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Abstract 

Improving the performance of buildings is a core pillar to 

attaining future energy and environmental goals in differ-

ent countries, considering that the building sector is a ma-

jor contributor in terms of both energy consumption and 

carbon emissions. These ambitious goals and the call for 

smarter, energy-efficient, and flexible buildings have 

called for innovative and scalable energy and indoor ther-

mal comfort modeling and prediction approaches. This 

work presents a fully automated and scalable solution us-

ing Artificial Neural Networks to forecast indoor room 

temperatures in buildings. A case study of an 8500 m2 uni-

versity building in Denmark was considered for testing 

and evaluating the proposed approach. An extensive da-

taset was constructed with sensor data from 76 rooms that 

contain both readings on indoor temperature, CO2 concen-

trations, and actuating signals on radiator valves and 

dampers, as well as outdoor ambient conditions. Using 

this dataset, a well-performing architecture is identified, 

which provides accurate temperature predictions in the 

various rooms of the building for prediction horizons of 24 

hours.  

1. Introduction

Buildings are widely regarded as one of the major 

contributing sectors in terms of both energy con-

sumption and CO2 emissions. Furthermore, future 

energy systems with high fractions of Renewable 

Energy Sources (RES) depend on high demand-side 

flexibility. Therefore, there is a clear need for in-

creasing not only the performance but also the flex-

ibility of buildings. However, to achieve feasible 

and intelligent operation strategies for both cost 

minimization and flexibility services implementa-

tion without compromising the indoor  

comfort levels of buildings, reliable and accurate 

forecasting of building indoor thermal behavior is 

vital. In terms of indoor temperature forecasting, 

Artificial Neural Network (ANN) models have 

shown great potential in capturing the dynamics 

with high prediction accuracy (Alawadi, et al., 

2022). In addition, these models can also be easily 

adapted and scaled up to different building cases.  

This work presents an ANN-based approach that re-

quires no prior specifications for the modeled build-

ing and can achieve accurate indoor temperature 

predictions for long prediction horizons of 24 hours 

or more. The models developed generalize well 

enough to be used for scenario planning and what-

if analyses, e.g., to test the impact of custom setpoint 

and shading schedules on indoor temperature.  

2. Case Definition

The building under consideration in this work is an 

8500 m2 highly energy-efficient university building 

from 2015. It is located in Denmark, and it primarily 

consists of space types such as classrooms, study 

zones, corridors, and offices. In each of these spaces, 

indoor air temperature 𝑇 and CO2 concentration 𝐶 

are measured through installed sensors. In addition, 

each space contains space heaters of specific capaci-

ties with equipped mechanical valves that control 

the water massflow. The position of these valves 

𝑢𝑣 ∈ [0,1] is managed centrally by the Building 

Management System (BMS) with 𝑢𝑣 = 0 meaning 

fully closed with no massflow and 𝑢𝑣 = 1 meaning 

fully open with maximum massflow. The supply 

water temperature is kept constant at approxi-

mately 60 °C. 
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The building is also equipped with a weather station 

that measures outdoor air temperature 𝑇𝑜, longwave 

solar irradiance Φ𝐿, shortwave solar irradiance Φ𝑆, 

and wind speed. The supply air temperature set-

point is constant, at either 21-22 °C, depending on 

each space. The supply and exhaust airflows are 

controlled in each space by the supply and exhaust 

damper positions 𝑢𝑑 ∈ [0,1], with 𝑢𝑑 = 0 meaning 

fully closed with no airflow, and 𝑢𝑑 = 1 meaning 

fully open with maximum airflow. These damper 

positions are also managed through the BMS with 

Demand Controlled Ventilation (DCV), aiming at 

keeping the measured CO2 concentration below 600 

ppm. Finally, each space is also equipped with 

shades that are controlled by the BMS through a po-

sition parameter 𝑢𝑠ℎ ∈ [0,1], with 𝑢𝑠ℎ = 0 meaning 

fully exposed with no shading, and 𝑢𝑠ℎ = 1 meaning 

fully enclosed with maximum shading. The shades 

are controlled based on outdoor and indoor illumi-

nance with a safety roll-up mechanism that sets 

𝑢𝑠ℎ = 0 at wind speeds higher than 15 m/s.  

