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Abstract 

Building simulations play a fundamental role both in 

applications like the design of new constructions and the 

optimization of building operation and control. This is 

quite relevant in the current energy framework, in which 

the energy consumption of buildings has increased over 

past decades. The reliability of the results’ model does 

not depend only on the model itself, like the mathemati-

cal expression or the resolution process, but it is also 

related to the uncertainty that those parameters involve. 

This can cause discrepancies between the simulated and 

the real behavior of the building, causing a deviation 

from the expected one of the performance of a building. 

Hence, the calibration procedure of the model is a neces-

sary process which allows more accurate results to be 

obtained and predictions that are closer to the real behav-

ior of the building to be made, minimizing the discrepan-

cy between predicted and actual performance by chang-

ing the values of the simulation parameters. When it 

comes to calibration of simulation models, many ap-

proaches are available in the literature, comprising man-

ual and iterative ones, graphic comparative procedures, 

techniques based on specific tests, and many others. 

Among all possible approaches, optimization-based cali-

bration is the most widely adopted in model calibration. 

However, this approach, which is usually based on evo-

lutionary algorithms, has the disadvantage that it re-

quires many expensive simulations to be run, especially 

when the number of parameters to be calibrated is high. 

This issue can be overcome by a preliminary sensitivity 

analysis that reduces the number of parameters to be 

calibrated and by an efficient optimization algorithm. For 

this reason, this work proposes a framework based on a 

sensitivity analysis designed to identify the most signifi-

cant parameters separately on the energy budgets and 

other monitored environmental variables. The proposed 

calibration procedure is based on functional approxima-

tion models, which greatly increases the efficiency of the 

optimization algorithm. The case study is a university 

library placed in the municipality of Trento, Italy. The 

building was monitored in terms of indoor carbon diox-

ide, indoor temperature, and relative humidity. Results 

show how successful the proposed approach is in reduc-

ing the computational time required for calibration, espe-

cially when considering models with a high degree of 

complexity. 

1. Introduction

Energy demand from buildings is still considered a 

significant share of the global energy consump-

tions, i.e., 36 % of the total energy demand (San-

tamouris & Vasilakopoulou, 2021). This means that 

measures in this sector must be taken to considera-

bly reduce overall energy consumption. In this 

context, dynamic simulations of buildings are an 

extremely powerful tool, which can help in achiev-

ing such goals, not only from the point of view of 

assessing the energy efficiency of new construc-

tions, but also for optimizing building operation 

and control. Nevertheless, dynamic and detailed 

models require a high number of both input data 

and parameters for describing the whole system. 

As reviewed by Chong et al. (2021), the building 

model requires input data which describe the 

physical model. If not directly measured or known, 

as in the case of new constructions, parameters 

must be assumed by the user. This assumption 

procedure brings uncertainty that has an unavoid-

able impact on the simulation output. Authors 

such as Karlsson et al. (2007), Scofield (2009) and 

Turner & Frankel (2008) reported how simulation 

results can differ significantly from monitored da-

ta. Hence, to adopt energy models that are as accu-
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rate as possible, calibration procedures are becom-

ing increasingly fundamental and are an unavoid-

able  step in building simulation for closely match-

ing simulated building behavior to reality (Coakley 

et al., 2014). When it comes to calibration of simu-

lation models, many approaches are available in 

the literature, comprising manual and iterative 

ones, graphical comparative procedures, tech-

niques based on specific tests and many others 

(Chong et al., 2021). Among all possible approach-

es, the optimization-based calibration is the most 

widely adopted in model calibration. However, 

this approach, which is usually based on evolu-

tionary algorithms, has the disadvantage that it 

requires many expensive simulations to be run, 

especially when the number of parameters to be 

calibrated is high, as in detailed models. This issue 

can be overcome by a preliminary sensitivity anal-

ysis that reduces the number of parameters to be 

calibrated, and by an efficient optimization algo-

rithm. 

