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Abstract 
Recently, an Energy Recovery Ventilator (ERV) in a resi-

dential building was seen as an attractive ventilation 

option in terms of energy saving and indoor air quality. In 

order to identify a feasible set among many ventilation 

strategies in this situation, various decision-making ap-

proaches (deterministic or stochastic) using Building 

Performance Simulation (BPS) tools have been suggested. 

As a simulation-based decision-making approach, a Sto-

chastic Multi-Criteria Decision Making (SMCDM) method 

based on Cumulative Prospect Theory (CPT) is presented 

in this paper to find the best ventilation strategy under 

model uncertainties. For this study, two ventilation 

strategies, considering air inlet positions and CO2 sensor 

positions, were chosen and modelled using two 

simulation tools: CONTAMW 3.1 for the airflow model 

and EnergyPlus for the thermal model. In addition, Latin 

Hypercube Sampling (LHS) was used to reflect the model 

uncertainties. In this study, it is shown that CPT can 

provide a more realistic and trustworthy framework than 

the Bayesian decision theory. 

1. Introduction

Due to the high attention given to passive houses 
and the increase in toxic air environments, an 
Energy Recovery Ventilator (ERV) in a residential 
building is being installed in order to attain 
acceptable Indoor Air Quality (IAQ) and to reduce 
energy consumption. The ERV is critical for people 
who spend about 90 % of the day in indoor spaces 
(Laverge and Janssens, 2013), and a ventilation stra-
tegy decision-making is emerging as a major issue. 
Building Performance Simulation (BPS) tools can 
obtain predicted outputs (energy consumption, 
thermal comfort, CO2 concentration, etc.) through a 
kernel engine in a mathematical model, considering 
the indoor and outdoor physical environmental 
conditions. Such predicted outputs can be used to 

determine the optimal design of the ERV. However, 
the BPS tools have many unknown inputs that 
generate uncertainty of the predicted outputs. 
Furthermore, such uncertainty is a major issue in 
finding a highly reliable design alternative (de Wit, 
2001; Macdonald, 2002; Hopfe, 2009; Kim et al., 
2014; Sun et al., 2014). 
Previous studies (de Wit, 2001; Kim et al., 2014) have 
suggested the Monte Carlo Simulation (MCS) and 
the Multi-Criteria Decision Making (MCDM) under 
uncertainties using the Bayesian decision theory to 
deal with the stochastic decision-making issues. 
They showed the differences between the deter-
ministic and stochastic approach, as well as the pos-
sibility of reaching a meaningful decision-making 
result. The Bayesian decision theory is used to 
calculate the utility function reflecting the pre-
ferences or attitudes of decision makers toward risk, 
and determine a design alternative with high-ex-
pected utility. However, the Bayesian decision 
theory based on utility function is problematic since 
the decision-making problem is solved under the as-
sumption that the decision makers behave rational-
ly (Kahneman and Tversky, 1979; Tversky and 
Kahneman, 1992). Because the individual cognitive 
ability varies among general decision makers, it is 
difficult to assume they are rational participants. To 
handle the aforementioned issue, Cumulative Pros-
pect Theory (CPT) has been presented (Lahdelma 
and Salminen, 2009; Wakker, 2010; Krohling and de 
Souza, 2012). 
In this study, to solve a Stochastic Multi-Criteria 
Decision Making (SMCDM) problem, the CPT is 
developed as an alternative to utility function and is 
used to identify a feasible set among many venti-
lation strategies of the ERV in a given residential 
building.  
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2. Stochastic Multi-Criteria Decision
Making (SMCDM)

