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Abstract 

Building energy modeling based on data-driven tech-

niques has been demonstrated to be effective in a variety 

of situations. However, the question about its limits in 

terms of generalization is still open. The ability of a ma-

chine-learning model to adapt to previously unseen data 

and function satisfactorily is known as generalization. 

Apart from that, while machine-learning techniques are 

incredibly effective, interpretability is required for a "hu-

man-in-the-loop" approach to be successful. This study de-

velops and tests a flexible regression-based approach ap-

plied to monitored energy data on a Passive House build-

ing. The formulation employs dummy (binary) variables 

as a piecewise linearization method, with the procedures 

for producing them explicitly stated to ensure interpreta-

bility. The results are described using statistical indicators 

and a graphic technique that allows for comparison across 

levels in the building systems. Finally, suggestions are 

provided for further steps toward generalization in data-

driven techniques for energy in buildings. 

1. Introduction

Data-driven building energy modeling methods 

that use machine-learning techniques have been 

shown to be useful in a variety of applications 

(Hong et al., 2020), from design (Westermann & 

Evins, 2019) to operation (Manfren et al., 2020). As a 

result, they have the potential to become a key tool 

for accelerating the ongoing process of building 

stock decarbonisation (Norton et al., 2021; Tronchin, 

& Knight, 2016) as well as an integral part of inno-

vative services and technologies (Farina et al., 1998; 

Manfren et al., 2021a). However, the question of 

whether data-driven approaches can be generalized 

is still being debated. 

The ability of a machine-learning model to adapt to 

previously unknown data and perform reasonably 

well, given specified performance criteria, is re-

ferred to as generalization. A simple example of 

generalization is a model trained on building energy 

consumption data over a period of time and then 

used to estimate energy consumption during  a suc-

cessive period of time. This is the counterfactual ap-

proach used in Measurement and Verification 

(M&V) protocols, which uses statistical indicators as 

model acceptability criteria during the calibration 

phase. A more ambitious form of generalization 

would be that of using data-driven methods on en-

ergy modeling problems involving sets of building 

with homogeneous characteristics. Using data-

driven methods on energy modeling problems in-

volving different sets of buildings with relatively 

similar characteristics would be a more ambitious 

type of generalisation.  

In this research, we use regression models trained 

and tested on building energy signatures as a tool 

for  addressing the generalization problem. In fact, 

methods based on energy signature (ISO, 2013) (i.e., 

energy divided by the number of operating hours in 

the time interval of the analysis, corresponding to 

an average power) are scalable (temporally and spa-

tially) (Manfren et al., 2021b; Tronchin, 2021; Tron-

chin et al., 2018), can work with unstructured data 

(using clustering) (Pistore et al., 2019; Westermann 

et al., 2020) and provide results that are weather 

normalized (Fazeli et al., 2016). Additionally, en-

ergy signatures can be scaled according to the build-

ing's size (Pistore et al., 2019; Tronchin et al., 2016), 

to produce a performance comparison that is inde-

pendent of the size. Further, regression-based ap-

proaches are considered interpretable machine 

learning techniques (ISO, 2020) because it is possible 
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to predict how the model output will change in re-

sponse to a change in input data or algorithmic pa-

rameters (i.e., the rationale behind model output 

and the algorithmic logic can be easily understood 

in human terms) (Fabbri et al., 2014 and 2021). In 

this study, we employ this technique to analyze 

monitored data from a Passive House building in 

the Province of Forlì-Cesena in northern Italy, with 

the goal of improving formulations at the state of 

the art while also considering generalization and in-

terpretability issues (Tronchin, 2005 and 2021). 

2. Methods

The regression model proposed in this research is a 

reformulation of the variable-based degree-days re-

gression, originally proposed by Kissock et al. 

(2003) in their Inverse Modeling Toolkit (IMT), 

which has been included in ASHRAE 14:2014 

(ASHRAE, 2014) and has been evolving steadily 

with different algorithmic formulations. Essentially, 

interpretable regression-based methods can be 

based on general piecewise linearization methods 

(Lin et al., 2013) and use dummy (binary variables) 

to handle non-linearities. Model formulation and 

calibration criteria are reported hereafter (Tronchin 

et al., 2021a and 2021b). 

2.1 Model Formulation 

Separate sub-models (heating, base load and cool-

ing), indicated in Table 1, are combined into a single 

model (which is the sum of the individual sub-mod-

els) by introducing additional variables (dummy, 0-

1 binary variables) to the original datasets using 

rules, indicated in Table 2. The binary variables 

multiply the original variables and act as interaction 

terms. Two types of models are tested, type 1 and 

type 2. In the first case, the independent variable is 

outdoor air temperature, while, in the second case, 

the independent variables are outdoor air tempera-

ture and total solar radiation on horizontal surface. 