Thus, this research work proposes a framework 

based on a sensitivity analysis designed to identify 

the most significant parameters separately on the 

energy budgets, other monitored environmental 

variables and, after that, considering all the varia-

bles together. Then, a calibration procedure is per-

formed based on functional approximation models, 

which greatly increases the efficiency of the opti-

mization algorithm. The Root Mean Square Error 

(RMSE) was chosen as statistical indicator to be 

minimized, instead of the monitored variables. The 

case study is a university library located in the 

municipality of Trento, Italy. The building is con-

stantly monitored in terms of indoor temperature 

(°C), relative humidity (%) and indoor carbon diox-

ide (ppm). The results show how successful the 

proposed approach is in reducing the computa-

tional time required for calibration, especially 

when considering models with a high degree of 

complexity. 

2. Methodology

2.1 Monitored Case Study 

To test the proposed calibration procedure, a real 

building was considered, specifically, a university 

library placed in Mesiano (46° 3' N, 11° 8' N), mu-

nicipality of Trento, Italy. 

Fig. 1 – Case study: University library BUM, University of Trento, 

Trento (Italy). The building was opened in 2021. Picture retrieved 

from http://www.weberwinterle.com  

The construction was built in 2020, and it has a 

total floor area of 1533 m2. It is a three-storey build-

ing composed of an underground basement , used 

as an archive and technical room, and two upper 

floors connected by internal stairs, where rooms 

are mainly used as offices and lecture halls. The 

generation system is composed of two heat pumps, 

one air-to-water and a ground source one. The hy-

dronic heating/cooling system is based on a radiant 

floor panel system for the two upper floors, and a 

fan-coil system for the basement. The building is 

supplied with an air mechanical ventilation system 

coupled with an Air Handling Unit AHU, except 

for the basement.  

Sensors are installed all over the library with the 

aim of monitoring the indoor conditions in terms 

of temperature T, relative humidity RH, and levels 

of CO2 in each ambient. Additional sensors are also 

placed on the plant side (i.e., heat pump system 

and the Air Handling Unit). Since its construction, 

the building has been constantly monitored by 

means of the Schneider Building Automation Server. 

Fig. 2 shows the positions of the data loggers in the 

library. Red sensors record indoor temperature and 

relative humidity, and CO2 levels, while the green 

ones only record the temperature. Data were rec-

orded with time steps of 15 min. Table 1 lists the 

different sensors and the names of the different 

418

http://www.weberwinterle.com/


Calibration of the Energy Simulation Model of a Library With a Meta-Model-Based Optimization Approach 

zones. 

Fig. 2 – Sensor locations with their identification numbers 

Table 1 – Sensor list and their positioning 

Sensor 
Monitored 

quantity 
Zone Floor 

1 T, RH, CO2 Reading hall vs. Stairs 1st  

2 T, RH, CO2 Reading hall vs. Office 1st 

3 T, RH, CO2 Wardrobe 1st 

4 T, RH, CO2 Architecture hall 1st 

5 T, RH, CO2 Reading hall vs. Offices GF 

6 T, RH, CO2 Reading hall vs. Toilets GF 

7 T, RH, CO2 Architecture hall GF 

8 T, RH, CO2 Conference room GF 

9 T, RH, CO2 Archive  B 

10 T Office 1st 

11 T Meeting room  GF 

12 T Office 1  GF 

13 T Office 2  GF 

2.2 Building Simulation Model 

TRNSYS® (v18) software was adopted to model the 

building’s performance. 

At first, the geometry of the model was created 

through the  TRNBUILD application in the 

SketchUp environment 

(https://www.sketchup.com/it), and then it was 

imported into the program through  Multizone 

Building Modeling (Type56), where each thermal 

zone (35 in total) was defined in this subroutine, 

thermo-physical properties of materials adopted in 

the opaque components, glazing properties and so 

on were defined. In particular, those data were 

retrieved from technical datasheets of the construc-

tion company. 

