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Abstract 
It is well known that the calibration of building energy 

models is an under-determined problem, whether sub-

jected to hourly or monthly calibration criteria. In fact, 

while it is possible to identify a large number of calibrated 

models, it is not clear which offer a good representation of 

the building behaviour. For a calibration methodology of 

building energy models to be effective, it should automate 

and speed-up calibration processes. This is especially im-

portant when the number of model parameters is too large 

to tune manually. Moreover, when the number of model 

parameters is too large, the probability to find the real pa-

rameter combination using statistical sampling methods is 

very small. Instead, we suggest performing a guided 

search of the parameter space, e.g. solving a parameter op-

timization problem. Since Tikhonov-type regularization 

has been applied successfully to many ill-posed inverse 

problems, we propose adopting the same methodology to 

find optimal parameters for building energy models. The 

regularization term can be interpreted as imposing certain 

a-priori distributions on model parameters as identified 

by an energy audit. As an illustration, the study case of a 

residential apartment is calibrated and we show that reg-

ularization more accurately predicts the energy demand 

estimate after the retrofit of the study case. 

1. Introduction

It is well known that the calibration of building en-
ergy simulation models against the monitored en-
ergy demand, is an under-determined problem 
(Alifanov et al., 1995), whether subjected to hourly 
or monthly calibration criteria. To account for 
model uncertainty, the identification of more than 
one calibrated model is advised (ASHRAE, 2002). 
While it is possible to identify a large number of 
calibrated parameter sets, it is not clear which offer 

a reasonable representation of the real building. The 
importance of reducing parameter uncertainty in 
building energy models, lies in the increased confi-
dence in the calculation of savings for the intended 
energy conservation measures (Heo et al., 2012), as 
well as in the reliable prediction for model predic-
tive controls (Schirrer et al., 2016), to name just a 
couple of applications.  
In order to rank different calibrated models, Reddy 
et al. (2007) introduce an aggregated index incorpo-
rating a number of statistical indicators represent-
ing the agreement between simulation data and 
data reported on monthly utility bills. However, the 
calibration process can result in large standard 
deviations for certain influential model parameters. 
Caucheteux et al. (2013) calibrated an energy 
simulation model for a house based on hourly 
monitoring data. They noticed that, although the 
deviation of some influential parameters seems to 
decrease as the calibration period increases, some 
parameters can cancel each other out, thus a 
significant parameter deviation remains. 
Alternatively, Heo et al. (2012) proposed a 
probabilistic approach based on the Bayesian 
calibration of energy models to match monthly gas 
consumption values. Unlike deterministic methods, 
in a Bayesian approach a distribution function of 
each model parameter is sought, it directly provides 
the quantification of uncertainty.  
Recently, optimization-based approaches have been 
utilized in simulation model calibration (Tahmasebi 
et al., 2012), where the cost function sums up the 
discrepancy between simulation and monitoring 
data. Solving an optimization problem for a param-
eter combination which optimally matches the mon-
itored data, leads to further automatization of the 
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calibration process. However, the danger of the can-
cellation effect of two or more parameters remains. 
In this way, parameters may also reach the bounda-
ries of the predefined parameter range, thus taking 
on less plausible values.  
Regularization has already been successfully 
applied to many ill-posed inverse problems includ-
ing the calibration of financial market models 
(Crépey, 2003), geophysical models (Zhdanov, 
2002), and even in meteorology and oceanography 
(Navon, 1998). We propose adopting the Tikhonov-
type regularization to find optimal parameters for 
building energy models. When regularization is 
applied, priority is given to those solutions which 
are ranked closer to the modeller’s initial guess. 
In Section 2 we introduce the proposed methodol-
ogy, and its application to a residential building 
apartment is presented in Section 3. Finally, the con-
clusion and the discussion on further research are 
given in Section 4. 