The dependent variables are the energy signatures 

calculated from the monitored data described in 

Section 3. 

The rules provided hereafter in Table 2 can be ap-

plied both manually and in an automated way to the 

dataset, for example, using ranges of balance-point 

temperature (change-points) for heating and cool-

ing (Manfren et al., 2019). 

Table 1 – Regression model formulation 

Mode Demand Sub-models 

Type 

1 
Heating 𝑞ℎ = 𝑎0(𝑋ℎ) + 𝑎1(𝑋ℎ𝜃𝑒) + 𝜀ℎ (1) 

Base 

load 
𝑞𝑏 = 𝑏0(𝑋𝑏) + 𝑏1(𝑋𝑏𝜃𝑒) + 𝜀𝑏 (2) 

Cooling 𝑞ℎ = 𝑐0(𝑋𝑐) + 𝑐1(𝑋𝑐𝜃𝑒) + 𝜀𝑐 (3) 

Type 

2 
Heating 

𝑞ℎ = 𝑎0(𝑋ℎ) + 𝑎1(𝑋ℎ𝜃𝑒) + 𝑎2(𝑋ℎ𝐼𝑠𝑜𝑙)
+ 𝜀ℎ

(4) 

Base 

load 
𝑞𝑏 = 𝑏0(𝑋𝑏) + 𝑏1(𝑋𝑏𝜃𝑒) + 𝑏2(𝑋𝑏𝐼𝑠𝑜𝑙)

+ 𝜀𝑏

(5) 

Cooling 𝑞ℎ = 𝑐0(𝑋𝑐) + 𝑐1(𝑋𝑐𝜃𝑒) + 𝑐2(𝑋𝑐𝐼𝑠𝑜𝑙) + 𝜀𝑐 (6) 

Table 2 – Rules for dummy variable creation 

Rule 
Description 

Vari-

ables 

1 

If the energy demand is greater than 0 for the 

corresponding sub-model (e.g., heating, cool-

ing or base load), then the dummy variable is 

equal to 1. 

Xh, 

Xb, 

Xc 

2 

If the outdoor air temperature is lower than 

balance point temperature for heating (i.e., 

heating base temperature), the dummy varia-

ble for heating is equal to 1. 

Xh 

3 

If the outdoor air temperature is greater than 

balance point temperature for cooling (i.e., 

cooling base temperature), the dummy varia-

ble for cooling is equal to 1. 

Xc 

4 

All the dummy variables (that partition heat-

ing, cooling and base load demands) should 

be coherent with the schedules of operation 

for building services (i.e., months of heating 

and cooling system operation). 

Xh, 

Xb, 

Xc 

5 

The dummy variables for base load are as-

sumed to be 1 in all the months (i.e., electricity 

and hot water demand are always present). 

Xb 

2.2 Model Calibration Criteria 

Following the indications proposed by state-of-the-

art Measurement and Verification (M&V) protocols, 

such as ASHRAE 14:2014 (ASHRAE, 2014), Effi-

ciency Value Organization (EVO) IPMVP (EVO, 
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2003), and Federal Energy Management Program 

(FEMP) (FEMP, 2008), the thresholds of acceptabil-

ity for regression models as calibrated with monthly 

data are reported in Table 3. 

Table 3 – Model calibration criteria 

Data interval Metric 
ASHRAE 

Guidelines 14 
IPMVP FEMP 

Monthly NMBE ±5 ±20 ±5 

 Cv(RMSE) 15 - 15 

3. Case Study 

The case study is Passive House building, located in 

the northern Italian province of Forlì-Cesena; the es-

sential building data are reported in Table 4. 

The building was  monitored for three years and 

electric and thermal demand data were split by end 

use, as indicated in Table 5. 

The modeling workflow pursued to test the models 

reported in Table 1 incrementally is set out  in the 

following steps: 

1. Initial training, year 1, 2. 

2. Testing, year 3 (model created in step 1). 

3. Retraining, year 1, 2 and 3. 

The results obtained are reported hereafter in Sec-

tion 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – Building design data 

Group Type Unit Design  

Geometry Gross volume m³ 1557 

 Net volume m³ 1231 

 Heat loss surface 

area 
m² 847 

 Net floor area m² 444 

 Glazed area/total 

wall area ratio 

percentage 

% 22.5 

 Surface/volume 

ratio 
1/m 0.54 

Envelope U value external 

walls 
W/(m2 K) 0.18 

 U value roof W/(m2 K) 0.17 

 U value transpar-

ent components 
W/(m2 K) 0.83 

HVAC and 

DHW 

Ground-source 

heat pump 

(GSHP) - 

Brine/Water Heat 

Pump (B0/W35)* 

kW 8.4 

 Borehole heat ex-

changer (2 dou-

ble U boreholes) 

m 100 

On-site en-

ergy pro-

duction 

Building Inte-

grated Photo-

Voltaic (BIPV) - 

Polycrystalline 

silicon 

kWp 9.2 

 Solar thermal - 

Glazed flat plate 

collector 

m2 4.32 

 Domestic hot 

water storage 
m3 0.74 

* EN 14511 test condition in heating mode, brine at 0 ºC 

and water 35 ºC with supply-return temperature differ-

ence Δt = 10 ºC. 

