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Abstract  
Direct normal radiation (DNI) has great importance for both 

energy building simulations and solar energy systems. The 

data is seldom available from measurements but usually is 

recovered from global radiation data using split algorithms.  

The present paper analyses the performance of 33 different 

split radiation models and the error which arises when 

applied to building energy simulations using generated 

hourly weather files.  

The split models have been applied to an observed dataset 

composed by 525888 points, which comprises global and 

diffuse radiation on the horizontal plane, related to -year 

measurements, starting from 2001 with 10-minute time 

steps. 

The generated weather files have been employed as input for 

energy simulations with EnergyPlus on a building generated 

using DesignBuilder software. We investigated the impact 

of the weather files in building energy simulation highlight-

ing the performances of four models selected among the 33 

models by means of statistical indicators, during different 

periods of the dataset, since its amplitude allowed us to 

decompose and analyse 10 different years. 

1. Introduction

Dynamic building energy simulations, usually carried 
out at least on an hourly basis, require detailed envi-
ronmental data such as temperature, humidity, wind 
velocity and direction usually available from a num-
ber of climatic stations. However, in order to compute 
solar loads, direct normal radiation and diffuse hori-
zontal radiation are also required. Unfortunately, con-
tinuous records of DNI are scarce due to the cost of 
the equipment: the monitoring stations equipped 
with solar trackers are very rare. An intermediate 
solution is to record diffuse and global irradiance, but 

global insolation is the unique parameter monitored 
in numerous locations around the world, therefore a 
great number of climatic data report only this value. 

Starting from the work by Liu and Jordan (1960), 
many efforts were undertaken to develop separation 
models to estimate the diffuse horizontal irradiation 
component and, by subtraction, the direct horizontal 
component. Thereafter, the direct radiation is 
obtained by dividing it by the cosine of the zenith 
angle, properly averaged on the interval monitored. 
In literature, more than 150 models have been devel-
oped with numerous comparison papers. Neverthe-
less, the definition of a universal model able to pro-
vide the best possible result at any specific location is 
still very complicated, because algorithms are usually 
expressed in terms of first or fourth degree polyno-
mial functions, empirically derived from site-specific 
measurements.  This technique usually tends to suffer 
for excessive model localization and/or overfitting 
which implies that one model can lead to accurate 
results for a location, while performing poorly for a 
different one. 
This paper describes the performance of different split 
algorithms using a dataset containing global and 
diffuse irradiance measurements recorded in Trieste. 
The availability of a large number of climatic data, 
which spans for a period of ten years, allows for a 
deep comparison among split methods. Therefore, the 
former part of this paper is focused on the statistical 
analysis of the models while the latter explores the 
effect of the different split methods on building 
energy simulations.  
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2. Dataset

The data used is composed of 10-year records of 
Trieste (45°,65°,13.76°) collected by the Meteorology 
and Oceanography Laboratory of the University of 
Trieste containing global and diffuse horizontal irra-
diation measurements with 10-minute interval detec-
tion. The total number of available points is 525888 
and includes the following exogenous measurements: 
dry bulb temperature, relative humidity, wind speed 
and wind direction too. 
Solar position has been considered in the middle of 
the measurement interval, shifting the time detection 
back 5 minutes for all the datasets, since the row data 
were originally recorded as mean solar measurement 
in Wh/m2 reported at the end of the interval.  
The global horizontal irradiation has been used as the 
input data for the application of split methods, while 
the diffuse, and hence the direct horizontal data, have 
been used as the reference value. 

3. Model Selection

Since the first split model proposed by Liu and Jordan 
in 1960, many models were developed in literature. 
According to Lannini (2010), three different types of 
models can be considered: polynomial models, expo-
nential models, and logistic models. All of these cate-
gories use predictors, intended as a measurement, or 
an evaluated variable, required for applying the 
model. In all the proposed models of this paper clear-
ness index kt, defined in Equation 1, is used as a pre-
dictor in order to obtain the diffuse fraction kd, 
defined in Equation 2. 

hE
GLOkt

0
= (1) 

GLO
DIFkd = (2) 

The extraterrestrial solar radiation was calculated 
with Spencer Fourier series expansion. 
Other predictors can be used as well. They can be 
grouped in kt class predictors and exogenous predic-
tors as dry bulb temperature, dew point temperature 
or relative humidity. Table 1 presents the list of the 
models chosen and analyzed in this article. 