2. Calibration Methodology

The goal of developing an effective calibration 
methodology for building energy models is to auto-
mate and speed-up the calibration process, which is 
especially convenient when the number of model 
parameters is too large to tune manually. In the lit-
erature, there is a clear consensus that the first phase 
of the calibration procedure consists in an energy 
audit of the building and the acquisition of monitor-
ing data, followed by an initial model development 
and the identification of uncertain model parame-
ters (Coakley et al., 2012; Raftery et al., 2011). In the 
second stage, the dimension of the parameter space 
is typically reduced using a sensitivity analysis, and 
the calibration criteria are chosen (and potentially 
the validation criteria) based on the acquired moni-
toring data and the simulation results of the initial 
model (Fig. 1). However, a number of different 
methods for the final calibrated energy model(s) 
identification are used in the literature. Not all in-
clude a validation step. In earlier approaches, the 
parameters were tuned manually, based on the ex-
pertise of the modeller. This process was later 
automatized, mostly using the statistical sampling 

of the parameter space to evaluate different param-
eter combinations. 

Fig. 1 – Typical building energy model calibration procedure 

The calibration process can be further automatized 
using a guided search (e.g. optimization algorithm) 
to directly identify optimal parameter combi-
nations. In the rest of this chapter, we present a re-
gularization-augmented optimization-based ap-
proach to building energy model calibration. This 
approach aims at reducing the model uncertainty 
that arises from common practice. 

2.1 Parameter Space and Probability 
Distribution 

We assume we have an initial simulation energy 
model of the building, and that the number of model 
parameters was reduced by sensitivity analysis. Let 
𝑝𝑝 = (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛) ∈ ℝ𝑛𝑛 be the model parameter vector, 
where 𝑝𝑝𝑘𝑘 ∈ [𝑝𝑝𝑘𝑘

𝑚𝑚𝑚𝑚𝑛𝑛,𝑝𝑝𝑘𝑘
𝑚𝑚𝑚𝑚𝑥𝑥 ] lies in the realistic range

chosen by the modeller based on an energy audit 
and/or various datasheets on material properties, 
internal gains, etc.  

Fig. 2 – Parameter distribution and penalty function 
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Parameter ranges should be chosen wide enough to 
include all plausible values for the given case, even 
if their probability is low. We also assume that for 
some parameters it was possible to give an initial 
guess 𝑝𝑝𝑘𝑘0 as well as choose an a-priori probability 
distribution function. For example, the normal dis-
tribution  𝑝𝑝𝑘𝑘~ 𝑁𝑁�𝑝𝑝𝑘𝑘0,𝜎𝜎𝑘𝑘� can be assumed (Fig. 2), 
where a modeller provides an appropriate deviation 
estimate  𝜎𝜎𝑘𝑘. The higher the certainty of the initial 
guess 𝑝𝑝𝑘𝑘0, the lower the deviation 𝜎𝜎𝑘𝑘. 

2.2 Optimization Problem 

In order to identify the parameter vector p that fits 
the monitoring data, a constrained optimization 
problem is defined to minimize the error between 
the monitored and simulated energy demand: 

min 𝐽𝐽(𝑝𝑝),   where 𝑝𝑝𝑘𝑘 ∈  [𝑝𝑝𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛,𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 ] (1) 

In order to optimally represent the building under 
consideration, the cost function should also include 
an a-priori knowledge on the parameter probability. 
Hence, the cost function 𝐽𝐽(𝑝𝑝) is designed as summa-
tion of the cumulative absolute simulation error for 
temperature and heating demand, and a regulariza-
tion term representing penalization depending on 
parameter probability: 

𝐽𝐽(𝑝𝑝) =  ∑ �𝑤𝑤𝑇𝑇�𝑇𝑇𝑗𝑗𝑚𝑚 −  𝑇𝑇𝑗𝑗𝑠𝑠�𝑁𝑁
𝑗𝑗=1 + 𝑤𝑤𝑄𝑄�𝑄𝑄𝑗𝑗𝑚𝑚 −  𝑄𝑄𝑗𝑗𝑠𝑠�� +

 ∑ 𝑤𝑤𝑘𝑘𝑁𝑁
𝑘𝑘=1  𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘(𝑝𝑝𝑘𝑘). (2) 

Here, 𝑇𝑇 and 𝑄𝑄 denote indoor air temperature and 
cumulative heating demand, respectively. Super-
scripts m and s represent measured and simulated 
values respectively, and subscript j denotes the cor-
responding value at the jth time step. Since scales for 
the temperature and heat demand vary largely, the 
corresponding error terms should be balanced using 
appropriate weights 𝑤𝑤𝑇𝑇 and  𝑤𝑤𝑄𝑄. However, since 
the goal of the calibration is to accurately predict the 
heating demand, the corresponding error should 
still be dominant. Adding a regularization term can 
be interpreted as imposing certain a-priori distribu-
tions on model parameters. Here  𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘(𝑝𝑝𝑘𝑘) and 𝑤𝑤𝑘𝑘 
denote the penalty function and weight for each pa-
rameter 𝑝𝑝𝑘𝑘. The penalty term 𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘 should increase 
as |𝑝𝑝𝑘𝑘 −  𝑝𝑝𝑘𝑘

