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Abstract 

The thermal and acoustic insulation of individual build-

ing elements such as walls, windows and systems for 

roller shutters significantly affects the thermal and acous-

tic insulation of a building. This paper considers the 

acoustic and thermal performance of the individual ele-

ments evaluated in laboratory with simulation of both 

the façade sound reduction index and thermal transmit-

tance of a typical room. The scope of this work is to veri-

fy if there are any correlations between acoustic and 

thermal performance; for this reason, 4 types of opaque 

wall, 3 window systems for roller shutters and 5 win-

dows for a total of 60 façade configurations have been 

considered and combined. 

1. Introduction

The correct acoustic and thermal design of a build-

ing is of fundamental importance for increasing 

indoor comfort. 

Many studies have been carried out regarding 

acoustic and thermal comfort (Fabbri et al., 2014; 

Granzotto, 2021; Tronchin et al., 2018; Tronchin et 

al., 2021), façade acoustic insulation (Hua et al., 

2021; Jagniatinskis et al., 2021) and thermal insula-

tion (Theodosiou et al., 2019). 

Other studies comparing acoustic and thermal 

characteristics of walls can be found (Di Bella et al., 

2014; Di Bella et al., 2015). Sound insulation is one 

important factor for façade performance optimiza-

tion. As an example, Ryu et al. (2010) proved that 

the sound insulation of a building façade influ-

enced indoor annoyance due to transportation 

noise and the frequency content of intrusive noise. 

For façade thermal insulation, Sierra-Peréz et al. 

(2016) demonstrated how an optimized combina-

tion of elements could affect indoor thermal per-

ception. 

In this work, the acoustic and thermal insulation of 

a façade has been considered, varying the perfor-

mance of single elements. 4 walls, 3 shutter sys-

tems and 5 windows. 

The acoustic performance was determined in a 

laboratory while the thermal performance was 

simulated from the thermal conductivity data, con-

sidering, in addition, linear thermal transmittance.  

2. Calculation Models

The sound reduction index, R, of a building ele-

ment is defined as:  

𝑅 = 10lg  
1

𝜏  (1) 

The transmission coefficient  is the ratio of the 

sound power, W1, which is incident on the test el-

ement to the sound power, W2, radiated by the test 

element to the other side. 

R was measured in laboratory conditions according 

to the ISO 10140 (2021) series standard: 

𝑅 = 𝐿1 − 𝐿2 + 10lg  
𝑆

𝐴  (2) 

The composed sound reduction index, Rtot, was 

calculated as: 
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𝑅tot = 10lg  
 𝑆i
n
i=1

 10 −𝑅i 10  𝑆i
n
i=1

     (3) 

The weighted sound reduction index, Rw and the 

spectrum adaptation term for pink noise, C, and for 

traffic noise, Ctr, were calculated according to ISO 

717-1 (2020). The thermal conductivity, , of mate-

rials such as rock wool, EPS and XPS is measured 

according to EN 12667 standard (2021), while the 

thermal transmittance, U, and the linear thermal 

transmittance, , were simulated by means of a 

FEM software according to ISO 10077-2 (2017) and 

ISO 10211 (2017) standards.  

The composed thermal transmittance, Utot, of the 

façade was obtained according to ISO 10077-1 

(2017) with the following formula: 

 

𝑈tot =
 𝑈i𝑆i + Ψk𝑙k

𝑚
k=1

n
i=1

 𝑆i
n
i=1

    (4) 

3. Building Elements 

The building elements considered are reported in 

Tables 1, 2 and 3.  

Table 1 – Building elements - Walls 

ID Description 

A 

Aerated concrete blocks (350 kg/m3, 300 mm) lined 

with rock wool panels (45 mm) and gypsum board 

(12.5 mm).  

B 

Hollow brick plastered one side (250 mm) lined 

with rock wool panels (140 mm) and plaster (5 

mm). 

C 
Hollow brick plastered one side (250 mm) lined 

with EPS panels (140 mm) and plaster (5 mm). 

D Aerated concrete blocks (300 kg/m3, 400 mm). 

 

 

 

 

 

Table 2 – Building elements - Windows systems for roller shutters 

ID Description 

a 
Integrated windows system for roller shutter for 

window flush with the internal wall. S=0.75 m2.  

b 
Integrated windows system for roller shutter for 

window in the middle of the wall. S=0.75 m2. 

c 
Box for roller shutter suitable for building renova-

tions. S=0.45 m2. 

Table 3 – Building elements - Windows 

ID Description 

1 

One sash window with glass: 6 mm + 0.76 mm 

acoustic PVB + 6 mm / 16 mm Argon / 4 + 0.50 mm 

acoustic PVB + 4 mm. 

2 

One sash window with glass: 3 mm + 0.50 mm 

acoustic PVB + 3 mm / 15 mm Argon / 4 mm / 15 

mm Argon / 3 mm + 0.50 mm acoustic PVB + 3 mm. 

3 

Two sash windows with glass: 4 mm + 0.76 mm 

acoustic PVB + 4 mm / 15 mm Argon / 4 mm / 15 

mm Argon / 4 mm + 0.76 acoustic PVB + 4 mm. 

