model predictions (-3.4 %). 
The impact of the diversification process is magni-
fied when the observation scale is reduced. At a 
building level, the annual volume-related heating 
demand of the buildings computed by DM-2 can 
deviate by as much as 30 % from reference build-
ings, but the values predicted by DM-1 do not vary 

significantly from the reference values. If the ob-
servation scale is further reduced to a single time 
step, both DM-1 and DM-2 result in noticeable 
deviations from the non-diversified hourly predic-
tions (Fig. 6). Although unnoticeable at aggregate 
scale, such variations can have significant implica-
tions (e.g. for the design of small scale distributed 
generation schemes).  

Fig. 2 – Buildings representing the clusters emerged from apply-
ing the reductive module to the case study 

Residential Non-Residential 

S0
 Setpoint assumptions [°C] 20  20 

HVAC Availability 24 hours a day 14 hours on weekdays 

S1
 Set point assumptions [°C] 20 20 during work hours 

14 other times 
HVAC Availability 24 hours a day 24 hours a day 

S2
 

Set point assumptions [°C] 16 
16 
20 
Interpolate 

Night hours 
Occupancy rate <25 % 
Occupancy rate >55 % 
Other times 

14 
16 
20 
Interpolate 

Not working hours 
Occupancy rate <25 % 
Occupancy rate >75 % 
Other times 

HVAC Availability 24 hours a day 24 ours a day 
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Fig. 3 – Volume related heating demand of buildings in each 
cluster and the cluster representative 

Fig. 4 – Sample-based prediction of heating demand compared to 
the computed heating demand 

Fig. 5 – a. Office reference schedules according to ASHRAE 
b: One-week data of the diversified schedules generated for an 
office building 

Fig. 6 – Relative deviation of hourly demand results of all build-
ings as predicted by the DM-1 and DM-2 from NDM predictions 
for a single time step in heating period 

6.3 Scenario Modelling Results 

The results of modelled scenarios are summarised 
in Table 5. At the aggregated level, peak, mean, and 
total heating demand simulated for the base case 
assumptions (S0) change little due to the inclusion 
of a re-diversification in the modelling procedure. 
The application of the first behaviour change 
scenario does not result in the divergence of the 
tendencies of non-diversified and the diversified 
model. This is to be expected, as the modifications 
applied in this scenario are somewhat independent 
from the occupancy-related aspects (they apply only 
to non-residential spaces in non-occupied hours).  

Table 5 – Results of the behaviour change scenarios as simulat-
ed by the diversified and non-diversified computational models 

Scenarios 

A
nn

ua
l P

ea
k 

lo
ad

 

[M
W

h]
 

R
el

at
iv

e 
de

vi
at

io
n 

fr
om

 N
D

M
-S

0 
[%

] 

To
ta

l a
nn

ua
l s

pa
ce

 

he
at

in
g 

lo
ad

 [G
W

h]
 

R
el

at
iv

e 
de

vi
at

io
n 

fr
om

 N
D

M
-S

0 
[%

] 

N
on

- 

D
iv

er
si

fie
d 

M
od

el
 (N

D
M

) 

S0 153.1 0 198.35 0 

S1 128.2 -16.3 200.70 1.2 

S2 122.6 -19.9 169.14 -14.7 

D
iv

er
si

fie
d 

M
od

el
 (D

M
-2

) 

S0 151.4 -1.1 191.66 -3.4 

S1 124.5 -18.7 195.22 -1.6 

S2 111.7 -27.0 170.30 -14.1 

The differences become more visible in case of the 
second scenario. The comparison of the second 
scenario predictions of both models (NDM-S2, 
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DM-2-S2) with the respective base case predictions 
of the same models (NDM-S0, DM-2-S0) shows that 
in the non-diversified model, the application of the 
occupant-sensitive HVAC control scenario has led 
to a much larger decrease in demand than in the 
diversified model (14.7 % compared to 11.1 %). 
Moreover, the peak load predicted by the non-
diversified model is much higher than the predic-
tions of the diversified model, which provides a 
more realistic representation of the people’s pres-
ence and actions. The non-diversified model ap-
pears to overestimate annual demand reduction due 
to occupant behaviour change, while failing to 
realistically predict the impact of these improve-
ments on the peak loads. This can have major im-
plications for the design of energy infrastructure 
and sizing of distributed generation systems. 

7. Conclusion 

This contribution described an urban energy-
computing environment for urban-level change and 
intervention scenario modelling. The proposed 
"hourglass" framework entails a reductive module 
toward a sampling-based reduction of the compu-
tational domain via cluster analysis. Thus, detailed 
transient numeric simulation can be deployed to 
analyse the building thermal behaviour. Thereby, to 
more systematically capture the dynamic nature of 
the urban building stock and its transformations 
through retrofitting and densification, as well as op-
erative changes, an original set of energetically 
relevant indicators was assembled for stock seg-
mentation. The computational framework involves 
a second (re-diversification) module to partially 
reintroduce to the model diversity lost through the 
reductive procedure as well as the adoption of 
standard-based reference schedules. The utility of 
the diversification was illustrated via simple be-
haviour change scenarios. The non-diversified 
model appears to overestimate the urban-level 
consequences of occupancy-related changes in the 
system control settings, due to its unrealistic repre-
sentation of the occupants’ presence and behaviour. 
Re-diversification has the potential to ameliorate 
this circumstance, supporting thus, amongst other 
things, a more effective approach to the design and 

deployment process of urban-scale distributed 
energy networks. 
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