Most decision-making problems using BPS tools are 
based on many criteria rather than a single criterion. 
The optimal alternative is identified using predicted 
outputs. It should be noticed that the predicted 
outputs are probabilistic rather than deterministic, 
due to various uncertainty sources (aleatory or epis-
temic uncertainties). In other words, decision-making 
problems using BPS tools are Stochastic Multi-
Criteria Decision Making (SMCDM) that must reflect 
various risks under uncertainties and multi-criteria 
simultaneously. 
The SMCDM methods can be used as follows: (1) 
Bayesian decision theory, (2) Cumulative Prospect 
Theory (CPT). The Bayesian decision theory can 
reflect the preferences for risks under uncertainty 
and determine an alternative with high-expected 
utility (Von Neumann & Morgenstern, 1947). To 
present the decision-making process with the Bay-
esian decision theory in the area of building 
simulation, de Wit (2001) selected initial cost and 
thermal comfort as multi-criteria problems and 
treated a MCDM problem using stochastic predic-
ted outputs propagated by MCS and the joint utility 
function. Kim et al. (2014) showed the feasibility of 
Bayesian inference based on the Markov Chain 
Monte Carlo (MCMC) to consider the different ex-
pected utilities of multiple decision makers, rather 
than of only a single decision-maker. The afore-
mentioned previous studies are signifycant in terms 
of making reference to which multi-criteria deci-
sion-making was conducted by reflecting the risks 
of stochastic predicted outputs.  
However, the Bayesian decision theory is proble-
matic since it assumes that decision makers rationally 
recognize utility and behave with a consideration of 
the risks (Kahneman and Tversky, 1979; Tversky and 
Kahneman, 1992). It is difficult for decision makers to 
find a highly reliable alternative, considering they are 
based on vague information or data, and each deci-
sion maker has different cognitive abilities. In con-
trast, the CPT can resolve the decision-making pro-
blem based on the utility theory by reflecting refer-
ence point setting, diminishing sensitivity, and loss 
aversion (Lahdelma and Salminen, 2009; Wakker, 
2010; Krohling and de Souza, 2012). 

- Reference point setting: when making a valueble 
decision about gains and losses, decision makers 
decide a value relatively, rather than absolutely, 
by comparing against the predefined individual 
reference point. This relative valuation differs 
considerably from the utility theory based on the 
absolute value. Since decision makers’ 
preferences toward gains and losses differ based 
on the reference point, difference value functions 
must be applied. The CPT can distinguish gains 
and losses according to the reference point setting 
and express them as value functions having an 
asymmetrical s-shape, as shown in Fig. 1. 

- Diminishing sensitivity: even if two design 
alternatives have the same difference in gain or 
loss, they have a large value change if the differ-
ence between gain or loss and the reference 
point is small. Otherwise, they have a small 
value change. It is called diminishing sensitivity. 
As shown in Fig. 1, the slope of the value func-
tion decreases if the difference between gain or 
loss and the reference point increases. The CPT 
can reflect the diminishing sensitivity of the 
decision makers by varying the weighting 
function of gain or loss based on the reference 
point. 

- Loss aversion: decision makers tend to show 
higher loss aversion for losses than for gains ac-
cording to previous studies (Wakker, 2010; 
Krohling and de Souza, 2012). In other words, 
decision makers are more sensitive to losses than 
to gains. The CPT can distinguish the value 
functions of gains and losses according to the 
reference point and reflect a loss aversion coef-
ficient for losses. 

Fig. 1 - Value function of CPT 
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Within the aforementioned mind, this study uses 
the CPT for SMCDM. The prospect value ( )V f  of 
CPT can be expressed as Equation (1) using the 
value function ( )v x , the decision weight functionπ , 
and the probability of event p . The value function 
is a function according to gains if the difference bet-
ween criteria value (predicted output) and reference 
point is positive, or a function according to losses if 
the difference is negative (Equation (2)). The para-
meters ,α β  related gains and losses capture the 
concave and convex curvature of the value function 
(Krohling and de Souza, 2012), and λ  is the loss 
aversion coefficient that is used to reflect a high loss 
aversion toward loss. Kahneman and Tversky 
(1979) proposed α =0.88, β =0.88, λ =2.25, and these 
parameters were used in this study. The weighting 
function reflects the diminishing sensitivity using 
the attitude coefficients ,γ φ  of gains and losses for 
risk as shown in Equations (3)-(6). The attitude 
coefficient of gains and losses were set as ,γ + − =0.8 
and φ =1.0, respectively, as suggested by Prelec 
(1998). The propagated stochastic predictions 
(heating energy and CO2 concentration) using the 
MCS were used in this study to calculate the 
probability of an event. 
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where, ( )V f  is the prospect value, ( )v x is the value 
function, x is the difference between the critical 
value and the reference point, ,α β are the 
parameters related to gains and losses, λ  is the loss 
aversion coefficient, π is the decision weight 
function (+ and – superscript denote gain and loss, 
respectively.), ω is the weighting function, γ is the 
risk gain attitude coefficient, and φ is the risk loss 
attitude coefficient. 