0| increases, i.e. when parameter 𝑝𝑝𝑘𝑘 takes
less probable values. For this reason let 

𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘(𝑝𝑝𝑘𝑘) =   𝑓𝑓�𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘(|𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑘𝑘0|) (3) 

such that  𝑓𝑓�𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘 ∶  ℝ+ → ℝ+ is a monotonically
increasing function. Hence, it could be defined as 
(Fig. 2): 

𝑓𝑓𝑝𝑝𝑝𝑝𝑛𝑛,𝑘𝑘(𝑝𝑝𝑘𝑘) = 1
�2 𝜎𝜎𝑘𝑘2

�1 −  𝑒𝑒
− 

(𝑝𝑝𝑘𝑘− 𝑝𝑝𝑘𝑘
0)2

2 𝜎𝜎𝑘𝑘
2 �. (4) 

Since the penalty term not necessarily needs to be 
defined as a weighted norm, it represents a general-
ization of the Tikhonov regularization. The problem 
(1) can be observed as a multi-objective optimiza-
tion problem, where a trade-off is made between 
minimizing the simulation error and maximizing 
the parameter probability. 

3. Study Case Model Calibration

In this section, the methodology introduced in Sec-
tion 2 is illustrated on a residential building apart-
ment model. The presented results offer evidence of 
regularization benefits on the retrofit prediction and 
model parameter estimation. 

3.1 Study Case Description 

The residential building under consideration is lo-
cated in the south of Madrid, Spain. Built in the 
1960s, with poorly fitted windows, no insulation 
and cracks around doors, windows, and founda-
tions, it was deemed suitable for retrofit. On the 
eastern side, it is attached to a twin residential 
building (Fig. 3).  

Fig. 3 – Study case residential building 
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Each block contains five 50 m2 apartments. The 
study case apartment is located in the west block on 
the last floor (Fig. 4).  
It used a gas boiler with five water radiators for the 
heating in winter and a split unit for the cooling in 
summer. Monitoring data is available for one year 
before the retrofit (September 2014 –– September 
2015), and two months after the installation of new 
windows and insulation layers on the envelope 
(January 2016 – March 2016).  
The acquired real-time data with 15 min samplings 
include internal (IAT) and external (EAT) tempera-
tures, global solar radiation, CO2 concentration, and 
electric consumption. A heat meter on supply and 
return pipes of the gas boiler was also installed to 
monitor the heating energy. The heating demand at 
each time step is easily calculated as the increase in 
the measurement of heating energy. The internal 
temperature of the apartment below was monitored 
as well, but not the one of the apartment adjacent on 
the eastern side.  

Fig. 4 – Front view 

3.2 Initial Building Energy Model 

The initial energy model for the whole building was 
developed in the dynamic environment of TRNSYS 
Simulation Studio (Klein et al., 2010), where the 
building geometry was developed in Google 
SketchUp and set up in TRNBuild. The model is 
based on the information provided by the energy 
audit (Garcia et al., 2014), including building plans, 

envelope structure, openings, air tightness, internal 
partitions, shading elements, and occupancy. Each 
apartment is divided in two thermal zones, north 
and south oriented (see Fig. 5). Since the heating 
setpoint of the apartment is unknown, we assume 
an ideal heating. An infiltration coefficient is used 
when the windows are closed, and another when 
windows are open. Internal heat gains from 
occupants and equipment are included, where 75 
W/person is assumed and heat gain from electric 
appliances is estimated based on real-time electric 
meter measurements and guidelines by ASHRAE 
(1985). The shading model is based on an on/off 
differential controller that takes into account the 
indoor air temperature and solar irradiance at each 
window according to its orientation. Shading is 
activated when both indoor temperature and solar 
irradiance on horizontal plane exceed a certain 
threshold. The threshold for the temperature 
controller is equal to the calibration parameter 𝑝𝑝4, 
and 250 W is chosen for the solar irradiance 
controller. The external shading factor is the 
calibration coefficient 𝑝𝑝3 taken to be the same for all 
windows in the apartment. The new control value 
for each controller is the output control signal from 
the previous time step, by introducing a hysteresis 
effect. Therefore, both lower and upper deadband 
for the difference between actual and threshold val-
ues, also need to be defined. These deadbands are 
chosen to be -0.5 °C and 0.5 °C for the temperature 
controller, and -50 W and 0 W for the solar radiation 
controller. The shading activation is an adaptation 
of the controller values defined by Dott et al. (2013). 