4. Quality Control

The posteriori quality control of the measured data 
was followed as described in Gueymard et al. (2016) 
and summarized in Table 2. With the application of 
this quality check, the number of valid points was 
reduced from the original 525888 to 239594, taking 
into consideration night hours, too. 

Table 1 – Models analyzed with total number of required predictors 
and number of exogenous predictors in brackets 

The PSA algorithm (Blanco-Muriel et al., 2001) was 
used to calculate the position of the sun. 
Finally, the maximum allowable value of clearness 
index kt has been forced to 1, but this condition had to 
be enforced 3 times only.  

Id Model # predictors 
1 Orgill and Hollans 1 
2 Reindl1 1 
3 Reindl2 2 
4 Hawlader 1 
5 De Miguel 1 
6 Karatasou 1 
7 Erbs 1 
8 Chandrasekaran 1 
9 Oliveira 1 

10 Soares 1 
11 Lam Li 1 
12 Furlan 1 1 
13 Lee 1 
14 Maxwell 2 
15 Macagnan 2 
16 Boland 2001 1 
17 Louche 2 
18 Spencer 1 
19 Jacovides 1 
20 Boland 2008 1 
21 Reindl3 4(2) 
22 Perez 4(1) 
23 Ulgen Hepbash 1 
24 Ruiz-Arias 2 
25 Chikh 1 
26 Engerer2+Bird 5 
27 Paulescu and Blaga 1 1 
28 Paulescu and Blaga 3 1 
29 Paulescu and Blaga 4 4(2) 
30 Paulescu and Blaga 5 2 
31 Elminir 1 
32 Al Riahi 1 
33 Torres 1 
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Table 2 – Quality checks applied and number of eliminated points 
(Npe) for each rule 

Id Limit Npe 

a Z<85° 284736 

b GLO>0 and DIF>0 and DIR≥0 267586 

c DIF<0.95*E0*cos^1.2*Z+50 95 

d GLO<1.5*E0*cos^1.2*Z+100 71 

e DIF/GLO<1.05 and Z<75° 934 

f DIF/GLO<1.10 and Z>75° 1120 

An additional correction has been adopted by limiting 
minimum and maximum values of the estimated dif-
fuse fraction to values of 0 and 1 respectively in order 
to prevent unphysical results. This quality check 
avoids negative diffuse irradiation or diffuse irradia-
tion greater than the global irradiation. It is worth 
noticing that the diffuse radiation lower limit of 0 rep-
resents an unreal value too, since even with the clear-
est sky condition, the diffuse fraction should be pre-
sent, too. 

5. Statistical Indicators

Three statistical errors were used: mean bias devia-
tion, mean absolute deviation, and root mean square 
deviation, defined in Equations 3–5. 
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Subscript e indicates the estimated value, subscript m 
the measured values, and n is the number of valid 
points after the quality check. 
The purpose of this paper is to investigate the error 
that occurs in building energy simulations because of 
the split model selection in defining climatic datasets. 
The statistical analysis could help the designer in 
making a conscious choice between the proposed 
models. In this paper, four models have been selected 
for a subsequent energy simulation analysis. 

6. Results: Statistical Indicators

Tables 3 to 5 present for each statistical indicator the 
results obtained for the top five performing models con-
sidering the whole dataset and separate heating and 
cooling periods. 

Table 3 – Models with lowest mean bias deviation 

MBD [Wh m-2] 

Model year Heating Cooling 

Oliveira 0.2 4.23 8.86 

Maxwell 2.6 -3.37 26.25 

Ulgen Hepbasli 3.6 -3.04 12.78 

Torres 4.1 6.38 15.30 

Perez 4.5 -1.37 8.35 

Table 4 – Models with lowest mean absolute deviation 

Model MAD [Wh m-2] 

year Heating Cooling 

Perez 26.0 16.12 32.59 

Louche 27.7 14.94 35.99 

Spencer 27.8 15.23 35.61 

Soares 28.3 14.54 35.55 

Ruiz-Arias 28.6 14.06 37.25 

Table 5 – Models with lowest root mean square deviation 

Model RMSD [Wh m-2] 

