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Abstract 
Urban populations continue to increase in parallel with 

global temperatures. The result is an increasing number of 

people affected by increasingly severe urban heat condi-

tions. Understanding these effects and being able to accu-

rately account for the effects of the urban climate on 

building energy use is important for urban and architec-

tural design decision making. This paper presents part of 

an on-going research effort to evaluate the Weather Re-

search and Forecasting (WRF) model as a tool for impro-

ving prediction of boundary conditions in urban climates. 

WRF is a regional climate model that is capable of down-

scaling global weather data to a fine resolution and 

includes detailed urban canopy models. The use of a nu-

merical model in urban climate studies would allow for 

computational experiments involving changes to the ur-

ban fabric and future climate scenarios. In this study, 

Vienna, Austria, was used as a test case. The weather was 

simulated over five 48-hour periods, which were selected 

using cluster analysis to best represent typical weather 

conditions in Vienna. The model results were then com-

pared to data collected from a network of 170 weather sta-

tions throughout the region of interest. Additionally, the 

land-use classification and urban parameterization in the 

model domain were improved using high-resolution GIS 

data from the city of Vienna. Results show a great deal of 

variation in the accuracy of the model under different 

weather conditions. Although individual problems can be 

identified during specific intervals, there is no obvious 

trend or bias to the variation across all time periods. The 

extent of the variation indicates the model results are not 

suitable for use as boundary conditions for building per-

formance models throughout an entire year. 

1. Introduction

In recent years, cities have been increasingly 
considered to be both contributors and stakeholders 
in the global climate change discussion, yet scienti-
fic precedents for the study of the climate impact of 
cities stretch back over two centuries (Hebbert and 
Jankovic, 2013). The commonly understood concept 
of the urban heat island, for instance, finds its roots 
in the work of Luke Howard in London (1833) and 
James Gordon's temperature survey of the Salt River 
Valley (1921). In our current context of mass urbani-
zation and global warming, urban planners and ar-
chitectural designers could benefit from improved 
urban climate representtations. An accurate urban 
climate model would allow for quantitative decision 
support in both the response of buildings to altered 
boundary conditions and the response of the local 
climate to changes in urban development. 
The misrepresentation of external boundary condi-
tions in building simulation can result in fairly large 
errors. A study in Bahrain showed that using out-
dated weather files can underestimate annual elec-
tricity consumption by 14.5 % and cooling loads by 
up 8.9 % (Radhi, 2009). Weather data for the typical 
meteorological year (TMY) are frequently used in 
building simulation models and are often derived 
from airport weather stations (Barnaby and Craw-
ley, 2011). These locations do not represent the se-
mantic and geometric complexities of urban envi-
ronments or the resulting microclimate effects (Per-
nigotto et al., 2014). Bhandari et al. (2012) investi-
gated the use of synthesized location specific weath-
er files from third party providers and found that 
monthly building loads can vary up to ± 40 %. In 
another study, Chan (2011) examined the range of 
impact of climate change variation by morphing the 
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TMY based on the projections of a general circu-
lation model (GCM). This revealed the potential for 
a substantial increase in A/C energy demand rang-
ing from 3.7 to 24 % for residential buildings. 
Together, advances in numerical weather models, 
the increasing availability of highly accurate GIS 
data, and the proliferation of weather monitoring 
stations allow for new avenues for exploring the 
complexities of the urban climate. In this study, we 
investigated the performance of the WRF model 
over the city of Vienna, Austria, under various 
weather conditions with the aim of using the output 
to improve the boundary conditions of building en-
ergy models set in urban areas. The WRF model was 
chosen as it incorporates a detailed subgrid rep-
resentation of the urban morphology, called the 
building environment parameterization and build-
ing energy model (BEP+BEM). 

2. Methodology

2.1 Study Area 

This study was centered on the city of Vienna, Aus-
tria. In comparison to other Central European cities 
with intact historic centers, Vienna is morphologi-
cally rather typical. According to the Köppen cli-
mate classification, it lies at the edge of the oce-
anic/subtropical zone (Cfb) that covers most of 
Western Europe and shares characteristics with both 
the warm summer continental climate to the East 
(Dfb) and the humid subtropical conditions (Cfa) of 
some Northern Italian cities (Kottek et al., 2006). Its 
municipal boundaries inscribe an area of 414.87 km2 
and approximately 1.8 million residents (Lukacsy 
and Fendt, 2015). It lies at the eastern edge of the 
Alps with the western edge of the city rising into the 
Wienerwald, and the eastern edge stretching over 
the Danube River and into the Vienna Basin. Our 
area of interest contains the municipal boundary of 
Vienna as well as the surrounding suburban and 
rural areas (Fig. 1). 
The availability of both weather data records as well 
as high-resolution geospatial data informed our 
decision to select Vienna as our case study. 
Additionally, with the notable exception of Stuttgart 
(Fallmann et al., 2014), Berlin (Jänicke et al., 2016), 

and Madrid (Brousse et al., 2016) relatively few 
European cities have been examined in WRF 
modeling studies. 