3. Methodology 

3.1 Model Architecture 

This work makes use of a specific type of ANNs 

called Recurrent Neural Networks (RNN) to model 

the transient temperature dynamics of a room. Spe-

cifically, Long Short-Term Memory (LSTM) net-

works were chosen due to their numerous demon-

strations of adaptability and robustness in time-se-

ries black-box modeling, including indoor environ-

ment modeling (Fang et al., 2021; Mtibaa et al., 

2020). LSTM models are a specific kind of RNN that 

were originally developed to deal with the vanish-

ing and exploding gradient problem of traditional 

RNN models. A detailed explanation of the LSTM 

model is provided in the references (Hochreiter & 

Schmidhuber, 1997; Van Houdt et al., 2020). 

To properly account for all phenomena that can sig-

nificantly influence the energy balance of the room, 

it is very important to choose appropriate dynamic 

inputs for the model. In this work, the inputs are de-

termined by considering the following energy trans-

fer mechanisms: 

- Heat transfer by conduction through external sur-

faces is considered by including indoor air tem-

perature 𝑇, and outdoor temperature 𝑇𝑜 as in-

put. 

- Heat transfer by radiation is considered by in-

cluding longwave solar irradiance Φ𝐿, 

shortwave solar irradiance Φ𝑆, and the position 

of the shades 𝑢𝑠ℎ in the model input. 

- Internal heat gains through occupancy are in-

cluded indirectly by including measured CO2 

concentration 𝐶, and damper position 𝑢𝑑. These 

inputs can, to a certain extent, represent occu-

pancy due to the direct correlation between CO2 

concentration, ventilation airflow, and occu-

pancy presence (Franco & Leccese, 2020). 

- Heat added by the space heater is considered by 

adding the measured valve position 𝑢𝑣 as input, 

which represents the water massflow. The sup-

ply water temperature is constant and does not 

therefore contribute as input.   

- Heat transfer by ventilation is considered by add-

ing the supply and exhaust damper positions 

𝑢𝑑 as inputs, which represent the airflow rates. 

The supply air temperature is constant and 

therefore does not contribute as input. 

The model architecture is seen in Fig. 1 with inputs 

and outputs of the model. As shown, the model con-

sists of two sequential LSTM models, A and B. All 

previously mentioned weather and sensor inputs 

from the previous timestep are fed to LSTM A. In 

addition, the LSTM also receives the cell state vector 

𝑐𝐴,𝑡−1 ∈ ℝ𝑛 and hidden state vector ℎ𝐴,𝑡−1 ∈ [−1,1]𝑛, 

where 𝑛 is a hyperparameter that determines the 

size of these vectors. These two state vectors are an 

integral part of LSTM models. which essentially dic-

tate the state of the system modeled during a given 

timestep. LSTM A outputs 𝑐𝐴,𝑡 and ℎ𝐴,𝑡, which rep-

resents the updated state vectors. 

LSTM B has 𝑛 = 1 and is only given three inputs, the 

cell state 𝑐𝐵,𝑡−1 ∈ ℝ, the hidden state ℎ𝐵,𝑡−1 ∈ [−1,1], 

and the hidden state vector ℎ𝐴,𝑡. LSTM B outputs 𝑐𝐵,𝑡 

and ℎ𝐵,𝑡, which represent the updated state vectors 

of LSTM B. The training task is then to find an opti-

mal set of parameters in LSTM A and B to minimize 

the error between ℎ𝐵,𝑡 and the chosen prediction tar-

get over multiple sequences of data. 
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Fig. 1 – Model architecture with inputs and outputs of the sequential LSTM models, A and B 

In the studies reviewed, the prediction target of the 

learning algorithms employed was indoor tempera-

ture in all cases. During initial testing, it was found 

that this configuration yielded good prediction re-

sults when testing with historical data as input. 

However, it was found that the models generalized 

poorly when fed with custom inputs instead of his-

torical data, e.g., when using the model for setpoint 

control, as shown later in Section 4.2. When collect-

ing operational data from a building, the actuation 

signals, e.g., valve positions, are typically directly 

correlated with indoor temperature through a ther-

mostat with a simple control law, e.g., in the form of 

a Proportional (P) or Proportional Integral (PI) con-

troller. Therefore, if the prediction target is temper-

ature, the model will likely overfit the specific mode 

of operation that is reflected in the historical data 

used to train and test the model. We hypothesize 

that the model essentially learns to map the inverse 

control law of the thermostat instead of the actual 

thermal physics of the room. In this work, we are 

proposing that the model should predict the indoor 

temperature change Δ𝑇 instead of the actual temper-

ature value, as this disrupts the direct correlation 

that is otherwise present between input and output. 