year Heating Cooling 

Perez 45.6 30.51 53.33 

Oliveira 46.6 24.81 54.54 

Erbs 46.6 26.94 56.66 

Torres 46.8 26.71 56.17 

De Miguel 47.3 27.71 58.57 

From the analysis of the results, the Perez model 
shows remarkable results in the cooling period, but 
the performance degrades for heating. Since the num-
ber of day hours is greater in the cooling period, the 
Perez model performs better than the other models on 
an annual basis. Taking into account the full results, 
of which Tables 3, 4, and 5 are just a summary, the 
Perez, Oliveira and Torres models were chosen to 
carry out building energy simulations. 
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Fig. 1 – Distribution of MAD computed for every year of the dataset and each model 

It is interesting to consider that the Oliveira and 
Torres models were obtained by linear regression 
applied to datasets collected in San Paulo, Brazil, 
and Pamplona, Spain, respectively. These models 
perform well also with the present dataset of 
Trieste because those locations have similar solar 
irradiation. 

Fig. 1 presents the performance of each model by 
applying the statistical indicator for each year of the 
dataset. Therefore for each model a distribution of 
ten values is obtained. To compare the performance 
of the complete set of models, the results are 
reported as box plots, where the box extends from 
the first to the third quartile, the upper and lower 
whisker represent the minimum and maximum 
values of the set, while the line drawn into the box 
represents the median of the distribution. In this 
way an idea of the performance distribution can be 
obtained at a glance. 
The inspection of Fig. 1 shows which model 
performs better compared to the others, not only in 
an absolute manner, but also considering the 
dispersion of the results: one model can perform 
well for one year but can give unsatisfactory results 
for other situations with large dispersed values. 
Due to this consideration, we focused on the Al 
Riahi model. As can be seen in Fig. 1, the Torres 
model (model n. 33) and the Al Riahi model (model 
n. 32) have comparable MAD over the entire dataset 
(red line within the box). However, we can also 
notice that the amplitude of Al Riahi box is 

remarkably greater than the Torres box. The Al 
Riahi model has therefore been added to the 
selected models: the goal is to observe how the 
performance discrepancy between different years 
influences the building energy simulation. In detail, 
the Al Riahi model has its lowest MAD for 2003 
(MAD 25.4), and its highest for 2004 (MAD 34.5). 
This can be explained through the inspection of Fig. 
2: the year 2003 is catheterized by high mean global 
and direct irradiation, with a low diffuse fraction; 
on the contrary, the year 2004 shows low global and 
direct solar radiation paired with high diffuse 
fraction. The last condition is different from 
Trieste’s solar irradiation and from the original Al 
Riahi dataset, monitored in Baghdad. For the same 
reasons also the Torres model, collected in 
Pamplona, Spain, has its lowest MAD in 2003, while 
the highest is recorded in 2004. 

Fig. 2 – The mean yearly values of irradiance: Global, Direct 
and Diffuse on the horizontal plane 
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7. Model Choice

Following the observation explained in the previous 
paragraph, we selected four split models: Oliveira, 
Perez, Al Riahi, and Torres models. According to 
Lannini et al. (2010), except the Perez model that is 
classified as an exponential model, the three others 
are polynomial models. Fig. 3 presents the disper-
sion of diffuse fraction over the clearness index for 
the Perez model, while Fig. 4 compares the same 
dataset with the Oliveira, Al Rhiai, and Torres 
models. 

Fig. 3 – The Perez model 

Fig. 4 – The Oliveira, Al Riahi, and Torres models 

8. Building Envelope

The selected models were to generate climatic data 
in order to check the effect on building simulations. 
According to Pernigotto et al. (2016), a simple test 
building was simulated. It consists of a prism shape 
building with a square base, oriented to the main 
cardinal directions. Its internal floor area is 100 m2 
with 3 m internal height. All the opaque 
constructions are composed by two-layer structures 
with external isolation and 30 cm of concrete 

internal structure. Thermal bridges are neglected. 
The material characteristics are reported in Table 6. 
The insulation thickness, reported in Table 7, was 
set in order to obtain the reference thermal 
transmittance, according to the Italian regulations 
for climatic zone E. Windows have thermal 
transmittance Uw = 1.8 W m-2 K-1 with g = 0.35. 

