
217

OpenBPS: A New Building Performance Simulation Tool
Livio Mazzarella – Politecnico di Milano – livio.mazzarella@polimi.it
Martina Pasini – Politecnico di Milano – martina.pasini@polimi.it

Abstract
A new generation building energy performance simula-

tion program, OpenBPS™, is currently under develop-

ment. It overcomes some of the drawbacks typical of many

of the popular building energy simulation programs

around the world. This Building Performance Simulation

Tool is primarily a set of libraries dedicated to building

energy analysis and performance simulation, which can be

included in any user-oriented interface or commercial

software that aims to perform such analysis. The basic goal

of the project is to provide a robust, validated, and high-

performing calculation engine that can be shared, and

grow with the contribution of a community of developers

and users. To maximize its possible deployment and to

facilitate its development and extension by a growing

community, it has been built as an open source cross-plat-

form (Windows, Mac, and Linux) software library. For this

reason, OpenBPS™ will be distributed under a Copyleft

Software License (EUPL) and is coded with a cross-plat-

form object oriented programming language, C#, which is

an open source language for .NET Framework based on

ECMA standards. The main features of this tool are the

object-oriented modelling of physical phenomena and

building and HVAC system components, the native code

parallelization to take advantage of multi-thread/multi-

core processors today available, the multi-scale calculation

time step (each object can work using its own time step,

scaling down or up with respect to the chosen simulation

time step), etc. Not only the technical systems are

described and simulated modularly, being their compo-

nents objects, but also the building fabric is natively mod-

ular. Any building envelope component is an object that

interacts with other objects, which represent the world

around it (air node included). This allows the use of dif-

ferent modelling approaches for different wall compo-

nents during the same simulation (linear, non-linear, with

phase-change, ventilated, etc.). The input and output data

structures are tailored to facilitate third party integration

with high efficiency, using today’s technologies. Other

planned capabilities include multi-zone airflow simula-

tion and dynamic models for HVAC system components.

1. Introduction

Over the last years at the Technical University of
Milan (Politecnico di Milano), a research group has
been working on developing a “next generation”
building energy performance simulation tool. In
2009 a preliminary research project, carried out
through a Ph.D. work (Pasini, 2009), traced the route
to the re-conceptualisation and development of an
object-oriented model for the simulation of the
building system (Mazzarella and Pasini, 2009). The
main idea was to combine the power of the object-
oriented programming languages today available
with the object-oriented nature of a building. In
developing the tool, great care has been taken in its
design to ensure modularity and maintainability
through an open source (OS) development
approach. The development methodology was itself
part of the development work, aimed at creating a
common framework for a community of developers
able to manage the complete software development
lifecycle (Mazzarella and Pasini, 2015a). Code vali-
dation was then a second key point along the devel-
opment of the tool: both analytical and comparative
tests have been employed to assess the quality of the
implemented algorithms. The first results of a com-
parative validation done on such tool, following the
BESTEST standard, have been presented at the 2013
IBPSA International Conference (Mazzarella and
Pasini, 2013). Some other comparative tests between
different numerical solutions of the heat conduction
differential equation have been presented at the 6th
International Building Physics Conference, IBPC
2015 (Mazzarella and Pasini, 2015b). Most of the

Part of
Pernigotto, G., Patuzzi, F., Prada, A., Corrado, V., & Gasparella, A.
(Eds.). 2018. Building simulation applications BSA 2017. bu,press.
https://doi.org/10.13124/9788860461360

https://creativecommons.org/licenses/by-sa/4.0/

Livio Mazzarella, Martina Pasini

218

work has since been documented in technical
reports, which will be made available with the tool
in the future. Since part of the developing work was
financed by Regione Lombardia, the final decision,
about how to deploy and support it, is still pending.
The name of the tool has already been chosen and is
OpenBPS (Open Building Performance Simulator).
This paper describes the structure, features, and
capabilities of OpenBPS.