Weather data, in terms of external total solar radia-

tion (W m-2), external air temperature (°C), external 

air relative humidity (%) and wind speed (m s-1), 

were taken from the weather station at Trento 

Laste (https://www.meteotrentino.it) with time 

steps of 1 h. 

Solar radiation for each external tilted surface was 

modeled with the Perez Model (Perez et al., 1990) 

through Type16. The ground temperature was 

modeled with Type77. The external convective heat 

transfer coefficient hce was defined according to the 

Standard EN ISO 6946:2017 (CEN, 2017). Air infil-

trations were calculated in accordance with the 

empirical method suggested by the ASHRAE K1, K2 

and K3 model (ASHRAE Handbook, 1989). Since 

the building is a new one, coefficients can be as-

sumed equal to K1 = 0.1, K2 = 0.011 and K3 = 0.034 

(for tight constructions). 

The light power density was taken from technical 

documentations and differentiated for each ther-

mal zone. Three levels were considered, which are 

20, 15 and 10 W m-2, of which 60 % was accounted 

as thermal gain directly affecting the air node 

thermal balance. As regards thermal gains generat-

ed by the equipment, 7, 5 and 4 W m-2 power den-

sity levels were considered according to the 

ASHRAE Handbook (ASHRAE, 1989). 

Schedules of lights, as well as of the external shad-

ing devices, were imported from an external file 

through Type9. These data come from the monitor-

ing, since the building is also equipped with sen-

sors giving information about the state of the light-

ing power in percentage terms and percentage val-

ue of the window shadings. 

Since detailed occupancy schedules were not avail-

able, occupancy was assumed to follow Eq. (1). 

occupancyi = max peoplei · Schedulei  (1) 

The maximum number of people for each thermal 

zone was obtained with the help of on-site inspec-

tion by counting the number of available chairs, 

while the schedule of the reading hall, a value 

ranging from 0 to 1, was determined by analyzing 

the weekly occupancy rate supplied by Google (see 

Fig. 3) and available because of glocalization. As 

regards offices, a different schedule was consid-

ered. 
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Fig. 3 – Example of occupancy rate of the library adopted as 

schedule for the reading hall. Profile retrieved from Google. Val-

ues range from 0 to 1. X-axis shows the time in hours 

The Air Handling Unit was modeled as a black 

box, taking as input the monitored air temperature 

Tsupply and relative humidity RHsupply of the supply 

air. In this way, composing devices were neglected. 

In the period monitored, the unit was working in 

all-air configuration due to COVID restrictions, 

thus no air recirculation was performed, and air 

was taken completely from the outside. Data about 

the supply air were passed through Type9. The air 

volume flow rate VFR introduced in each ventilat-

ed zone was defined as: 

VFR=VFRdesign · ScheduleVENT ·RgVENT  (2) 

where the design volume flow rate was taken from 

technical documentations, and the AHU schedule 

(expressed from 0 to 1) and the regulation of the 

supply ventilator expressed in percentage terms 

were retrieved from monitored data (through 

Type9). 

The Radiant panels, adopted for both heating and 

cooling, were modeled through Type1231 – Radiator 

(TESS Libs 17 – HVAC Library Mathematical Ref-

erence). The general expression of the specific 

thermal output for a general radiator was charac-

terized for the radiant floor system by setting a 

value of 1 for the exponent linked to the difference 

between surface temperature and air temperature. 

And a value of 0.2 was considered for calculating 

the altitude correction factor. Inlet water tempera-

ture to the radiant floor system was taken from 

monitored data (Type9) and the water mass flow 

rate expressed in kg hr-1 was defined as the prod-

uct of the design water flow rate for each zone (re-

trieved from technical documentation) and the 

monitored signal relative to the functioning of the 

radiant floor system in that zone. 