Fig. 5 – Building cross-section 

The sensitivity analysis was performed using the 
Morris method (Saltelli, 2008), and significant 
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model parameters for the energy demand assess-
ment were identified (Table 1). 

Table 1 – Significant model parameters 

Parameter Description [Unit] 

𝑝𝑝1 Internal temperature of the adjacent 
apartment [°C] 

𝑝𝑝2 Occupancy multiplication factor [-] 

𝑝𝑝3 Shading factor [-] 

𝑝𝑝4 Shading activation temperature [°C] 

𝑝𝑝5
Infiltration with windows closed 
[ACH] 

𝑝𝑝6
Total infiltration and ventilation with 
windows open [ACH] 

𝑝𝑝7
Conductivity of the concrete layer in 
the external walls [W/(m K)] 

𝑝𝑝8 
Conductivity of the concrete layer in 
the internal partitions, floors and ceil-
ings [W/(m K)] 

𝑝𝑝9 Conductivity of the concrete layer in 
the roof [W/(m K)] 

𝑝𝑝10 Window U-value [W/(m2 K)] 

The outcome shows that the IAT of the adjacent 
apartments (𝑝𝑝1) has a strong influence on the heat 
demand. Parameter 𝑝𝑝2 represents the correction fac-
tor for the assumed occupant’s heat gain. In addi-
tion, the parameters of the shading model (𝑝𝑝3, 𝑝𝑝4) 
are mostly significant in the summer and swing pe-
riod. Infiltration parameters (𝑝𝑝5, 𝑝𝑝6) turn out to 
have a strong effect on both IAT and heat demand, 
as expected. To account for possible errors in layer 
description of the external and internal walls, floor 
and roof, and the fact that walls are reinforced, we 
have included the conductivity of the concrete as 
uncertain model parameters (𝑝𝑝7, 𝑝𝑝8 and  𝑝𝑝9). Pa-
rameter 𝑝𝑝10 represents the windows U-value. Since 
for a number of apartments in the building, addi-
tional windows were already installed, we want to 
prove our hypothesis that the monitored apartment 
has double windows. As an initial point, minimum 

and maximum values of each parameter were de-
fined (Table 2), based on the energy audit and by 
consulting various standards and datasheets.  

Table 2 – Parameter range and initial guess 

Parameter 𝑝𝑝𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛 𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥 𝑝𝑝𝑘𝑘0  𝜎𝜎𝑘𝑘 

𝑝𝑝1 17.6 24.6 18.6 - 

𝑝𝑝2 0.5 2 1 0.3 

𝑝𝑝3 0 1 0.5 - 

𝑝𝑝4 22 32 25 - 

𝑝𝑝5 0.15 0.75 0.4 0.6 

𝑝𝑝6 0.4 5.2 3 - 

𝑝𝑝7 0.8 2.5 1.13 0.35 

𝑝𝑝8 0.8 2 1.13 0.35 

𝑝𝑝9 0.8 2 1.13 0.45 

𝑝𝑝10 2.74 5.68 2.83 - 

In particular, the initial guess for the infiltration pa-
rameter (𝑝𝑝5) is based on the blower-door test which 
was performed during the energy audit (Table 3).  