4 

One sash window with glass: 6 mm + 0.76 acoustic 

PVB + 6 mm / 12 mm Argon / 4 mm / 12 mm Argon / 

4 mm + 0.76 acoustic PVB + 4 mm. 

5 
Two sash windows with glass: 3 + 0.38 PVB + 3 mm / 

18 Argon / 4 + 0.50 acoustic PVB + 4 mm. 

    

Fig. 1 – Window system for roller shutter “a” and “b” 
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Fig. 2 – Window system for roller shutter “c” 

Fig. 1 and 2 show the windows system for roller 

shutter used in the simulations. Window dimen-

sion was 1230 mm x 1480 mm, and wood frame 

thickness was 80 mm. 

4. Acoustic Measurements and 
Thermal Simulations  

The sound reduction index of the building ele-

ments was measured in the laboratory according to 

ISO 10140 (2021) series standard (Figs. 3, 4 and 5). 

The sound reduction index, R, of the building ele-

ments in the 1/3 octave frequency band is shown in 

Fig. 6. The weighted sound reduction and the 

thermal transmittance are shown in Table 4.  

The thermal transmittance of the windows and 

window systems for roller shutters was simulated 

with FRAME SIMULATOR software.  

From the thermal profiles in Fig. 7, it is possible to 

consider the “a” box shutter as the one with the 

best performance followed by “b” and “c”. 

 

  

Fig. 3 – Window – Laboratory test according to ISO 10140 (2021) 

series standard 

  

Fig. 4 – Window system for roller shutter “a” – Laboratory test 

according to ISO 10140 (2021) series standard 

 

Fig. 5 – Wall – Laboratory test according to ISO 10140 (2021) 

series standard 
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Fig. 6 – Sound reduction index of building elements in 1/3 octave 

bands 
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Table 4 – Building elements acoustic and thermal performance 

Element Type Rw(C;Ctr) U 

A Wall 66(-2;-9) 0.201 

B Wall 58(-3;-9) 0.219 

C Wall 51(-2;-7) 0.193 

D Wall 47(-2;-6) 0.170 

a Shutter box 45(-2;-8) 0.385 

b Shutter box 44(-2;-5) 0.842 

c Shutter box 37(-1;-3) 1.061 

1 Window 47(-2;-5) 1.200 

2 Window 45 (-1;-3) 0.890 

3 Window 44 (-1;-3) 1.100 

4 Window 44(-1;-5) 0.890 

5 Window 40(-2;-5) 1.300 

 

     

 

Fig. 7 – Temperature for windows system for roller shutter (left: 

“a”, center: “b”, right: “c”) 

The linear thermal transmittances, , of the shut-

ter-wall interface, wall-window interface and shut-

ter-window interface were calculated with Finite 

Element Method software MOLD SIMULATOR, 

according to ISO 10211 (2017). 1 is the linear 

thermal transmittance for wall-shutter box, 2 is 

the linear thermal transmittance for wall-shutter-

window, 3 is the linear thermal transmittance for 

shutter-window (Fig. 8 and Table 5).  

 

 

Fig. 8 – Linear thermal transmittance scheme 

Table 5 – Building elements – Linear thermal transmittance 

Configuration   1  2  3 

Aa 0.33 0.08 0.23 

Ab 0.33 0.08 0.38 

Ac 0.10 0.10 0.55 

Ba 0.40 0.11 0.23 

Bb 0.40 0.08 0.38 

Bc 0.45 0.11 0.55 

Ca 0.40 0.12 0.23 

Cb 0.40 0.09 0.38 

Cc 0.45 0.11 0.55 

Da 0.33 0.08 0.23 

Db 0.33 0.08 0.38 

Dc 0.10 0.09 0.55 

 

Figs. 9, 10 and 11 show some temperature exam-

ples of linear thermal transmittance simulations. 
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Fig. 9 – Example of 1 simulation with MOLD software for "b" 

shutter box and wall "D" 

   

 

Fig. 10 – Example of 2 simulation with MOLD software for "a", 

"b" and "c" shutter box (with Wall "B") 

  

 

Fig. 11 – 3 simulation with MOLD software for "a", "b" and "c" 

shutter box  

5. Results 

The acoustic and thermal insulation of a 2.7-m-high 

and 4-m-wide façade has been considered. 

The composed weighted sound reduction index, 

Rw, vs composed thermal transmittance, U, is 

shown in Fig. 12. 

The composed weighted sound reduction index, 

Rw+Ctr, vs composed thermal transmittance, U, is 

shown in Fig. 13. Rw+Ctr considers weighted sound 

reduction index in dB(A) for traffic noise.   

The best configurations are located in the upper 

left quadrant. 
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Fig. 12 – Rw vs U 
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Fig. 13 – Rw+Ctr vs U 

It can be noted that there are no correlations be-

tween acoustic and thermal performance at all. 

Indeed, poor correlations are obtained even con-

sidering single wall results. 

For Rw:  

- R2_wallA is 0.13;  

- R2_wall B is 0.41;  

- R2_wall C is 0.42;  

- R2_wall D is 0.15. 