3. Target Building and Unknown Inputs

3.1 BPS Tools 

For the target building of this study, a 15-story 
residential building in Seoul, Korea was selected for 
the analysis of the ventilation strategies (Fig. 2(a)). 
To simulate thermal and airflow phenomena, 
CONTAMW 3.1 and EnergyPlus 8.0 were chosen 
(Fig. 2(b)-(c)). EnergyPlus has been used extensively 
to calculate transient heat and mass flow. But it 
cannot perform duct modelling. Otherwise, 
CONTAMW 3.1, adequate for determining macro 
flow phenomena such as overall ventilation rates, 
enables the duct modeling, although it cannot 
reflect dynamic energy flows such as indoor air 
temperature. To solve these problems, the present 
study integrated two BPS tools using a Ping-Pong 
method (decoupled approach). 
The simulation period was one day in winter 
(January 21), and the Seoul climate data was used. It 
was assumed that all doors of the room were open 
and the windows were closed. Since most occupants 
do not actively open windows in winter and this is 
appropriate to assess the IAQ (Kim and Park, 2009). 
An adult was assumed to generate 0.31 liters per 
minute. Infiltration was taken into consideration. 
The occupant schedules employed the data 
provided by Hyun and Park. (2006). 

(a) Floor plan 
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(b) CONTAMW 3.1 

(c) DesignBuilder

Fig. 2 - Target residential building and BPS tools 

Fig. 3 shows the average occupant schedules. And 
the same occupant schedule for the adjacent rooms 
(master room, living room) was used for the bath-
room. The radiant floor heating system was con-
trolled per room and on/off control method was ap-
plied based on the heating set-point temperature 
(20 ℃). For the ERV, the CO2-sensor based Demand-

Controlled Ventilation (DCV-CO2) was selected. 
The DCV-CO2 is operated using the on/off control 
method based 1,000 PPM. The air supply and 
exhaust rate were set as 100 CMH  

Fig. 3 - Occupant schedule (Hyun and Park, 2006) 

(Cubic Meter per Hour) and 60 CMH for the air 
exhaust system in the bathroom. 
As mentioned above, the Ping-Pong method was 
used to complement the shortcomings of the two 
simulation models. The EnergyPlus model was ap-
plied to the radiant floor heating system and ERV, 
and CONTAMW 3.1 was only applied to ERV. And 
each system is operated by automatic control logic 
(on/off control for radiant floor heating system, 
DCV-CO2 control for ERV). For the Ping-Pong 
approach, the two simulation models were inte-
grated in MATLAB platform. For each time step, 
EnergyPlus calculates indoor air temperatures and 
then CONTAMW 3.1 recalculates the airflows of the 
openings (windows and doors) and/or ducts, air 
supply rate of ERV, and CO2 concentration using 
the calculated indoor air temperatures. The calcu-
lated airflows were automatically input to Energy-
Plus and the heating energy consumption was 
recalculated. The aforementioned coupling process 
was repeated every 20 minutes. 

3.2 Selection of Unknown Inputs 

The unknown inputs of the BPS tools were chosen 
as shown in Table 1 by referring to the previous 
studies (Hyun and Park, 2006; ASHRAE, 2013; DOE, 
2013a; DOE 2013b, Kim et al., 2014; Macdonald, 
2002; Hopfe, 2009; Walton & Dols, 2005). The 
unknown inputs were assumed to have a triangular 
distribution (T[0.9, 1.0, 1.1]) consisting of the 
minimum, maximum, and base values. The 
triangular distribution is propagated as ratio of the 
definite values of the unknown inputs. The 
occupant schedule was chosen as the discrete 
uniform distribution (D[1, 30]). 

Table 1 – Unknown inputs 

Descriptions 

Construction 
materials 

Density, specific heat, and conductivity 
of gypsum board 

Density, specific heat, and conductivity 
of brick 

Density, specific heat, and conductivity 
of concrete 

Density, specific heat, and conductivity 
of insulation board 

Density, specific heat, and conductivity 
of acoustic tile 
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Solar transmittance, reflectance, 
emissivity, conductivity of clear 
window 

Numerical 
algorithm 

Loads or temperature convergence 
tolerance value 

Grounds Temperature and reflectance 

Set-point 
temperature 

Heating set-point temperature 

Internal heat 
gains 

Number of person, activity level, 
fraction radiant of people (master 
room)  

Number of person, activity level, 
fraction radiant of people (bedroom1) 

Number of person, activity level, 
fraction radiant of people (bedroom2) 

Number of person, activity level, 
fraction radiant of people (living room) 

Number of person, activity level, 
fraction radiant of people (bathroom1) 

Number of person, activity level, 
fraction radiant of people (bathroom2) 