The evolution profiles of CO2 concentrations were 

simulated as well. The levels of CO2 in a room de-

pend on the occupancy rate in that volume, the 

ventilation rate, and on the infiltrations. The model 

considered for the evolution in time of the indoor 

concentration accounts for the maximum value, at 

each time step, between the outdoor carbon diox-

ide CO2,ext, considered equal to 400 ppm, and the 

expression in Eq. (3). 

CO2{i,m} = CO2{i,m-1} + { INF · (CO2,ext - CO2{i,m-1})  + … 

... + VFRi/Vi · (CO2,ext - CO2{i,m-1}) + … 

… + (kgen · 106 ·occupancy)/ Vi· } · Δt 

     (3) 

The generation term is equal to 0.017568 m3 hr-1 

person-1. The three terms correspond to the infiltra-

tions, ventilation system and the occupancy, re-

spectively. 

Beyond the thermal and the occupancy balance, 

also the moisture one was implemented by consid-

ering the moisture production of the people ac-

cording to the ASHRAE Handbook 

(ASHRAE, 2017), where two different levels of ac-

tivity were set, both sedentary and active. 

2.3 Sensitivity Analysis 

To identify the most dominant parameters affect-

ing the model’s outputs, a preliminary sensitivity 

analysis was performed. In particular, the method-

ology adopted is the one proposed by Sohier et al. 

(2014), which is a modified version of the qualita-

tive Morris method, in which the significance 

threshold depends on the parameter with the high-

est elementary factor. This modification showed 

improvements in the estimation of the factors’ im-

pact with respect to the original one. The sensitivi-

ty analysis was applied separately to the three bal-

ances, and in particular: 

(i) at first, on the thermal balance, by consider-

ing as objective function the RMSE for the

indoor temperature T.

(ii) second, on the humidity balance, by consid-

ering the RMSE for the indoor absolute hu-

midity x.

(iii) at the end, on the CO2 balance, by consider-

ing the RMSE for the CO2 concentration lev-

els.

For each case, every parameter taken into consid-

eration was varied in a specific range, then simula-
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tions were run and the magnitude of the variation 

of the Root Mean Square Error RMSE, expressed in 

Eq. (4), was assessed. 

 (4) 

In particular, the RMSE relative to the individual 

variable, i.e., temperature, relative humidity, and 

CO2 concentration, was calculated for each moni-

tored zone and then averaged using the corre-

sponding volume. The method was implemented 

in the MATLAB® environment, which allowed au-

tomatic link to the software TRNSYS. 

2.4 Calibration Process 

After the preliminary parameter screening, the 

calibration procedure was addressed. In particular, 

a meta-models-based optimization approach was 

adopted, which is described and discussed in detail 

in the work of Prada et al. (2018). Meta-models are, 

substantially, surrogate models that emulate build-

ing dynamics. Hence, instead of optimizing the 

initial building simulation code directly, an explicit 

expression of the code is constructed starting from 

the building simulation results and used together 

with the Genetic Algorithm GA for the optimiza-

tion procedure. The main advantage of such meta-

models is to filter out the variable domain regions 

with no eligible Pareto solutions, as stated by Pra-

da et al. (2018). In particular, in this research, the 

surrogate model implemented is called Multivari-

ate Adaptive Regression Splines (MARS) meta-

model and it is based on piecewise cubic splines, 

which are adopted to approximate the cost func-

tion. 