3.2 Data Preprocessing 

The dataset was constructed with all the weather 

and sensor readings introduced for 76 rooms in the 

case study building at a 10- minute interval for two 

years spanning January 1st 2018 to December 31st 

2019. The raw data were pretreated and validated to 

ensure that proper and clean data were used. Fol-

lowing this, all inputs were min-max scaled be-

tween -1 and 1. After preparing the dataset, 24-hour 

sequences of 144 timesteps with no missing data 

were selected to form a collection of sequences for 

each space. In Fig. 2, the distribution of data se-

quences available among spaces is shown monthly. 

As shown, the number of sequences varies between 

rooms. The month with the most data is January, 

with a median of about 6000 sequences, while the 

month with the least data is August, with a median 

of about 3000 sequences.  
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Fig. 2 – Number of sequences available per space for each month 

Fig. 3 – Number of sequences available per space for each season 

In Fig. 3, the distribution is shown on a seasonal 

level. Here, the dataset generally appears to be more 

balanced with less variation. Hence, it is expected 

that the constructed datasets have enough diversity 

to cover most of the seasonal variance in the opera-

tion and thermal dynamics of the building.  

3.3 Training and Testing Method 

After preprocessing, the data is split into training, 

validation, and testing data sets with the splits [2/3, 

1/6, 1/6], respectively. These data splits were care-

fully designed to ensure no overlap between se-

quences in the three data sets, while ensuring that 

seasonal and monthly variations are reflected in 

each dataset. For training, the machine-learning li-

brary Pytorch was used with Stochastic Gradient 

Descent (SDG) as optimizer, a momentum of 0.9, a 

batch size of 32, and a learning rate of 10−1. The size 

𝑛 of cell state 𝑐𝐴 and hidden state ℎ𝐴 was set to 20 for 

all space models.  

During training, the model loss was evaluated on 

the validation dataset and saved at every 64th gradi-

ent update. At every 3000th gradient update, a copy 

of the model was saved, along with an average of 

the last 100 validation loss evaluations. After 

100,000 gradient updates, the model with the lowest 

saved validation loss was selected. If the model had 

not converged after 100,000 gradient updates, the 

procedure was repeated up until 400,000 gradient 

updates. This approach was used to train models for 

all 76 spaces. To properly test the trained space 

models, two modes of operation were presented. 

The first mode was aimed at assessing the prediction 

accuracy of the space models given historic inputs. 

Here, the developed models were employed in a 

closed-loop configuration, as shown in Fig. 4, where 

future temperature predictions were based on past 

predictions. Perfect forecasting was assumed by 

feeding historical data for all weather and sensor in-

puts, except for the indoor temperature.  

Fig. 4 – Closed-loop configuration designed to forecast indoor tem-

perature for an arbitrary number of timesteps 

The model then, for each timestep, predicted the 

temperature change to obtain the indoor tempera-

ture of the next time step, which was fed back to the 

model. This could be repeated as long as historical 

inputs were available. By repeating this for all 

timesteps in a simulation period, the produced tem-

perature profile could then be compared with the 

actual measured temperature profile of the room to 

assess the prediction accuracy of the space model.  

The second mode of operation was aimed at testing 

whether the developed space models generalize 

well enough to provide reasonable predictions un-

der unseen operational conditions. Here, custom in-

puts were thus be fed to the model to observe the 

response. This was a very important property that 

made it possible to use the model for testing differ-

ent operational strategies or what-if scenarios and 

their influence on indoor comfort in a safe environ-

ment.  
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Fig. 5 – Closed-loop configuration designed for temperature set-

point control through the valve position of the space heater 

In this work, two model inputs were considered for 

this purpose; 𝑢𝑣 and 𝑢𝑠ℎ. In one simulation, the 

space heater valve position input 𝑢𝑣 was con-

structed by implementing the space models in a 

closed-loop configuration for temperature setpoint 

control, as shown in Fig. 5. Here, all inputs were his-

torical except for 𝑢𝑣 and temperature 𝑇. The imple-

mented controller was a simple proportional con-

troller that each timestep scales the input signal 

𝑢𝑣,𝑡−1 proportionally to the error 𝑒𝑡−1 = 𝑇𝑠𝑒𝑡 − 𝑇𝑡−1, 

where 𝑇𝑠𝑒𝑡 was the temperature setpoint in the 

room. In another simulation, the shades position in-

put 𝑢𝑠ℎ was constructed by implementing a simple 

predetermined schedule that operates based on the 

time of the day. All inputs except for 𝑢𝑠ℎ and 𝑇 were 

thus historical.  