Table 6 – Layer material thermal proprieties 

Layer λ Cp ρ 

Concrete 0.13 1.88 399 

Insulation 0.04 1.47 40 

Table 7 – Thermal transmittance and insulation layer thickness 

Construction U s [cm] 

External wall 0.30 9.41 

External roof 0.25 12.2 

Ground floor 0.30 9.25 

Wall solar absorbance was set to 0.3, except for the 
internal floor and the external roof where a value of 
0.6 was set. Ground temperature at building surface 
and at ground deep temperature was considered as 
constant, respectively of 18 °C and 14 °C. 
In summary, the test building is composed of a well-
insulated envelope with external windows on the 
east, south, and west facade, each one of 9.707 m2 
(29.12 m2 of total area). This last choice was made to 
analyze a building with a wide window size that, as 
highlighted by Pernigotto et al. (2016), is critical for 
possible high cooling loads.  
Internal gains are constant equal to 4 W/m2 with 
radiant and convective fraction of 0.5. Ventilation 
air change was set at 0.3 vol/h. Heating and cooling 
systems were simulated as an ideal system, 100 % 
convective and with a unitary coefficient of 
performance. Heating and cooling systems are 
available according to Table 8. 

Table 8 – Beginning, end and setpoint temperature related to 
heating and cooling systems 

System Begin End Setpoint [°C] 

Heating 1/10 31/03 20 

Cooling 1/04 30/09 26 
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9. Weather Files 

EnergyPlus simulation files require input variables, 
all monitored or derived from the dataset such as 
the DNI. Except for the Perez model that calculates 
DNI directly, in the other cases it was estimated 
through Equation (6). 

)cos(/ ZDIRDNI =    (6) 

Due to the uncertainty of the measuring instrument 
at high zenith angles, Equation (6) can return 
extremely high values (that were previously 
eliminated from the quality control, Equation 3).  
This can lead to unphysical values, even higher than 
extraterrestrial solar radiation, which can cause 
simulation errors if used in building simulation 
codes. The issue was solved, as was recommended 
by Spinelli F. (personal communication, 2016, ENEA 
- Italian National agency for new technologies, 
Energy and sustainable economic development) 
with the substitution of out of range values. The 
problematic points were identified by applying the 
check reported in Equation (7) (Gueymard et al., 
2016), with the DNI values obtained using the Bird 
clear-sky model according to Sengupta and Gotseff 
(2013). 

ElevDNI ⋅+< 03.01100    (7) 

The application of Eqn. 7 resulted in 95 points 
replacement in the dataset, 499 in Oliveira, 533 for 
Al Riahi, and 499 for Torres, and none for the Perez 
model. For all the variables previously described, 
the dataset was reduced from 10-minute detection 
to hourly weather files by averaging. 

10. Simulation Results 

Ten-year measurements and four selected models 
were used to obtain 40 simulations related to the 
split models. The results were compared to a 
reference simulation with weather files obtained 
using the original dataset. In the following para-
graphs, the energy required for heating and cooling 
are analysed. As previously explained, we focused 
mainly on two different years, 2003 and 2004. 
Tables 9 and 10 report the error in seasonal cooling 
or heating energy, as defined in Equation (8), where 

subscripts “se” and “sm” represent respectively the 
simulation result with estimated and measured 
weather files.  

sm

smse
Energy

EnergyEnergy
Error

−
=   (8) 

Table 9 – Cooling energy errors for the various models 

Year 
Sim 

[kWh] 

Oliveira 

[%] 

Perez 

[%] 

Al Riahi 

[%] 

Torres 

[%] 

2001 2678  +1,9 +0,5 +1,9 +1,6 

2002 2539  +1,7 +0,2 +1,5 +1,4 

2003 3852  +1,8 +0,4 +1,4 +1,4 

2004 2585  +2,4 +0,5 +2,2 +1,9 

2005 2377  +2,9 +1,3 +2,6 +2,6 

2006 2718  +3,2 +0,8 +3,5 +2,7 

2007 3001  +3,6 +1,4 +3,3 +3,1 

2008 2910  +2,7 +1,8 +2,4 +2,5 

2009 3190  +3,9 +2,5 +3,8 +3,6 

2010 2580  +3,6 +2,2 +3,3 +3,3 

Table 10 – Heating energy errors for the various models 

Year 
Sim 

[kWh] 

Oliveira 

[%] 

Perez 

[%] 