Table 5 – Dataset used for modeling 

Data Enduse Interval 
Monitoring 

period 

Electric Total Monthly 3 years 

 HVAC, DHW Monthly 3 years 

 Appliances and 

lighting 
Monthly 3 years 

Thermal en-

ergy 
Heating Monthly 3 years 

 Cooling Monthly 3 years 

 

 

 

257



Massimiliano Manfren, Maria Cristina Tommasino, Lamberto Tronchin 

4. Results and Discussion

In this section, the results of the model training and 

testing process are reported, indicating both numer-

ical results represented by statistical indicators (Ta-

ble 3) and visualization of energy signatures for the 

different models fitted. 

4.1 Numerical Results of 

Regression Models 

The results obtained are split with respect to the two 

types of models considered, namely type 1 and type 

2. 

4.1.1 Model Type 1 

It can be clearly seen that model type 1, after 2 years, 

obtains values for the indicators NMBE and 

Cv(RMSE) that make them acceptable as calibrated 

(Table 3), with the exception of electricity demand 

for HVAC and DHW and thermal demand for cool-

ing. In these cases, the values are higher than 15 % 

for Cv(RMSE) but lower than 20 %. 

Table 6 – Model type 1 – Initial training (year 1 and 2) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

kWh kWh % % % 

Electric Total 23812 23510 84.77 -1.27 12.59 

HVAC, 

DHW 

8611 8499 91.05 -1.30 17.99 

Appliances  15201 15202 70.27 0.01 10.12 

Thermal Heating 17761 17757 98.05 -0.03 8.87 

Cooling 5054 5004 93.50 -0.99 16.45 

The model trained for the period indicated in Table 

6 (first 2 years) is then tested for the third year of 

monitoring. In this case, we can see how, for model 

type 1, the statistical indicators in the testing phase 

are larger (i.e., the model performance is lower in 

terms of goodness of fit. 

Table 7 – Model type 1 – Testing (year 3) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

kWh kWh % % % 

Electric Total 11318 10167 65.37 -10.17 20.15 

HVAC, 

DHW 
3659 3181 90.78 -13.07 20.76 

Appliances  7659 7013 26.83 -8.44 22.13 

Thermal Heating 6029 5460 85.28 -9.53 21.17 

Cooling 1784 1841 63.23 3.19 20.21 

Finally, models are retrained with the entire 3-year 

dataset, obtaining results that are slightly better 

compared to the ones presented in Table 6, but not 

largely different.  

Table 8 – Model type 1 – Retraining (year 1, 2 and 3) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

kWh kWh % % % 

Electric Total 35130 34819 84.41 -0.88 12.12 

HVAC, 

DHW 
12270 12139 91.23 -1.07 17.35 

Appliances  22860 22868 67.34 0.04 10.56 

Thermal Heating 23790 23795 95.91 0.02 12.42 

Cooling 6838 6735 90.91 -1.51 17.77 

4.1.2 Model Type 2 

The same workflow presented for model type 1 in 

Section 4.1.1 is repeated here for model type 2. The 

results are reported in Tables 9, 10 and 11, respec-

tively. In this case, we can see a moderate improve-

ment for the model training (Table 9) and retraining 

(Table 11), but a much better performance of the 

models in the testing phase (Table 10). In general, 

model type 2 performs better than type 1. 
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Table 9 – Model type 2 – Initial training (year 1 and 2) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

  kWh kWh % % % 

Electric Total 23812 23518 88.36 -1.23 11.05 

 
HVAC, 

DHW 
8611 8534 91.74 -0.90 17.16 

 Appliances  15201 15204 82.19 0.02 7.84 

Thermal Heating 17761 17759 98.95 -0.01 6.50 

 Cooling 5054 5229 93.54 3.46 18.34 

Table 10 – Model type 2 – Testing (year 3) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

  kWh kWh % % % 

Electric Total 11318 10551 85.96 -6.78 12.53 

 
HVAC, 

DHW 

3659 3248 91.75 -11.24 18.80 

 Appliances  7659 7329 66.66 -4.30 12.04 

Thermal Heating 6029 5828 94.13 -3.59 13.52 

 Cooling 1784 1964 85.58 10.10 16.66 

Table 11 – Model type 2 – Retraining (year 1, 2 and 3) 

Data End-use EN(M) EN(P) R2 NMBE Cv(RMSE) 

  kWh kWh % % % 

Electric Total 35130 34847 89.75 -0.81 10.16 

 
HVAC, 

DHW 

12270 12200 92.41 -0.57 16.56 

 Appliances  22860 22870 84.05 0.05 7.60 

Thermal Heating 23790 23798 98.32 0.03 7.96 

 Cooling 6838 7002 91.61 2.39 17.04 

 

 

4.2 Energy Signature Visualization 

In this section, energy signatures are visualized for 

both electric and thermal data and divided by end 

use. Section 4.2.1 focuses on electricity data, while 

Section 4.2.2 focuses on thermal data. 