2. What is OpenBPS

OpenBPS is a new building performance simulation
program primarily designed as an open source
cross-platform (Windows, Mac, and Linux) soft-
ware library. It is a simulation engine and there is
no formal user interface. For developing and testing
purposes, a simple GUI is provided, which is able to
import building geometry provided by the Open-
Studio plug-in for SketchUp or to directly import
projects defined through EnergyPlus input files
(.idf), although not yet fully implemented. It is
coded from scratch with a cross-platform object ori-
ented programming language, C#, which is an open
source language for .NET Framework based on the
ECMA standards. This language has easily allowed
native code parallelization to take advantage of
multi-thread/multi-core processors today available.

2.1 Object Oriented Code

One of the main goals for OpenBPS is to create an
enhanced modular structure that facilitates adding
new features and allows the library to be used by
any hosting program. An object-oriented program-
ming language, as C#, was selected to achieve this
goal because it:
- is a rich implementation of the object-oriented

paradigm, which includes encapsulation,
inheritance, polymorphism, and method over-
riding;

- is an easy and efficient object oriented lan-
guage: developers can translate their
ideas/algorithms to solve complex problems
more easily than with C++;

- is one of the leading languages which works on
cross-platform using .NET framework: it is

available in Windows, Linux and MacOS oper-
ating systems;

- is more type safe than C++; the only implicit
conversions by default are those that are con-
sidered safe, such as widening of integers; the
managed memory cannot be explicitly freed; it
is instead automatically garbage collected;

- may produce applications that run as fast as
C++ applications, using the Just In Time (JIT)
compiler, which can finely tune code optimiza-
tion on the running machine hardware;

- is today a standard and open-source program-
ming language (ECMA-334 and ISO/IEC
23270:2006).

An object-oriented structure is natively modular
and simplifies the reuse of pieces of code through
the concept of class inheritance. Different kinds of
objects often have a certain amount of “attributes”
and “behaviours” in common with each other.
Phase-change walls, breathing walls and ventilated
walls, for example, all share the characteristics of
walls (geometry, layers composition, orientation,
etc.). Yet each also defines additional features that
make them different: phase-change walls have
phase-change material properties to account for
together with nonlinear performance; breathing
walls have additional properties like porosity and
their solver has to account for advection through the
wall porous material; ventilated walls have addi-
tional channel properties which account for inner
wall mass forced/natural ventilation. Object-ori-
ented programming allows classes to inherit com-
monly used states and behaviours from other clas-
ses. In this example, Wall is the superclass of the clas-
ses “phase-change walls”, “breathing walls”, and
“ventilated walls”.
Objects are class instances. For instance, the class
“Building” describes the concept of what a building
is. When the class “Building” is specified, by load-
ing specific data, the object, “Building-XYZ” is built,
representing a particular instance of the class Build-
ing.

OpenBPS: A New Building Performance Simulation Tool

219

Fig. 1 – Enhanced modular structure of OpenBPS based on the
building’s object-oriented descriptions

The object-oriented structure helps parallel calcula-
tions at the object’s management level. Since each
wall in a building is a separate object, at each time
step its performance can be calculated in parallel to
other walls (how many depends on how many
CPUs are available) (Mazzarella et al., 2014). Also,
the object-oriented approach naturally allows the
use of different integration time steps inside each
object and lets them optimize their performances
regardless of the global simulation time step
imposed by the user.

2.2 OpenBPS Structure

The enhanced modular structure of OpenBPS,
shown in Fig. 1, follows a hierarchical organization,
with the “Building” class at the top, hierarchically
encapsulating all the instances of the other classes
that contribute to its definition. To implement such
structure in a manageable code, OpenBPS has been
developed inside MS Visual Studio development
framework, and is organized in a “Solution” that
contains all the necessary elements to build its exe
code, debug, and test, or continue its development.
This Solution comprises several “projects” that have
been created to manage different aspects of software
development, according to the modular nature of
the whole project. As shown in Fig. 2, there are
seven projects in the solution, each of them with a
specific functionality:
- GUI, the executable project containing a simple

user interface provided for developing and
testing purposes only;

- ExtendedMath, a dll (dynamic link library)
project containing the math algorithms used for
simulation;

- SimulationManager, a dll project containing the
simulation manager implementation;

- SimulationComponents, a dll project containing
the description of the building system
components;

- InputOutputUtilities, a dll project containing the
tools for the management of inputs and
outputs;

- ModelingProject1, an executable project that
supports the development stage by checking
for interdependence among code components,
and assessing if they comply or not with
predefined dependency rules;

- TestProject1, an executable project that im-
plements a set of automatized tests with known
solutions to verify code integrity after code
modifications.