Internal gains and fraction radiant of 
lights 

Internal gains and fraction radiant of 
electric equipment 

Schedule Occupants’ schedules 

ERV 

Fan efficiency, pressure rise, and motor 
efficiency of supply fan 

Fan efficiency, pressure rise, and motor 
efficiency of return fan 

Sensible or latent effectiveness 

Exhaust fan 

Fan efficiency and pressure rise of 
exhaust fan (bathroom1) 

Fan efficiency and pressure rise of 
exhaust fan (bathroom2) 

Pumps 
Rated pump head and motor efficiency 
of heating water circulation pumps 

Plants 
Maximum or minimum loop 
temperature  

Airflows 

Flow exponent, discharge coefficient, 
wind pressure coefficient, wind 
velocity profile exponent, local terrain 
constant, terminal loss coefficient, 
leakage class#1(oval), leakage 
class#2(rectangular), duct roughness, 
leakage area of doors, leakage area of 
windows 

4. Uncertainty Results

For the propagation of uncertainties, Latin Hyper-
cube Sampling (LHS), appropriate for complex non-
linear models, was used. The number of sampling 
case was set to 200. The heating energy con-
sumption is the sum total of the radiant floor 
heating system and ERV. The CO2 concentration 
was expressed as CO2 performance ϕ  using the 
total occupation time of each room T  and total time 
δ  when CO2 concentration is below 1,000 PPM as 
shown in Equation (7). In other words, the 
uncertainty results are represented as total heating 
energy consumption (kWh) and CO2 performance 
(%). And the goal of this study was to determine the 
air inlet position of the ERV and CO2 sensor 
positions. In other words, it is a SMCDM problem. 
For this study, two ventilation strategies were used 
as shown in Table 2. 

1
100 /

m
k

k k

m
T
δϕ

=

 
= × 
 
∑         (7)

where, ϕ is the CO2 performance (%), δ is the total 
time when the CO2 concentration of each room is 
below 1,000PPM (hour), T is the total occupation 
time of each room (hour), and m  is the number of 
rooms (master room, bedroom 1, bedroom 2, and 
living room). 

Table 2 – Two ventilation strategies according to outdoor air 
supply rate, air inlet position, and CO2 sensor position 

ALT. 
Outdoor air 
supply rate 

Air inlet 
position 

CO2 sensor 
position 

1 

DCV-CO2 

Living room Living room 

2 
Living room 
+ Master 
room 

Living room 
+ Master 
room 

Table 3 shows the uncertainty results of two design 
alternatives. In terms of total energy consumption, 
ALT #1 is superior by a difference of 1.37 (kWh), but 
the difference is insignificant. In terms of CO2 
performance (%), ALT #2 is superior owing to the 
additional CO2 sensors in the master room. In the 
results of the coefficient of variation, which expres-
ses the degree of uncertainty, ALT #2 is superior in 
terms of total heating energy consumption and CO2 
performance, but the difference in the degree of 
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uncertainty is insignificant. Fig. 4 shows the un-
certainty results of each alternative using the 
Probability Distribution Function (PDF). 

Table 3 – Uncertainty results (STDEV: Standard deviation, COV: 
Coefficient of Variation) 

ALT #1 ALT #2 
Heating 
energy  
(kWh) 

CO2 
performance 
(%) 

Heating 
energy  
(kWh) 

CO2 
performance 
(%) 

Min 40.86 12.61 42.23 29.27 

Max 99.07 85.70 100.44 135.72 

Mean 84.16 34.39 85.53 66.14 

STDEV 11.25 13.17 11.26 19.49 

COV 0.134 0.383 0.132 0.295 

(a) Total heating energy consumption (kWh) 

(b) CO2 performance (%) 

Fig. 4 - Uncertainty results using PDF (ALT. #1 vs. ALT. #2) 

5. SMCDM Results

In this study, reference points and weighting factors 
were selected to calculate the prospect values 
(Tables 4-5). The weighting factors were used to 
transfer into a single cost function. However, it 

should be noticed that the selection of reference 
points and weighting factors can be changed ac-
cording to the preferences of the real decision 
makers. 