For Rw+Ctr: 

- R2_wall A is 0.09; 

- R2_wall B is 0.16; 

- R2_wall C is 0.18; 

- R2_wall D is 0.14. 

 

Fig. 14 shows the configurations examined as the 

thermal transmittance, U, decreases. In the same 

graph, the indices Rw and Rw+Ctr are indicated (dot-

ted line indicates the calculated transmittance 

without considering the linear thermal transmit-

tance). 
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Fig. 14 – U vs Rw and U vs Rw+Ctr  

Considering the variation in the performance of a 

single element (wall, window systems for roller 

shutters and window), it can be noted how the 

variations in the overall performance of the façade 

are different from an acoustic and thermal point of 

view (Fabbri et al., 2021; Tronchin, 2005). Interest-

ingly, it can be noted that, if linear thermal trans-

mittances are not considered, considerable errors 

are made (U = 0.12-0.21 W/(m2K)). 

Furthermore, it can be noted that the configura-

tions with "D" wall are the best in terms of thermal 

insulation because of low U and reduced thermal 

bridges, while in terms of sound insulation they 

are not as effective as the other walls. 

The configurations with shutter box type "c" pro-

vide good results even if the performances of this 

element are not optimal. This is due to the small 

surface of the element, which leads to a small over-

all influence. 

It can be noted that the combination providing 

better acoustic and thermal performance is repre-

sented by the "Aa2" configuration.  

In Figs. 15-23, the values of U, Rw, Rw+Ctr of the 

whole façade are reported and parametrically 

compared with the values of the walls (A, B, C and 

D), of the shutter boxes (a, b, and c) and of the 

windows (1, 2, 3, 4 and 5). 

Configurations with the lowest value are indicated 

with a grey dashed line. In Fig. 15, it can be seen 

how wall A implies a lower value of U for the fa-

çade. This is due to the fact that wall A has a lower 

2 value because of its composition (thermal insu-

lating blocks). As regards the acoustic insulation, it 

can be noted that as the performance of the single 

element increases, the range of Rw and Rw+Ctr in-

creases. 

In Figs. 16 and 17, the overall acoustic performance 

is studied parametrically and compared to the wall 

ones. Interestingly, an important influence is as-

sessed below 55 dB, while over this threshold no 

significant difference is found. 
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Fig. 15 – Overall U compared to the thermal transmittance of the 

wall (A, B, C and D), U_wall  
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Fig. 16 – Overall Rw compared to the weighted sound reduction 

index of the wall (A, B, C and D), Rw_wall 
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Fig. 17 – Overall Rw+Ctr compared to the weighted sound reduc-

tion index of the wall (A, B, C and D), (Rw+Ctr) wall 

The influence of the shutter box transmittance is 

reported in Fig. 18. It is clear that shutters affect the 

final performance, but do not drive the overall fi-

nal result because of their reduced area.  
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Moving on to the shutter box acoustic performanc-

es (Figs. 19-20), it can be seen that their influence 

affects overall results more when the wall provides 

high acoustic insulation. 

The window parametric influence on overall re-

sults is depicted in Fig. 21. 
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Fig. 18 – Overall U compared to the thermal transmittance of the 

shutter box, (a, b and c) U_shutter  
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Fig. 19 – Overall Rw compared to the weighted sound reduction 

index of the shutter box (a, b and c), Rw_shutter 
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Fig. 20 – Overall Rw+Ctr compared to the weighted sound reduc-

tion index of the shutter box (a, b and c), (Rw+Ctr) shutter 

Here, it can be seen how, almost linearly, window 

thermal transmittances increase the overall final 

performances as expected because of their signifi-

cant area. 
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Fig. 21 – Overall U compared to the thermal transmittance of the 

window, (1, 2, 3, 4 and 5) U_window  

When moving on to window acoustic parametric 

influence (Figs. 22-23), it can be highlighted that, 

when the sound insulation increases, the overall 

acoustic performance increases too. Again, this is 

due to window area, which is significant in the 

façades considered.  
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Fig. 22 – Overall Rw compared to the weighted sound reduction 

index of the window (1, 2, 3, 4 and 5), Rw_window 
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Fig. 23 – Overall Rw+Ctr compared to the weighted sound reduc-

tion index of the window (1, 2, 3, 4 and 5), (Rw+Ctr) window 
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6. Conclusion 

In this work, the acoustic and thermal insulation of 

60 different combinations of façade elements was 

studied. 4 walls, 3 shutter systems and 5 windows 

were considered. It was possible to verify that 

there is no correlation between the overall final 

acoustic and thermal performances.  

Some further considerations can be made: 

- the best solutions from the thermal point of view 

are not the best ones from the acoustic point of view; 

- the best combined thermal and acoustic perfor-

mances are obtained using thermally insulating 

blocks (aerated concrete block) with internal lining 

and use of integrated window systems for roller 

shutters  

- if linear thermal transmittance is not considered, 

considerable errors can be made (U=0.12-0.21 

W/(m2K)). 

- it can finally be pointed out how, from a thermal 

point of view, all three elements equally contribute 

to the final performance, while, regarding acoustic 

insulation, the wall and the windows play a more 

important role due to their more extended area. 
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