Table 3 – Blower-doors test results 

∆𝐹𝐹 [Pa] Flow [m3/h] ACH 

20 200 2.0 

30 276 2.8 

50 382 3.9 

65 471 4.7 

The airflow through the building envelope and the 
pressure difference across it are known to have the 
following relationship (Sherman, 1987): 

𝑞𝑞 = C (∆P)𝑛𝑛 (5) 

Here ∆𝐹𝐹 is the induced pressure difference (in Pa), 𝑞𝑞 
is the airflow through the building envelope (in 
m3/h), and 𝐴𝐴 is the air leakage coefficient. To deter-
mine the parameters 𝑛𝑛 and 𝐴𝐴, the least-square tech-



Maja Miletić, Chiara Dipasquale, Roberto Fedrizzi 

180 

nique is applied to the blower-door test results fol-
lowing ISO standard (ISO/TC 163/SC 1, 2015). The 
reached values 𝑛𝑛 = 0.67 and 𝐴𝐴 = 260 have a stand-
ard deviation estimate 0.02 and 3 respectively, 
and 𝑟𝑟2 = 99.7 %. In order to estimate the average air 
infiltration, stack-dominated and wind-dominated 
components are evaluated separately (Klems, 1983). 
From one year measurement data, the average in-
door air temperature, the temperature difference 
between the indoor and external air, and the air den-
sity were obtained and used to calculate the average 
stack effect pressure difference to be  ∆𝐹𝐹𝑠𝑠𝑝𝑝 = 1.03 Pa. 
From the meteorological data, the average wind 
speed in Madrid is estimated to be 2 m/s, implying 
a wind pressure difference equal to  ∆𝐹𝐹𝑤𝑤 = 1.23 Pa. 
Hence, the stack effect air infiltration and the infil-
tration due to the wind are equal to 0.3 ACH and 
0.27 ACH respectively, which implies an infiltration 
rate of 0.4 ACH (Klems, 1983). The occupancy mul-
tiplication parameter 𝑝𝑝1 is estimated to be equal one, 
where we assume that 75 W/person provided by 
ASHRAE (1985) is a well-studied approximation. 
The conductivity of the concrete found in the walls, 
floors and partitions (𝑝𝑝8, 𝑝𝑝9 and 𝑝𝑝10) is provided by 
the refurbishment architect during the energy audit 
(Garcia et al., 2014). These initial guesses are consid-
ered reliable and are assigned a divergence factor. 
The corresponding penalty is added to the cost func-
tion of the optimization problem. The window 
U-value and the shading coefficient are estimated 
with less certainty by inspecting the windows and 
the indoor temperature. Since ventilation rates with 
open windows (𝑝𝑝6) cannot be easily estimated, a 
wide parameter range was chosen and the approxi-
mate mean value was selected as the initial guess. 
Initial guesses that are not reliable are not included 
in the regularization term. 

3.3 Calibration and Validation Procedure 

The monitoring data was divided into three periods: 
the calibration period (September 11, 2014–January 
31, 2015), and the validation period before (Febru-
ary 01, 2015–April 12, 2015) and after the renovation 
(January 21, 2016–March 29, 2016). Opening of the 
windows and occupancy in the apartment were 
identified on the basis of CO2 levels. Measured IATs 
were set as the heating setpoint in the monitored 

apartment and for the apartment below. However, 
the IAT measurement is not available for the 
apartment adjacent on the eastern side, which is 
therefore treated as an unknown model parameter 
(𝑝𝑝1). Although the whole building is simulated, the 
results for the monitored apartment were 
considered just in the cost function. The heating 
demand and the average indoor air temperature 
during the heating season are summarized in 
Table 4. 

Table 4 – Monitoring data summary 

Period Heat demand 
[kWh] 

Average heating 
IAT [°C] 

Calibration 3755 21.91 

Validation 1 2252 21.76 

Validation 2 1222 22.62 

Since the ideal heating is assumed and the IAT is 
taken as the setpoint, the temperature error is 
negligible in the heating periods. Therefore, it is 
included in the cost function only when there is no 
heating. Used weight coefficients are 𝑤𝑤𝑇𝑇 = 0.65 
and 𝑤𝑤𝑄𝑄 = 5.7𝑒𝑒 − 3, in order to approximately 
achieve a 1:4 ratio between temperature and energy 
demand error. For a regularized solution 𝑤𝑤𝑘𝑘 = 100 
is taken. As soon as the optimization problem was 
solved, the models were validated on a new set of 
monitoring data. Since the average measured 
heating power was 1.9 kW, the sensor resolution of 
the heating demand (1 kWh) was not suitable to take 
into consideration the normalized mean bias (NMB) 
and the coefficient of variation of root mean square 
error (CVRMSE) on an hourly basis. Instead, the 
daily NMB and CVRMSE were reported. The 
recommended calibration criteria per ASHRAE 
(2002) for hourly values are NMB ≤±10 % and 
CVRMSE ≤30 %, and NMB ≤±5 % and CVRMSE 
≤15 % for monthly data. However, according to the 
knowledge of the authors, there are no standard cri-
teria for daily values. Hence, as daily criteria we use 
a combination of ASHRAE defined criteria: NMB 
≤±5 % and CVRMSE ≤15 % for calibration, and NMB 
≤±5 % and CVRMSE ≤30 % for validation. For model 
validation after the renovation, models were 
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adapted to include new windows, the correspond-
ing infiltration parameter and insulation layers, as 
specified in the manufacturers’ datasheets. 