Fig. 2 – OpenBPS Solution modular structure

2.3 Simulation Management

Among the four main libraries, which constitute the
simulation engine of OpenBPS, the
SimulationManager dll project, contains the
Simulator code. This is the top-level object that
manages the simulation, controlling the interactions
among all the objects constituting the building. Due

Livio Mazzarella, Martina Pasini

220

to the object-oriented nature of the whole code, the
components management is handled via iterations
until convergence is reached inside each global
simulation time step. This approach allows
separating the global simulation time step (the time
step the Simulator uses to update its information)
from each local time step any single object may use.
In this way, it is also possible to implement in each
object strategies to prevent the user to force such
component to work with an inconsistent time step
(in respect to the characteristic time of that
component). Basically, the Simulator organizes and
synchronises the work of all objects, instructing
them to take actions such as initialize, simulate,
export results, etc. It can manage from sub-hourly
up to several-hour time steps over a simulation
period ranging from a day to several years.
The simulation manager that concentrates in one
object all management rules, allows:
­ to better define the priorities in objects

execution;
­ to allocate the parallelization to a specific group

of objects, which can benefit more than others
of such technique;

­ to consistently control the work flow;
­ to easily add new classes and objects.
In Fig. 3 a simplified scheme shows how the parallel
calculations are applied to the building: a first
parallelization is applied among zones, given the
priority of some calculations at their level, and a
second parallelization is applied among all the other
simulation components involved in the calculation.

2.4 Energy and Mass Balance

The underlying building thermal zone calculation
method in OpenBPS is an integral enthalpy balance
model in which room air is modelled under the fully
mixed assumption, i.e. with the assumption of
uniform temperature throughout the room space
(Mazzarella, 2013). The object-oriented structure of
OpenBPS of course allows more detailed room air
convection calculations, such as CFD or zonal
methods, which can be added in a future
development. The “sensible” part of the enthalpy
balance constitutes the so-called “air node”
ordinary differential equation, here simply referred
to as the Air-Node object.

The Air-Node object deals with various advective
mass flows such as ventilation air, exhaust air, and
infiltration, other than the convective heat transfer
with the room surfaces (walls, windows, ceilings,
and floors), assumed with uniform surface
temperature. It accounts for the thermal capacity of
room air and evaluates direct convective heat gains
from people and equipment.
The heat transfer through each building fabric
component, here simply called Partition,
determines the room surface temperatures used in
the Air-Node object to calculate the convective heat
transfer. The Partition class allows different solvers
to integrate the second-order differential equation
that describes the diffusive heat conduction: finite
difference method, conduction transfer functions
and harmonic quadrupole (for comparison tests
purposes). Any Partition object can use a different
solver when a simulation is run, according to its
needs (i.e. one wall can be modelled using finite
difference explicit scheme, another full implicit, and
another one conduction transfer function).
The long wave internal radiative heat transfer
among room surfaces is modelled using the Grey
Body Model based on mutual radiation factors,
which can be calculated at the initialization stage
from the view factor (geometrically defined) and
surface emissivities. The mutual radiative heat
transfer among all internal surfaces is accounted for
when the boundary conditions (BCs) of each object
(component) are updated. When the BCs are
updated, also short wave irradiation is determined
for both external and internal Partition surfaces
through the solar radiation processor and the Short-
Wave Radiation module (SWRadModule).
This module has the responsibility of:
- setting shaded perimeters in external surfaces

by considering external obstructions, such as
other buildings, self-shadings, overhangs and
fins, (without, however, considering them also
as possible direct and diffuse reflectors)

- setting the solar radiation transmitted through
the transparent envelope component and non-
uniformly distributed among the room
surfaces.