Such an approach aims at overcoming some issues 

related to the commonly adopted evolutionary 

algorithms, whose procedure is extremely time-

consuming. The calibration was based on three 

monitored quantities, which are, firstly, the indoor 

air temperature of each zone, secondly, the abso-

lute humidity for each ambient, except those relat-

ed to sensors 10 to 13 (see Fig. 2) and, thirdly, re-

garding the CO2 variable, all zones equipped with 

a CO2 sensor were considered, except for the con-

ference room and the basement (i.e., sensors 8 and 

9), where the random component of the occupancy 

schedule was extremely significant and, thus, ne-

glected. The objective function set for minimization 

is the RMSE (Eq. 4), defined separately for each 

monitored quantity, i.e., temperature, absolute 

humidity and CO2, and normalized considering the 

initial case. Simulations were run considering a 

time-step of 15 min and a period from the 6th of 

November 2011 to the 12th of November 2011 (heat-

ing period). As for the sensitivity analysis, the pro-

cedure was implemented in the MATLAB® envi-

ronment, which allowed an automatic link to the 

software TRNSYS. 

3. Results and Discussion

In this section, results of the sensitivity analysis, as 

well as of the calibration procedure, are shown and 

discussed together. For instance, Table 2 shows the 

dominant parameters most affecting the model’s 

output as a result of the sensitivity analysis. In par-

ticular, for each parameter, the magnitude of the 

influence (i.e., with numbers from 1 to 12) on each 

balance of temperature, of absolute humidity and 

of the CO2 is specified. The term N/A is adopted 

when the model is not sensitive to that parameter. 

The parameters most influencing the temperature 

variable are mainly related to material properties, 

i.e., specific heat capacity, infiltration rates and

gains related to lights and equipment. However, 

gains related to occupancy and the volume flow 

rate of the ventilation system also have an impact 

on the temperature’s output, as seen in Table 2. In 

terms of absolute humidity, the parameters affect-

ing the balance the most are the occupancy rates 

and the volume flow rates of the environments 

where the ventilation system is installed. The same 

stands for the CO2 balance, considering, in addi-

tion, the effect of the external levels of CO2. Since 

parameters from no. 1 to no. 7 affect only the tem-

perature, their calibration was performed only on 

the thermal balance and by considering a single 

objective function based on the indoor air tempera-

ture. On the other hand, the other parameters from 

no. 8 – 15 that have an influence either on absolute 
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humidity, CO2 or both, were adjusted according to 

a two-objective function calibration, based on such 

variables. In this way, the calibration procedure 

was decoupled. As regards parameters related to 

occupancy rate and volume flow rates, which in-

fluence not only the absolute humidity and CO2, 

but also the temperature (e.g., no. 8, 9, 10, 12 and 

13), these were accounted for in the two-objective 

function calibration, since they are more dominant 

on such balances than on the thermal one. Once 

parameters no. 8, 9, 10, 12 and 13 were calibrated, 

they were changed in the thermal balance, and the 

calibration of the temperature was performed. Ta-

ble 2 shows the calibration ranges of each parame-

ter, where a variation of ± 20 % from the initial 

value was considered.  

Fig. 4 – Pareto front (blue data) with the combinations of the 

objective functions f1 and f2 related to the absolute humidity AU 

(kg kg-1) and CO2 (ppm), respectively. The optimal solution is 

highlighted in red 

Fig. 4 shows results of the optimization-based cali-

bration on the absolute humidity and the CO2, as 

combinations of the objective functions f1 and f2 

expressed as the ratio between the current RMSE 

and the RMSE related to the initial case, both for 

the AU and the CO2, respectively (see Eq. 5).  

𝑓1 𝑜𝑟  2  =  
𝑅𝑀𝑆𝐸𝐴𝑈  𝑜𝑟  𝐶𝑂2

𝑅𝑀𝑆𝐸0𝐴𝑈  𝑜𝑟  𝐶𝑂2

 (5) 

Results are placed on the Pareto front, as depicted 

in blue. By assessing the minimum distance of each 

solution from the origin, the optimal solution was 

selected and highlighted in red, as shown in Fig. 4. 