3.4 Regularized and Non-Regularized 
Solution 

Hybrid algorithm combining Particle Swarm opti-
mization and Hooke-Jeeves optimization algo-
rithms from GenOpt (Wetter, 2009) were used to 
solve the optimization problems. Regularized and 
non-regularized solution models were obtained us-
ing the same algorithm parameters and the initial 
parameter set, solving optimization problem (1), 
where the cost function (2) in the former case in-
cludes also the regularization term. The obtained 
parameter sets are reported in Table 5. Both models 
yield zero shading since otherwise the simulated 
IAT would be much lower than monitored. How-
ever, four parameters of the non-regularized model 
reach boundary values of the pre-defined parameter 
range. For example, when the windows are open in-
filtration reaches minimal 0.4 ACH, thus 
contradictory since it is smaller than the infiltration 
with windows closed (0.62 ACH).  

Table 5 – Calibrated model parameters 

Parameter Regularized Non-regularized 

𝑝𝑝1 18.08 18.6 

𝑝𝑝2 1.25 2 

𝑝𝑝3 0 0 

𝑝𝑝4 28 30 

𝑝𝑝5 0.35 0.62 

𝑝𝑝6 1.46 0.4 

𝑝𝑝7 1.13 0.88 

𝑝𝑝8 1.51 1.99 

𝑝𝑝9 1.13 1.99 

𝑝𝑝10 2.74 2.74 

We also note that the conductivity of the concrete in 
internal partitions and roof also reaches the 
maximum value of the interval. Compared with the 

regularized solution, these values are significantly 
larger and result in larger transmission losses 
through the roof. And also, a larger infiltration when 
windows are closed results in a larger infiltration loss 
compared to the regularized solution. These losses 
are counterbalanced by a higher gain from the 
occupants (150 W/person, maximum value), a 
reduced infiltration when windows are closed, and 
less transmission losses through external walls. The 
parameters of the non-regularized model that reach 
minimum or maximum values represent possible, 
but highly unlikely, scenarios. Table 6 summarizes 
the calibration results for both models. Both models 
satisfy the calibration criteria. Also the average 
absolute error (AAE) for cumulative heat demand 
and temperature calculated at 15-minute intervals is 
considered. 

𝐴𝐴𝐴𝐴𝐸𝐸 𝐻𝐻𝑒𝑒𝑚𝑚𝐻𝐻 =  
∑ |∫ (�̇�𝑄𝑠𝑠− �̇�𝑄𝑚𝑚) dt |𝑡𝑡𝑘𝑘

𝑡𝑡0
𝑚𝑚
𝑘𝑘=1

𝑛𝑛
100

∫ �̇�𝑄𝑚𝑚 dt𝑡𝑡𝑚𝑚
𝑡𝑡0

(6) 

𝐴𝐴𝐴𝐴𝐸𝐸 𝑇𝑇𝑒𝑒𝑚𝑚𝑝𝑝 =  ∑ |𝑇𝑇𝑘𝑘
𝑠𝑠−𝑇𝑇𝑘𝑘

𝑚𝑚|𝑚𝑚
𝑘𝑘=1

𝑛𝑛
  (7) 

�̇�𝑄𝑠𝑠𝑖𝑖𝑚𝑚 and �̇�𝑄𝑚𝑚𝑝𝑝𝑚𝑚 are simulated and measured heating 
power. Average absolute heating demand error 
amounts to 0.45 % and 0.34 % of the total measured 
heating energy demand (3755 kWh, see Table 4) for 
the regularized and non-regularized solution. 