OpenBPS: A New Building Performance Simulation Tool

221

Fig. 3 – OpenBPS: Parallelism handling at different levels, simplified scheme

When dealing with transparent Partitions
(windows, etc.), OpenBPS performs an accurate
calculation using angular dependence of
transmission and absorption for both solar and
visible radiation, and temperature dependent U-
value calculated at run-time entering a layer-by-
layer window description, or simplified calculation
entering the windows description taken from third
party projects, such as the Berkeley Lab WINDOW
7.4.
Solar control has not yet been introduced, but new
models for shadings and shadings control could be
introduced easily thanks to the object-oriented
structure of the project. A finite number of view
factors might be pre-calculated for different posi-
tions of the shading and a “transparent layer like”
description could be used for handling the SW
radiation part, while air convection should be
considered with simplified or detailed calculations.

An improved calculation for diffuse solar radiation
on tilted surfaces has been implemented as
described by (Perez et al, 1990). This non-isotropic
model accounts for circumsolar, horizon brighten-
ing, and isotropic diffuse radiation through empir-
ically derived "brightening coefficients". These coef-
ficients, function of sun position and cloud cover,
have been implemented following the last curve fit
performed by Perez in 1999, as reported in both the
technical documentation of TRNSYS 17 and
EnergyPlus 8.6.0.

2.5 Building Systems Simulation

The Simulator prioritizes the building fabric
components before starting to manage the building
system simulation. The objects that represent the
components of HVAC and electrical systems, ener-
gy conversion equipment, and any other needed
building technical systems component, are then

Livio Mazzarella, Martina Pasini

222

asked to expose their outputs at the actual time
stamp in organized sequences. The natural
modularity of the adopted object oriented scheme
supports the realization a fully integrated
simulation of loads, systems, and plant, but at the
same time it can raise stability issues. To avoid or
limit, as much as possible such instabilities, the
objects belonging to a specific technical system are
organized in “queues” as in the real word, i.e.
solved in sequence according to their energy
transfer direction. With “queue” we mean a
sequence of objects that are solved sequentially one
after the other as they interact mainly sequentially,
like, for instance, an emitter, the distribution pipes,
the boiler, and their thermostatic controls. Of
course, networks of pipes and ducts represent close-
loop “queues”. Thus, each global time step, the
Simulator has to iterate among all components,
managing to solve at first the unknowns for the
building fabric components (mainly in parallel) and
then for the building technical systems (mainly
serially). This integrated simulation allows capacity
limits and control strategies to be modelled more
realistically and provides a tighter coupling
between the building fabric components and the
technical system components, allowing a specific
object requirement to override this general
management structure, as in active double-skin
façades where a HVAC system closely interacts
with an envelope component.
The building system part is currently under
development because, instead of using performance
maps and/or steady state models for the HVAC and
plant components, true dynamic models have been
targeted, though simplified. This to overcome one
of the most significant drawbacks that characterize
many of the popular building energy simulation
programs: the use of steady state modelled
equipment with few-minute simulation time steps.
The introduction of a component characteristic time
can avoid this misleading use that can lead to
unreliable results.

2.6 Input, Output and Weather Data

As mentioned several times, OpenBPS is a set of
dynamic link libraries that are mainly designed to
be used by third party software. Thus, the user front