In particular, with this solution, only the CO2 con-

centration was improved, instead of the absolute 

humidity, for instance, f1 = 0.98 and f2 = 0.71 (im-

provements equal to 2 % and 9 % compared with 

the initial case, respectively). This is because the 

prediction of humidity in environments was mod-

eled with a simplified approach, which neglects 

some mechanisms like moisture buffering due to 

the building’s opaque components. The values of 

the calibrated parameters related to this optimal 

solution are summarized in Table 2 from no. 8 to 

no. 15. Besides values of occupancy and volume 

flow rates of the ventilation system, the parameter 

which shows remarkable change with respect to 

the initial case is the external CO2 concentration, 

which was not measured but assumed, and whose 

value influences the indoor CO2 balance to a great 

extent, according to Eq. (3). 

Results of the calibration on the thermal balance 

are reported in Table 2 from parameters no. 1 to 7, 

which refer to the minimum value of the objective 

function as expressed in Eq. 5, but only in terms of 

temperature. The obtained temperature objective 

function was equal to 0.90, which means a 10 % 

improvement compared with the initial case. In 

particular, parameters related to air infiltrations 

slightly decrease from the initial values, confirming 

the hypothesis of a highly airtight building, typical 

of new constructions.  

Table 3 shows the computational effort of each 

calibration procedure (in h), the percentage im-

provement of the model with respect to the initial 

case expressed as 1- f and the calibration accuracy 

in terms of RMSE for each variable. In particular, 

three cases were reported: the initial one, the case 

after the decoupled calibration composed of Cal 1 

and Cal 2, which considered the joined AU and 

CO2, and T, respectively. And, at the end, a third 

case based on a standard calibration procedure (Cal 

3) taken only as a comparison. Specifically, the

calibration considered all parameters of Table 2 

and three objective functions for every variable 

implemented together. The computational time 

necessary for the decoupled calibration is about 32 

h considering both Cal1 and Cal2. Clearly, Cal1 is 

remarkably more time-consuming than Cal2 (i.e., 

30.8 h vs 1.2 h) because of the two objective func-

tions. The improvement obtained after the decou-

pled procedure with respect to the initial case is 2 

% for the absolute humidity, 29 % for the CO2 and 

10 % for the temperature. In terms of RMSE, it can 

be noticed that the variations with the initial case 
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are limited especially in terms of temperature and 

absolute humidity prediction. A more marked re-

duction in the RMSE(CO2) is evident, i.e., from 88.3 

ppm to 61.6 ppm. This is because the model was 

already robust at the beginning thanks to the relia-

bility of the input data and parameters - a typical 

condition of new constructions. As regards the 

standard case, results in Table 3 show that the cali-

bration procedure requires about 9 % more time 

than the decoupled case (i.e., 35 h vs 32 h) to get a 

comparable accuracy, or even slightly lower, when 

considering the CO2 prediction. As before, the im-

provement is not greatly higher than the initial 

case because of the goodness of the initial model.  

Table 2 – Parameters which influence the most the models’ output obtained from the sensitivity analysis 