Fig. 1 – Vienna, Austria. Region of interest (red). Municipal bound-
ary (black) 

2.2  Study Period 

Although numerical weather models can be excel-
lent tools for computational experiments and 
weather prediction, they are resource intensive. In 
this study, we hoped to examine the utility of WRF 
across different weather conditions. Rather than run 
simulations with season-long or year-long dura-
tions, we selected 5 representative periods each with 
a 48-hour duration. 
These representative dates were selected with a k-
means cluster analysis method and daily means for 
the Schwechat Airport provided by Austria’s Zen-
tralanstalt für Meteorologie und Geodynamik 
(ZAMG). This station is well calibrated and sited in 
an open area that allows for good mixing and less 
impact of extreme micro-climate effects, making it 
well suited for classifying regional weather types. 
Then, three uncorrelated climatic variables were 
selected to use as key indicators in clustering: tem-
perature, diurnal temperature range, and wind 
speed. There is no objective or automated method 
for selecting an optimal number of clusters with the 
k-means approach. For this study, we needed to 
achieve a balance between investigating the widest 
range of weather conditions and reducing the total 
number of simulations. In order to achieve this 
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balance, we chose to use 5 weather categories after 
an iterative testing process (Fig. 2). 
The final step was to select the most representative 
48-hour period within the cluster for simulation.  In 
order to guarantee that each period best represents 
the aspects of the category that distinguish it from 
the other four, we selected days from each category 
with values furthest from the mean of the other clus-
ters (Table 1). 

2.3 Land Cover and Urban Canopy 
Parameters 

2.3.1 WUDAPT Land Cover 
The WRF model requires a land cover map to 
describe the surface condition and calculate its 
interaction with the atmosphere. For this study we 
used the World Urban Database and Access Portal 
Tool (WUDAPT) to provide the land cover map. 
WUDAPT is a state-of-the-art web portal that pro-

duces land cover maps of cities using the Local Cli-
mate Zone (LCZ) concept developed by Stewart and 
Oke (2012). These maps are created for use in urban 
climate modeling. The method classifies Landsat 
satellite imagery with a Random Forest Classifica-
tion algorithm (Bechtel et al., 2105). Training areas, 
which best represent each LCZ, are selected by the 
user. Then the algorithm uses the distinct reflective 
signature in each spectral band to classify each 
100x100 m pixel within the region of interest (ROI). 

Table 1 – Representative dates and key climate indicators 

Dates Mean 
Temp. [°C] 

Diurnal 
Range [K] 

Mean Wind 
Speed [m/s] 

January 7-9 -1.62 5.13 1.64 
February 8-10 -0.32 4.31 5.00 
March 20-22 6.93 15.24 0.69 
April 21-23 15.00 12.30 2.49 

July 5-7 27.26 16.13 1.56             

Fig. 2 – Key indicator time series with clustering (top) and boxplot by cluster (bottom) 

2.3.2 Urban Canopy Parameters from GIS 
In addition to the land cover map, the sub-grid 
urban model in WRF, the BEP+BEM, requires a 
morphological description or urban canopy 
parameters (UCPs) for each urban class in the land 
cover map. Although there are typical ranges 

provided by Stewart and Oke (2012), in Vienna we 
could extract these values directly from a detailed 
database of geospatial data made available by the 
City of Vienna (“Open Government in Vienna,” 
2016). This database includes a high-resolution 
vector map of all the building and land cover 
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features within the city. It allows for the precise 
calculation of most of the required UCPs (e.g. 
height-to-width ratio, pervious fraction, average 
building height). 
In order to extract these values, an algorithm was 
created with the Quantum GIS software (Quantum 
GIS Development Team, 2016). It iterates over the 
region of interest on a 100x100 m grid and calculates 
the UCPs for each cell. Building height and land use 
type are included in the metadata of each polygon. 
With the use of the metadata and the polygon areas, 
it was straightforward to calculate the necessary 
area fractions (i.e. pervious, impervious, and urban 
fractions). The average building height was 
calculated by weighting the height values with the 
building footprint area. Likewise, the histogram of 
height distribution was calculated using the 
percentage of total building footprint area in 5 ft 
bins. The height-to-width ratio was computed with 
a 4-pass raster method (Fig. 3) adopted from Burian 
et al. (2003). 
This algorithm produced a gridded data set with 
unique UCP values for each cell. However, this level 
of detail could not be used directly with WRF, as the 
GIS data is only available within the municipal 
boundaries and did not cover the entire ROI. Thus, 
mean values were used for each LCZC. 