end is not in the project goal, even though a simple
GUI has been developed for developing and testing
purposes. This interface allows to import
EnergyPlus input files, with some limitations, or
files created with the TRNSYS17 or OpenStudio
plug-in in SketchUp, always with some limitations.
Drag-and-drop features are also implemented to
manage tests on components, and assign to them,
for instance, different solvers, and so on. For the
same reason an output manager allows to print out
almost all the necessary variables to analyse the
building performance.
The real input to the code is anyhow the Building
Object itself: the GUI is just filling up all the
required properties of all included objects,
simulation requirements included, and then passes
it to the SimulationManager dll library for simulation
execution. During the simulation, the Output Object
is filled with the required output variables,
warnings and any other information. At the end of
the simulation, the Output Object is exposed to the
caller program that takes over the task of producing
graphs, synopses, and any other specifically
formatted output.
The other major data input is weather, provided
through weather data files directly read by the
simulation engine. The code can directly read
standard weather data formats, like TMY and EPW,
or custom-made data format. In any case, the
weather processor is able to produce the required
quantities regardless of the matching between
provided data frequency and required data
frequency. After a time alignment, the weather
processor produces via interpolation the required
data if required by an object, with a frequency
higher than the recording frequency. If, instead, this
frequency is lower than the recording frequency, we
have two possibilities. We can communicate to all
the simulation components all the climatic data and
let them decide if they want to perform multiple
calculations without iteration, or if they prefer to
store and manipulate the data in accordance with
their numerical scheme, and perform their
calculation only once. Or we can manipulate the
climatic data before exposing them to the
components, in which case two different cases arise:
the frequency is a multiple of the recording
frequency or is not. In the first case, non-integral

OpenBPS: A New Building Performance Simulation Tool

223

data are directly provided to the object, while
integral data are cumulated before exposing them to
the object. In the second case an additional inter-
polation is performed to provide the required infor-
mation.

2.7 Contributing to New Developments

One of the main goals for OpenBPS is to encourage
continuous development and enrichment with new
features. To achieve this goal, it was decided to
adopt an open source approach and to build around
it a community of developers who can take care of
that. This idea and the tools provided to realize it
were already described in a previous paper
(Mazzarella and Pasini, 2015a). Nevertheless, the
contributing procedure can be summarised as
follows: Anyone can download the source code and
can do, according to the open source license
agreement, what he likes. In order to be a
recognized contributor (i.e. to be able to upload to
the developing repository his own code that will
become part of the version following the official
version), a developer has to join the community and
follow its rules. The production of new classes of
building components is highly encouraged, and it is
in principle quite easy. Due to the object-oriented
structure and the developing environment (MS
Visual Studio under Windows, MonoDevelop
under Linux, and MacOS), the process is relatively
simple. First, a developer defines a new component
by writing down its mathematical and numerical
model and identifies the model parameters and
needed equations, the specialized coefficients and
any other needed data. Next the developer writes
the code (using the OpenBPS programming
standard) and identifies the “parent” class from
which to inherit common properties and methods.
If a detailed class is not available, this father class
must be the “SimulationComponent” class. In fact,
the Simulator at the beginning of the simulation
scans all the components to find the one that inherits
from that class, thanks to polymorphism. The
simulation component class exposes methods that
are always called by the Simulator, such as the
initialization method, the calculation method, the
methods needed to manage convergence and the
method for output writing. All new components,

while implementing their specific properties and
methods, have to inherit from their particular
“father” class or override the available
implementation of those particular methods
defined for the “Simulation Component” class, to be
correctly called by the simulator to get input from
other objects and to deliver their output.

3. Validation

OpenBPS is continuously under validation, since it
is still in its developing phase. Some references to
earlier validations can be found in Mazzarella and
Pasini (2013, 2015b). Fig. 4 shows several ASHRAE
140 Standard (ASHRAE, 2014) cases: case 600FF,
free floating internal temperature (FF) and light
walls; case 650FF, i.e. 600FF with night ventilation;
case 900FF and case 950FF, respectively free floating
with heavy wall without and with night ventilation.
These BESTEST validations have been carried out
with the actual version of OpenBPS and show quite
a good agreement with the provided information.

4. Conclusion and Perspectives

The OpenBPS object oriented building performance
simulation tool is not yet ready to be deployed
within the energy simulation community because it
lacks the building system component models. This
part is currently under development by trying to
model the system components as dynamic
components, even if simplified. On the other side, a
decision has to be made on how to initiate the
developers’ community, to create a true open source
project. The main idea that can support and increase
its development and diffusion, is to launch it as a
“standard de facto” replacing the whole EPBD
standard set that will be in force at the end of 2017.
This new EPBD set of standards implies that each
technical software house that sells programs to
assess building energy performance, has to rewrite
its calculation engine according to the new
standards. Thereafter, they have to require a legal
validation before putting it on the market. A joint
venture between OpenBPS and the technical
software houses may solve the problem of both: a
unique full validated calculation engine that can be

Livio Mazzarella, Martina Pasini

224

used inside any software on any platform,
completely documented and expandable time by
time.