4.2.1 Energy Signatures – Electricity 

The energy signature shapes shown in Fig. 1 for to-

tal electricity, Fig. 2 for electricity for HVAC and 

DHW, Fig. 3 for appliances and lighting, are sub-

stantially similar to a 5p or nearly 4p model accord-

ing to the classification proposed by 

ASHRAE14:2014. The charts are used to compare 

models type 1 and 2 at multiple levels in the build-

ing 

Fig. 1 – Energy signatures, measured data and regression models 

types 1 and 2 – Total electricity 

The spread of data around the trend line is quite 

limited in Fig. 1 (total electricity) and Fig. 2 (electric-

ity for HVAC and DHW), while it is more pro-

nounced for Fig. 3 (appliances and lighting). In the 

latter, there is a lower temperature dependence 

(steepness of the trend line), compared to the other 

cases. However, the dependence is actually on day-

light hours, which are correlated to temperature 

(lower temperatures correspond to winter condition 

where daylight hours are less and electric consump-

tion for lighting is higher) and on the actual opera-

tion pattern, whose variability also determines  the 

larger spread of values. 
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Fig. 2 – Energy signatures, measured data and regression models 

types 1 and 2 – Electricity for HVAC and DHW 

Fig. 3 – Energy signatures, measured data and regression models 

types 1 and 2 – Electricity for appliances and lighting 

4.2.2 Energy Signatures – Thermal Energy 

The energy signature shapes shown in Fig. 4 for 

thermal demand for heating and in Fig. 5 for ther-

mal demand for cooling are essentially similar to a 

3p model according to the classification proposed 

by ASHRAE14:2014. There are clearly some months 

when the technical systems do not  produce either 

heating or cooling. Finally, it is possible to identify 

graphically, in an approximated way, the balance-

point temperature for heating and cooling,  around 

14 °C and 19 °C, respectively. 

Fig. 4 – Energy signatures, measured data and regression models 

types 1 and 2 – Thermal energy for heating 

Fig. 5 – Energy signatures, measured data and regression models 

types 1 and 2 – Thermal energy for cooling 

5. Conclusion

Machine learning-based building energy modeling 

techniques have proved to be effective in a range of 

applications. However, problems such as generali-

zation and interpretability must be considered in or-

der to enable the  widespread adoption of these 

techniques. A piecewise linear regression model (in-

terpretable) was proposed to analyze monitored 

data from a Passive House building, located in the 

northern Italian province of Forlì-Cesena. The 
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building  was monitored for three years, and this 

technique requires at least two years of monthly in-

terval data to be used effectively. Nonetheless, the 

formulation provided is quite simple and flexible; 

the visualization of energy signatures can also help 

understanding the actual spread of data around the 

trend line, which represent outdoor air temperature 

dependence. 

Further efforts involving the categorization of 

building data according to archetypes could be con-

sidered to address the generalization issue effec-

tively. Finally, interpretability is extremely relevant 

because of the necessity to promote a “human-in-the 

loop” approach when using machine learning tools 

and the transparent link between regression model 

formulation and other analytical techniques at the 

state-of-the-art could represent an interesting re-

search area from the perspective of future studies 

(Tronchin et al., 2020a and 2020b). 

Nomenclature 

Symbol  Quantity Unit 

a0,b0,c0 regression coefficients, intercept kW 

a1,b1,c1 regression coefficients, temperature 

dependence term 

kW/K 

a2,b2,c2 regression coefficients, solar radia-

tion dependence term 

m2 

Cv(RMSE) coefficient of variation of RMSE - 

EN(M) measured energy kWh 

EN(P) predicted energy kWh 

Isol total solar radiation on horizontal 

surface (direct and diffuse) average 

hourly value on monthly base 

kW/m2 

NMBE normalized mean bias error (ex-

pressed in percentage) 

- 

qh energy signature heating kW 

qb energy signature base load kW 

qc energy signature cooling kW 

R2 determination coefficient (expressed 

in percentage) 

- 

Xh dummy variable (binary 0-1) heating - 

Xb dummy variable (binary 0-1) base 

load 

- 

Xc dummy variable (binary 0-1) cooling - 

θe outdoor air temperature ºC 

εh error term heating kW 

εb error term base load kW 

εc error term cooling kW 
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