4. Results and Discussion

4.1 Quantitative Performance Assessment 

First, the quantitative model performance was eval-

uated by using the first mode of operation as de-

scribed in Section 3.3. Here, the Mean Absolute Er-

ror (MAE) between measured indoor temperature 

and predicted temperature was calculated for each 

space model across all 24-hour sequences in the test 

dataset. Fig. 6 shows the performance of each 

trained space model. Specifically, it shows the rela-

tionship between MAE, Standard Deviation of pre-

diction targets 𝜎(Δ𝑇), and number of sequences 𝑁𝑠. 

The three marked space models were used for a 

qualitative performance assessment in Section 4.2. 

As seen in the figure, most of the space models 

(~86 %) achieve MAE values below 0.5 °C, which is 

lower than the required measurement accuracy of 

temperature sensors of ± 0.5 °C (ISO, 1998).  

Fig. 6 – Relationship between Mean Absolute Error MAE, Standard 

Deviation of prediction targets 𝜎(Δ𝑇), and number of sequences 

𝑁𝑠. The three space models chosen for qualitative assessment are 

marked 

The best performing space model represents an of-

fice with 𝑁𝑠 = 66297 and MAE = 0.17, while the 

worst performing model is of a classroom with 𝑁𝑠 =

24210 and MAE = 0.88. As seen from the colormap 

in Fig. 6, there seems to be a negative correlation be-

tween the prediction error and the number of se-

quences available, agreeing with the general notion 

in machine-learning, that more data yields lower 

prediction error and better model generalization. 

Therefore, it is expected that the poor-performing 

space models could attain similar performance with 

more data. Furthermore, there seems to be a positive 

correlation between prediction error and the varia-

tion observed for the prediction target Δ𝑇. This 

means that the prediction error will be higher for 

datasets that have a more fluctuating temperature 

profile. This is to be expected, as a fluctuating in-

door temperature is generally harder to predict than 

a steady temperature.  

4.2 Qualitative Performance Assessment 

And Applications 

To provide a qualitative performance assessment of 

the models developed, three case study spaces were 

selected, one classroom and two offices, as also 

marked in Fig. 6. For each of these space models, a 

winter period and a summer period of 24 hours 

were chosen to evaluate how the space models per-

form under different ambient conditions. The mod-

els were first simulated for these periods using the 

first mode of operation, as explained in Section 3.3. 

353



Jakob Bjørnskov, Muhyiddine Jradi, Christian Veje 

Fig. 7 – 24-hour temperature forecast in a winter month compared with actual measured temperature. The weather input is shown on the plot  

furthest to the right, while the individual inputs for the three selected space models are shown on the plots to the left  

Fig. 8 – 24-hour temperature forecast in a summer month compared with actual measured temperature.  The weather input is shown on the plot 

furthest to the right, while the individual inputs for the three selected space models are shown on the plots to the left  

For the winter simulation, the results are shown in 

Fig. 7, with the weather inputs in the plot furthest to 

the right, while the results for each of the three cho-

sen rooms can be seen on the left. As seen, all three 

space models accurately predict the indoor temper-

ature, although Office 1 seems to slightly overesti-

mate the temperature during the last 6 hours. The 

space heater valve position has a clear significance 

in all three spaces, where the general trend is that 

𝑢𝑣 = 0 results in decreasing room temperature, 

while 𝑢𝑣 > 0 results in increasing room tempera-

ture. The models are also able to account for heat 

gains and heat losses associated with occupancy 

and ventilation. This is mostly seen in the Class-

room and Office 1 in the period from 09:00 to 15:00, 

where the CO2 concentration rises above 600 ppm 

and the dampers are positioned at around 50 %. 

Here, the model correctly predicts that the indoor 

temperature increases, although the space heater is 

not in operation. The shades are all rolled up (𝑢𝑠ℎ =

0) as they have no desirable effect during winter. 

Moving to the simulation results for the summer pe-

riod, the results are shown in Fig. 8. The weather 

data inputs are again seen on the plot furthest to the 

right, where the ambient temperature and irradi-

ance levels are much higher compared with the win-

ter period. As seen, this has a significant impact on 

the predicted and actual temperatures in the three 

spaces, especially for Office 1, where temperatures 

are above 30 °C during the whole 24 hour-period. 

The cause for large differences in both shape and 

peaks of the temperature profiles was different ori-

entation, shading, and geometrical properties of the 

spaces. As seen, all three space models have learned 

to correctly account for these properties and pro-

vide accurate predictions for all 24 hours, although 

Office 1 slightly underestimates the temperature 

during the first 12 hours of the period. From the CO2 

levels, which have a very constant profile of around 

450 ppm, the occupancy appears to be close to zero. 