Fig. 5 – ASHRAE 140 Standard OpenBPS validations

Acknowledgement

The development of the code presented in this paper
was partially supported by Regione Lombardia
through financing under the main project
"TRIBOULET: Carbon Footprinting of Products".

References

ASHRAE. 2014. ASHRAE Standard 140:2014 --
Standard Method of Test for the Evaluation of
Building Energy Analysis Computer Programs.
Atlanta, U.S.A.: ASHRAE.

Mazzarella, L., M. Pasini. 2009. “Building energy
simulation and object-oriented modelling:
review and reflections upon achieved results
and further developments”. In: Proceedings of
Building Simulation 2009. Glasgow, UK: IBPSA.

Mazzarella, L. 2013. “The air energy balance
equation paradox”. In: Proceedings of Building
Simulation Applications BSA 2013, the 1st IBPSA-
Italy conference”. Bolzano, Italy: BUPRESS.

Mazzarella, L., M. Pasini. 2013. “Development of a
new tool for the co-simulation of multiple
autonomous object”. In: Proceedings of Building
Simulation 2013. Chambéry, France: IBPSA.

Mazzarella, L., M. Pasini, N. Shahmandi Hoonejani.
2014. “Challenges, limitations, and success of
cloud computing for parallel simulation of
multiple scenario and co-simulation”. In:
Proceedings of ASHRAE/IBPSA-USA Building
Simulation Conference. Atlanta, U.S.A.: ASHRAE.

Mazzarella, L., M. Pasini. 2015a. “Advancement in
the development of an Open Source Object
Oriented BPSt: development methodology”. In:
Proceedings of Building Simulation Applications
BSA 2015, the 2nd IBPSA-Italy conference”.
Bolzano, Italy: BUPRESS.

Mazzarella, L., M. Pasini. 2015b. “CTF vs FD based
numerical methods: accuracy, stability and
computational time’s comparison”. Energy
Procedia 78: 2620–2625.
doi: 10.1016/j.egypro.2015.11.324.

Pasini, M. 2009. Towards an Enriched Modularity of
Building Performance Simulation’s Programs:
Reconceptualisation and development of an Object-
Oriented model. Ph.D. Thesis, Milano, Italy:
Politecnico di Milano.

Perez, R., P. Ineichen, R. Seals, J. Michalsky, R.
Stewart. 1990. “Modeling Daylight Availability
and Irradiance Components from Direct and
Global Irradiance”. Solar Energy 44, 271-289. doi:
10.1016/0038-092X(90)90055-H.

­30.00

­20.00

­10.00

0.00

10.00

20.00

30.00

40.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CASE 600FF JAN 4
ESP/DMU BLAST/US­IT DOE21D/NREL SRES­SUN/NREL S3PAS/SPAIN
TSYS/BEL­BRE TASE/FINLAND Average140 OBPS_EI_15min

10

15

20

25

30

35

40

45

50

55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CASE 650FF JULY 27
ESP/DMU BLAST/US­IT DOE21D/NREL SRES­SUN/NREL S3PAS/SPAIN

TSYS/BEL­BRE TASE/FINLAND Average140 OBPS_EI_15min

­8.00

­6.00

­4.00

­2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CASE 900FF JAN 4
ESP/DMU BLAST/US­IT DOE21D/NREL SRES­SUN/NREL S3PAS/SPAIN
TSYS/BEL­BRE TASE/FINLAND Average140 OBPS_EI_15min

20

22

24

26

28

30

32

34

36

38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CASE 950FF JULY 27
ESP/DMU BLAST/US­IT DOE21D/NREL SRES­SUN/NREL S3PAS/SPAIN

TSYS/BEL­BRE TASE/FINLAND Average140 OBPS_EI_15min