Fig. 3 – Example of the 4 pass height-to-width ratio results 

2.4 Model Setup 

The BEP+BEM (Martilli, 2002; Salamanca et al., 
2010), under the Bougeaut-Lacarrère at 1.5 degree 
turbulence scheme, was chosen for this study for its 

multilayer urban canopy representation. This sub-
grid urban model is currently the most detailed 
urban representation within the WRF model. The 
meteorological boundary conditions used for the 
simulations were derived from the NCEP Final 
Analysis (FNL from GFS) data at 1° resolution and 
taken every 6h for each of the two-day simulations. 
Three nested domains were used to downscale the 
results to an inner domain with a 500 m resolution 
(Fig. 4). 

Fig. 4 – WRF nest domain configuration 

2.5 Observational Data 

We used three different sources for weather data in 
this study: the Austrian ZAMG, the City of Vienna 
Department for Environmental Protection (MA22), 
and Wunderground’s Personal Weather Station 
Network (PWSN). The stations from ZAMG and the 
MA22 are installed and maintained by official 
organizations, however they provide sparse 
coverage (11 stations). On the other hand, the PWSN 
provides excellent coverage, however these stations 
are installed and maintained by amateur weather 
enthusiasts. At the beginning of the study period, 
January 2015, there were 310 active PSWN stations 
in our ROI.  Although this number has increased to 
873 at the time of writing, only those initial stations 
were included (Fig. 5). 
While the PWSN's crowdsourcing approach pro-
vides a weather station network with excellent spa-
tial coverage, it introduces several sources of uncer-
tainty. There is no guarantee that recommended 
standards for installation are followed. In fact, a 
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number of stations in a similar crowdsourced 
network in Berlin were setup indoors (Meier et al., 
2015). 
Furthermore, there is no standard for the type of 
hardware used. Of the stations that provide infor-
mation about their hardware type, the majority 
(78.8 %) are Netatmo stations. While the manufac-
turer claims acceptable sensor accuracy, these sta-
tions are not ventilated or shielded so they have to 
be set up where they are not in direct sunlight or 
they risk overheating. Rain and wind gauge 
accessories are optional and not included with 
many stations. 
In order to address the potential for increased meas-
urement errors as a result of using these unverified 
stations, we used several data quality control filters 
to remove erroneous data. These filters reduced the 
number of stations from 310 to 160. First, all data 
that greatly exceeded historic global extremes at the 
Earth's surface were removed. Such extreme values 
usually represent error codes. 

Fig. 5 – Weather station network 

Then, outliers were identified with a two-tailed 
median absolute deviation (double MAD) test to 
account for skewed distributions and to prevent the 
outliers from influencing the selection process. The 
outlying data were then removed and stations that 
had more than 25 % of their values flagged as 
outliers were entirely removed from the dataset. 
In the final step, the remaining PWSN stations were 
compared to nearby official stations. The compari-

son included two additional filters designed to tar-
get specific types of error. The first targeted weather 
stations that were installed indoors by comparing 
the average daily minimum temperature. The 
second filter targeted overheating due to lack of 
radiation shielding, ventilation or improper 
positioning. 

3. Results

3.1 Near-Surface Temperature 

The modelled temperatures at 2 meters were com-
pared against a network of official stations and the 
PWSN. In general, the deviations between the 
model and observations were large (Table 2). 
The model tended to overestimate near surface tem-
perature in the cold study periods and underesti-
mate during the warmer two periods. Also, the 
model tended to perform better during the day 
when it had both lower RMSE and less bias. How-
ever, at a closer examination of the diurnal variation 
there is no clear pattern between study periods that 
might allow for a consistent correction factor or 
transformation (Fig. 6a): (1) both in January and 
February, the modeled temperatures rose 
drastically on the second day; (2) despite that 
temporary deviation, February had the lowest 
overall RMSE; (3) in March temperatures were 
overestimated during the night, but daily 
temperatures showed good agreement; (4) April is 
the only period to underestimate the temperatures 
for the whole duration; (5) overall, July and April 
cases accurately represented the daily temperature 
ranges and fluctuation. 
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Table 2 – 2 m Temperature results [°C] 

3.2 Global Radiation 

Global shortwave radiation was overestimated by 
the model in nearly every study period. This is 
likely due to both the obstruction of weather station 
sensors by surrounding obstacles and cloud for-
mation inaccuracies in the model. The February 
study period had the most accurate modelled solar 
radiation and even underestimates the solar radia-
tion on the second day, which indicates that the 
shortwave radiation was not driving the extreme 
overestimation of temperature during the same 
period (Table 3). 