Table 6 – Calibration error (Sep 11, 2014 – Jan 31, 2015) 

Regularized Non-regularized 

NMB -0.85 -0.47 

CVRMSE 9.57 10.3 

AAE Heat [kWh] 11.64 12.6 

AAE Temp [°C] 1.24 1.09 
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Table 7 reports the error for both solutions in the 
validation period before the renovation. 

Table 7 – Pre-renovation (Feb 01, 2015 – Apr 12, 2015) 
validation results 

Regularized Non-regularized 

NMB -3.97 -3.53 

CVRMSE 22.38 22.98 

AAE Heat [kWh] 82.12 78.09 

AAE Temp [°C] 0.92 0.82 

The total measured heating demand for the 
validation period reads 2252 kWh, and the values 
predicted by the regularized and the non-regularized 
solution are 2150 kWh and 2157 kWh, which repre-
sents under-prediction of 4.44 % and 4.22 % respec-
tively. 
Both models satisfy the validation criteria. The 
regularized solution has a slightly better 
performance with respect to NMB and CVRMSE, 
while the non-regularized solution has lower 
average absolute errors. The model predictions for 
the post-retrofit period are given in Table 8. The 
total monitored heating demand in that period is 
1222 kWh. The predictions obtained by regularized 
and non-regularized solution read 1173.8 kWh and 
1099 kWh, hence the models under-predict the 
demand by 3.9 % and 10.1 %, respectively. The 
regularized solution yields a better estimate of the 
building energy demand after the renovation. The 
non-regularized solution underestimates the 
heating demand by over 10 % because it 
overestimates the occupant internal gain, while it 
underestimates the infiltration losses. 

Table 8 – Post-renovation (Jan 21, 2016 – Mar 29, 2016) 
validation results 

Regularized Non-regularized 

NMB -3.66 -10.1 

CVRMSE 25.3 29.9 

AAE Heat [kWh] 19.66 47.9 

AAE Temp [°C] 0.89 0.76 

4. Discussion and Further Research

We have illustrated how calibrated and validated 
building models do not necessarily provide good 
renovation savings estimates. The parameter opti-
mization method for complex building energy mod-
els presented in this work aims to reduce the 
parameter uncertainty and thus the prediction error 
by utilizing regularization. The proposed method is 
in general useful when the number of model param-
eters is large, since the chances to perform a good 
search of the parameter space by using statistical 
sampling, is small and the model uncertainty 
increases. The performance of a guided search of the 
parameter space instead is advantageous, e.g. it 
solves a parameter optimization problem. 
This work also highlights the importance of a good 
preliminary estimation of the building parameters; 
otherwise, unrealistic parameter combinations may 
emerge as optimal in the calibration phase. 
The success of the regularization strongly depends 
on the choice of the penalty weight in the cost func-
tion. How to optimally choose this value has not 
been considered here and is a topic for further 
research. A possible approach is to address (1) as a 
multi-objective optimization problem and evaluate 
different Pareto optimal solutions. Finally, although 
only the heating demand was considered, this 
method naturally extends to the calibration of the 
models with respect to both the heating and the 
cooling demand. 
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Nomenclature 
Symbols 

𝐴𝐴 Air pressure leakage coefficient 
𝑓𝑓𝑘𝑘(𝑝𝑝𝑘𝑘) Penalty function for kth parameter 
𝐽𝐽(𝑝𝑝) Cost function 
𝑛𝑛 Air pressure exponent coefficient 
𝑝𝑝𝑘𝑘 kth model parameter  
𝑝𝑝 Parameter vector 
𝑞𝑞 Air flow through building envelope 
𝑄𝑄 (Cumulative) Heating demand 
�̇�𝑄 Heating power 
𝑇𝑇 Indoor Air temperature 
𝑤𝑤𝑘𝑘 Weight for kth parameter 𝑝𝑝𝑘𝑘 penalty 

function 
𝑤𝑤𝑄𝑄 Weight for heating demand error 
𝑤𝑤𝑇𝑇 Weight for temperature error 
∆𝐹𝐹 Induced pressure difference 

Subscripts/Superscripts 

𝑗𝑗 Value at the jth time step 
𝑚𝑚 Monitored value 
𝑠𝑠 Simulated value 
𝑠𝑠𝑒𝑒 Stack-effect dominated value 
𝑤𝑤 Wind dominated value 
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