However, this is expected during July and August, 

where the students are on summer leave. The 

shades are, to some extent, utilized in the Classroom 

and Office 2. However, it is expected that the high 

temperatures could be mitigated even more, by in-

creasing the duration of the shades being rolled 

down (𝑢𝑠ℎ = 1). This will be investigated further in 

the following analysis. 
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Fig. 9 – 24-hour setpoint control in a winter month. The weather input is shown on the plot furthest to the right, while the individual inputs for 

the three selected space models are shown on the plots to the left along with the predicted temperature and the setpoint  

Fig. 10 – 24-hour shades control in a summer month. The weather input is shown on the plot furthest to the right, while the individual inputs for 

the three selected space models are shown on the plots to the left along with the predicted temperature. The original measure d temperature in 

this period is shown as a reference 

As just demonstrated, the models perform well 

when predicting temperatures under historical con-

ditions. However, to demonstrate the applicability 

of the models, the second mode of operation, as pre-

sented in Section 3.3, was employed. The tempera-

ture setpoint control was implemented for the same 

winter period as shown in Fig. 7, while the shades 

control was implemented for the same summer pe-

riod as shown in Fig. 8.  

The results for the temperature setpoint control are 

shown in Fig. 9. As seen, the setpoint was varied, 

depending on the time of day. From 06:00 to 18:00, 

the setpoint was 23 °C, while from 18:00 to 06:00, the 

setpoint was 20 °C. The controller adapted to these 

setpoint signals by varying the valve position ac-

cordingly. For all three spaces, the valve was closed 

during the night, where the temperature was al-

lowed to decrease. At 06:00, when the setpoint was 

raised to 23 °C, the valve was opened, and the in-

door temperature increased until around 12:00, 

where the indoor temperature in all three rooms 

reached the specified setpoint. At this point, the 

valve position was operated between 0 and 1 in an 

attempt to keep the indoor temperature at the set-

point. For Office 2, it was noticed that the tempera-

ture and valve position profile was smoother com-

pared to the Classroom and Office 1, which had 

small fluctuations in temperature. However, as 

seen, the Classroom and Office 1 also had more dis-

turbances in the form of varying CO2 levels and ven-

tilation airflows. Despite these disturbances, the 

simple controllers managed to keep the temperature 

at 23 °C in all three space models until 18:00, where 

the setpoint was again decreased to 20 °C. Here, the 

valve was again shut, and the temperature started 

to decrease. 

Moving on to shades control during the summer pe-

riod, the results are shown in Fig. 10. Here, the 

shades were rolled down (𝑢𝑠ℎ = 1) from 06:00 to 

18:00 and rolled up (𝑢𝑠ℎ = 0) from 18:00 to 06:00. 

This had a significant effect on the predicted indoor 

temperature when compared with the original 

measured temperature (temperature reference), 

where the duration of shading was very limited. The 
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effect was very clear for Office 1, where the peak at 

17:00 shifted from around 33 °C to 30 °C. The Class-

room and Office 2 also had a reduced temperature 

response, although not as significant as Office 1.  

5. Conclusion 

In this work, a fully automated and scalable ap-

proach for temperature forecasting in buildings was 

presented and assessed. The presented method re-

lied on ANNs in the form of two sequential LSTM 

models to predict temperature change within a 

room, given weather data and sensor inputs such as 

space heater valve positions, damper positions, 

shades positions, and CO2 concentration. Hence, the 

developed approach needed no prior information 

about the building such as geometry, material prop-

erties, design data, etc.  

The methodology developed was implemented con-

sidering 76 rooms of an 8500 m2 university building 

in Denmark with 86 % of the rooms achieving a 

Mean Squared Error of less than 0.5 for 24-hour fore-

casting. The difference in prediction performance 

between space models was explained by differences 

in the amount of data available. However, more 

work is needed to identify more robust criteria con-

cerning the amount, type, and quality of data that is 

needed to obtain accurate space models. The ap-

plicability of the models was demonstrated by im-

plementing three selected models in a closed-loop 

setpoint control configuration for a 24-hour winter 

period. Additionally, different shading schedules 

were also explored to show their impact during a 24-

hour summer period.  

In line with the emerging initiatives toward digital-

ization of the building sector, building digital twins 

has promising technical and economic impacts. In 

this context, a fully scalable and automated energy 

modeling approach is vital, so that these twins can 

provide a robust, generic, and effective solution for 

various applications in the building sector. The 

modeling approach proposed in this study serves as 

a core for future building digital twin development 

and could be used as a backbone for various auto-

mated services, including performance monitoring, 

scenario assessment, and operational management. 
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