Table 3 – Global shortwave radiation results [W/m2] 

3.3 Wind Speed 

Wind speed measurements showed consistently 
large differences between official weather stations 
and the PWSN. This was likely due to the difficulty 
of properly positioning wind gauge instruments. 
Therefore, for wind measurements only the official 
stations were used in the analysis (Fig. 6b). 

Table 4 – Wind speed results [m/s] 

3.4 Comparison to Reference Station 

In an effort to give some context to the magnitude of 
these errors, the deviations of the model results 
from near surface temperature observations were 
compared to the deviation of the airport reference 
station from all other stations. In effect, we wanted 
to test how well the model performed relative to the 
naïve use of nearby airport weather station data in 
predicting urban conditions (Fig. 7). 
The median of the absolute model error was only 
lower in February and the spread of that error was 
only significantly smaller in July. Therefore, the 
model failed both in terms of accuracy and precision 
when compared to the airport reference station. 

RMSE MB Mean SD Min Max

Overall 3.04 0.62 10.06 10.48 -8.69 33.71

Day 2.65 -0.10 12.48 11.17 -7.54 33.71
Night 3.40 1.34 7.65 9.15 -8.69 32.23

January 3.62 1.87 0.24 3.91 -8.69 10.34
February 1.94 0.84 0.46 2.25 -5.67 5.19

March 3.76 2.66 9.49 3.48 0.46 16.03
April 2.82 -1.74 13.17 3.92 2.11 19.46

July 2.82 -0.31 26.91 4.39 15.02 33.71

RMSE MB Mean SD Min Max

Overall 87.75 26.88 175.53 274.35 0.00 947.25

January 57.27 14.36 38.12 82.46 0.00 311.11
February 43.88 2.12 38.10 73.94 0.00 420.89

March 90.38 35.38 202.76 266.78 0.00 722.62
April 98.07 26.82 258.62 303.51 0.00 867.09

July 123.31 54.47 340.05 358.25 0.00 947.25

RMSE MB Mean SD Min Max

Overall 2.54 0.42 3.76 2.95 0.00 14.17

Day 2.33 0.19 3.70 2.80 0.00 13.14
Night 2.73 0.65 3.82 3.10 0.05 14.17

January 2.25 0.51 3.15 2.04 0.11 12.72
February 3.69 1.16 7.82 2.16 2.83 14.17

March 1.46 0.41 1.57 0.95 0.01 5.17
April 2.67 0.33 4.05 2.50 0.12 11.86

July 2.07 -0.30 2.22 1.89 0.00 8.85
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Fig. 6a, 6b – Model vs. Observations for 2 m Temperature (top) and Wind Speed (bottom) 

Fig. 7 – Distribution of deviation from 2 m temperature observations for airport reference station and WRF model
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4. Discussion

4.1 Suitability for Building Energy Model 
Boundary Condition 

Despite the use of a detailed description of the 
urban areas, core climatic variables, such as air tem-
perature, were inconsistently reproduced. In fact, as 
Jänicke et al. (2016) show in their study over the Ber-
lin-Brandenburg region, increasing complex multi-
layered UCMs might actually be a source of in-
creased error when compared to a simple slab 
model. 
With such a large degree of error and no consistency 
in the direction of bias that is both seasonally and 
diurnally stable, the present study cannot identify 
the WRF model as an appropriate tool for deriving 
urban boundary conditions for building energy 
modeling. Furthermore, the model more often pro-
vided worse estimates of the urban near surface 
temperature than the airport reference station. This 
suggests that morphing approaches that modify ref-
erence measurements or TMY records may be more 
suitable for urban studies. 

4.2 Sources of Error 

In order to better isolate the sources of modeling 
error, a correlation analysis was conducted between 
the overall RMSE per station and station properties 
that could be contributing to the observed error. 
Only the station elevation showed any significant 
correlation with the error with a correlation coeffi-
cient of 0.28. It is a weak relationship and may be 
related more to the land cover typology than eleva-
tion as in Vienna, the urban density decreases with 
elevation to the West and we have seen a higher rate 
of error associated with lower density LCZCs (e.g. 
LCZ 6 and 9) in another ongoing research effort. 
Due to the use of unofficial personal weather station 
data, it was also of interest to examine the stations 
that showed the best and worst agreement with 
model results. Interestingly, we saw no consistency 
between study periods or within types of stations 
(i.e. official vs. amateur). This indicates that any 
consistent measurement error that might exist is ob-
scured by the magnitude and spatial variation of the 
modeling error. 
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