Table 4 – What-if scenarios of reference points 

Case Heating energy 
(kWh) 

CO2 performance 
(%) 

1 70 20 

2 70 25 

3 75 20 

4 75 25 

Table 5 – What-if scenarios of weighting factors for multi-criteria

Weight Heating energy 
(kWh) 

CO2 performance 
(%) 

1 0.8 0.2 

2 0.2 0.8 

3 0.5 0.5 

Table 6 shows the prospect values of the CPT 
according to the scenarios of reference points and 
weighting factors. The prospect value is expressed 
as a normalized prospect value matrix (Table 7) 
using Equations (8) and (9). As shown in Table 8, the 
total prospect value reflecting the two performance 
criteria (heating energy consumption and CO2 
performance) can be calculated using Equation (10). 

( )
,

, 1
,

,          ,
max

i j
i j

i j

v
r i M j N

v
= ∈ ∈ (8) 

( ),
, 2

,

min
,          ,i j

i j
i j

v
r i M j N

v
= ∈ ∈ (9) 

( ) ( ) ( )

1

n w j

i j
j

v r xα
=

=∏ (10) 

where, r is the normalized prospect value, v is the 
prospect value of each alternative (refer to Table 6), 
N1 is the benefit criteria for CO2 performance, and 
N2 is the cost criteria for the heating energy con-
sumption. 
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Comparing with the total prospect values according 
to the reference point scenarios (Table 4) under the 
Weight #1 condition (Table 5), ALT #2 (total pro-
spect value: 0.88) is the optimal alternative for Cases 
#1-2 and ALT #1 (total prospect value: 0.77) is the 
optimal alternative for Cases #3-4. When the weight 
scenario is changed (Weights #1-3 in Table 5), a dif-
ferent optimal alternative is determined for Cases 
#3-4 among the reference point scenarios. For Cases 
#1-2, ALT #2 is determined as the optimal alterna-
tive, but the total prospect value is changed depend-
ing on the weighting factor. 
As shown in the above results, the SMCDM using 
CPT results in a different optimal alternative for the 
ERV depending on the reference point and weigh-
ing factor, that are determined based on the sub-
jective preferences and attitudes of decision makers 
toward risks. The reference point selection reflects 
the value function for gains and losses, unlike the 
Bayesian decision making based on the utility 
theory, and is one of the major advantages of the 
CPT. These merits can be useful in finding a more

 
rational and reliable optimal alternative than the 
utility theory. 

6. Conclusion 

In this study, SMCDM was implemented to find an 
optimal ventilation strategy for the ERV using the 
stochastic predicted outputs of the BPS tool. In the 
building simulation domain, Bayesian decision-
making based on the utility theory is generally used 
for handling SMCDM. This solves MCDM problems 
by reflecting the preferences of decision makers. 
However, the utility theory is not practical because 
it assumes that decision makers are rational beings. 
In contrast, the CPT proposed in this study can 
reflect (1) reference point setting, (2) diminishing 
sensitivity, and (3) loss aversion, and this is useful 
in solving the problem of the utility theory. In this 
study, the CPT was developed and the SMCDM of 
the ERV was conducted by selecting two ventilation 
strategies. In particular, reference points and 

Table 6 – Prospect values of alternatives 

ALT 
Case #1 Case #2 Case #3 Case #4 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

1 67.81 80.93 67.81 49.50 21.58 56.27 21.58 30.62 

2 79.06 204.54 79.06 170.13 34.37 203.59 34.37 170.13 

 
Table 7 – Normalized prospect matrix results 

ALT 
Case #1 Case #2 Case #3 Case #4 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

Heating 
energy 

CO2 
performance 

1 1 0.396 1 0.291 1 0.276 1 0.180 

2 0.858 1 0.858 1 0.628 1 0.628 1 

 
Table 8 – SMCDM results of ERV using CPT  

ALT 
Case #1 Case #2 Case #3 Case #4 

Weight 
#1 

Weight 
#2 

Weight 
#3 

Weight 
#1 

Weight 
#2 

Weight 
#3 

Weight 
#1 

Weight 
#2 

Weight 
#3 

Weight 
#1 

Weight 
#2 

Weight 
#3 

1 0.83 0.48 0.63 0.83 0.37 0.54 0.77 0.36 0.53 0.77 0.25 0.42 

2 0.88 0.97 0.93 0.88 0.97 0.93 0.69 0.91 0.79 0.69 0.91 0.79 
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weighting factors were randomly selected for each 
scenario and their effects on deciding the optimal 
alternative were examined.  
In the results, decision makers could obtain differ-
ent total prospect values depending on the selection 
of reference point, which has considerable effect on 
the decision of the optimal alternative. It means that 
the decision-making results using the CPT can 
provide more realistic and trustworthy information 
compared to the utility theory. 
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