Al Riahi 

[%] 

Torres 

[%] 

2001 2516  -0,3 +3,0 -2,9 +0,1 

2002 2381  -1,5 +2,0 -3,9 -1,1 

2003 2234  -1,3 +2,8 -4,4 -0,6 

2004 2706  -1,8 +1,4 -4,4 -1,3 

2005 2839  -2,4 +1,4 -5,1 -2,0 

2006 2403  -1,5 +2,6 -4,2 -0,9 

2007 2040  -2,7 +2,1 -5,8 -2,3 

2008 2429  -2,9 +1,0 -5,5 -2,4 

2009 2544  -3,6 +0,6 -6,0 -3,3 

2010 3249  -3,0 -0,4 -5,0 -2,8 

 
As can be seen from Table 9, the Perez model in 
estimating the cooling energy preforms remarkably 
better than the others, with errors ranging from 
0.2 % to 2.5 %. However, when considering heating 
energy, the Perez model shows the same 
performance of the Oliveria and Torres models. The 
result confirms the statistical analysis presented in 
Tables 3 to 5 where the Perez model showed the best 
results in the cooling period, but with lower 
performance during the heating one. 
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Furthermore, the numerical simulation confirms the 
distribution of the statistical error with the box plots 
presented in Fig. 1: a model can perform very differ-
ently if applied to different years on the same loca-
tion. Considering Table 9, the Torres and Al Riahi 
models present the same error for the year 2003, 
while the latter shows consistently higher errors for 
different years. 
Finally Fig.s 5 and 6 graphically show the errors 
trend reported in Tables 9 and 10, showing the good 
performance of the Perez model in cooling simu-
lations, and the comparable performance of the 
Torres and Oliveira models for heating. 

Fig. 5 – Cooling energy, percentage error between models 
and measured data 

Fig. 6 – Heating energy, percentage error between models and 
measured data  

11. Conclusions

33 split models were implemented in order to study 
their impact in building energy simulations. This 
analysis was developed both with statistical indica-
tors and with simulation results, through En-
ergyPlus software. Considering the whole 10-year 
dataset, the Perez model performs significantly 
better than the others, both for MAD and RMSD 
statistic parameters, but with remarkable 
differences between cooling and heating periods. It 

shows also consistency if applied to different years 
of the same location. Regarding the polynomial 
models, they can perform with satisfying accuracy 
if the current dataset has similar climatic 
characteristics to the one originally used to obtain 
the model. Those that behave better in this case are 
Oliveira and Torres.  
Simulation results, applied on a test building with a 
well-insulated envelope, have shown that the Perez 
model performs extremely well for what concerns 
the cooling energy. On the other hand, the model 
shows higher energy needs during the heating 
period, but with a performance comparable to the 
other models.  
The Al Riahi, with a greater range of variability be-
tween different years, for this reason included in the 
set of tested models, showed a trend similar to the 
Torres and Oliveira, but with more errors for the 
selected years, and critical results for heating due to 
its constant underestimation of the required energy. 
Finally, the Perez model shows the best overall per-
formance. Nevertheless, the issue of lower perfor-
mance in simulations concerning the heating 
period, especially for insulated buildings, cannot be 
neglected. Therefore, further investigation is 
required to identify the different behavior of the 
Perez model between heating and cooling periods. 
Regarding the influence of split models in simu-
lation applied to insulated buildings, the choice can 
affect the simulation error from 0.2 % up to 4 %, this 
result is remarkable and has to be considered when 
dealing with building detailed energy analysis. 

Nomenclature 

Symbols 
Cp Thermal capacity (kJ kg-1 K-1) 
DIF Diffuse horizontal solar radiation (Wh m-2) 
DNI Normal solar radiation, (Wh m-2) 
DIR Horizontal direct solar radiation, (Wh m-2) 
E0 Extraterrestrial solar radiation, (Wh m-2) 
E0h Extraterrestrial solar radiation, horizontal 

(Wh m-2) 
Elev Elevation (m) 
GLO Global horizontal solar radiation, 

(Wh m-2) 
kd Diffuse fraction (-) 
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kt Clearness index (-) 
U Thermal transmittance (W m-2 K-1) 
Z Zenith angle (°) 
λ Thermal conductivity (W m-1 K-1) 
ρ Density (kg m-3) 
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