Category No. Parameter T AU CO2 Values range 
Calibrated 

value 

Material 

properties 

1 
c reinforced concrete [kJ kg-1 

K-1] 
3rd N/A N/A [0.704-1.056] 1.03 

2 
c concrete - heated floor [kJ kg-

1 K-1] 
11th N/A N/A [0.704-1.056] 0.95 

Infiltration 

rate 

3 K1 – INF [-] 5th N/A N/A [0.08-0.12] 0.08 

4 K2 – INF [-] 2nd N/A N/A [0.088-0.0132] 0.009 

Gains from 

lights and 

equipment 

5 
Light power density -1st level 

[kJ hr-1 m-2] 
1st N/A N/A [58-86] 59 

6 
Light power density – 2nd 

level [kJ hr-1 m-2] 
9th N/A N/A [43-65] 63 

7 
Equipment power density – 

1st level [kJ hr-1 m-2] 
8th N/A N/A [20-30] 20 

Gains from 

people 

8 
Max PPL Reading hall vs. 

Stairs 1st [-] 
4th 2nd 2nd [50-74] 70 

9 
Max PPL Reading hall vs. 

Offices 1st [-] 
6th 1st N/A [6-10] 6 

10 
Max PPL Reading hall vs. 

Offices GF [-] 
12th 4th N/A [26-30] 26 

11 
Max PPL Reading hall vs. 

Toilet GF [-] 
N/A N/A 3rd [32-48] 32 

Ventilation 

12 
VFR Reading hall vs. Stairs 1st 

[m3 hr-1] 
7th 3rd N/A [888-1332] 1024 

13 
VFR Reading hall vs. Offices 

GF [m3 hr-1] 
10th 5th 5th [435-653] 645 

14 
VFR Reading hall vs. Toilet GF 

[m3 hr-1] 
N/A N/A 4th [544-816] 773 

External envi-

ronmental 

conditions 

15 CO2, ext [ppm] N/A N/A 1st [200-600] 514 

Table 3 – Computational time, improvement and accuracy of the decoupled and standard calibration approach 

Initial case 
Decoupled Standard 

Cal 1 Cal 2 Cal 3 

Calibration 

Time* 
- 30.8 h 1.2 h 35 h 

Improvement 1-f - 2 % (AU) 29 % (CO2) 10 % (T) 

5 % (AU) 

28 % (CO2) 

7 % (T) 

RMSET  

RMSEAU  

RMSECO2  

0.6 °C 

0.3 g kg-1 

88.3 ppm 

0.6 °C 

0.3 g kg-1 

61.6 ppm 

0.6 °C 

0.3 g kg-1 

63.6 ppm 

* Processor: AMD Ryzen 9 5950X 16-Core – 3.40 GHz; Installed RAM: 32.0 GB.
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4. Conclusions 

In this work, a calibration of an energy simulation 

model based on the meta-model optimization ap-

proach was tested on a real case study. The meth-

odology comprised a first sensitivity analysis de-

signed to identify the most significant parameters 

on the energy budgets and other monitored envi-

ronmental variables separately. Then, a calibration 

procedure based on functional approximation 

models was applied separately on the monitored 

variables, which are temperature, humidity and 

CO2. The case study is a university library placed 

in the municipality of Trento, Italy. The building 

was monitored in terms of indoor carbon dioxide, 

indoor temperature, and relative humidity. Results 

show how the decoupled approach increases the 

efficiency of the optimization algorithm, especially 

in energy simulation codes with a high degree of 

complexity, thus with a high number of parame-

ters. For instance, to obtain the same, or even 

slightly greater, accuracy than a standard calibra-

tion approach, the computational time required for 

this decoupled calibration is 9 % less than a stand-

ard approach, where no differentiation among 

monitored variables is performed. Hence, the 

adoption of the MARS model in calibration proce-

dures of building simulation models can provide a 

contribution towards the optimization of both 

building refurbishment design, as well as building 

operation and control. 

 

Nomenclature 

Symbols 

ACH Air Changes per Hour (h-1) 

AHU Air Handing Unit 

B Basement 

c Specific heat capacity (kJ kg-1 K-1) 

CO2 Carbon Dioxide (ppm) 

Δt Simulation time step (hr) 

GA Genetic Algorithm 

GF Ground Floor 

H/C Heating/Cooling 

hce External convective heat transfer coef-

ficient (kJ hr-1 m-2 K-1) 

INF Infiltration rate (h-1) 

λ Thermal conductivity (W m-1 K-1) 

N Number of simulation time steps 

kgen Generation rate (m3 hr-1 person-1) 

PPL People 

Rg Regulation 

RH Relative Humidity (%) 

RMSE Root Mean Square Error 

T Indoor air temperature (°C) 

X Absolute humidity (kg kg-1) 

Y Variable (either T, RH or CO2) 

VFR Volume Flow Rate (m3 hr-1) 

Subscripts/Superscripts 

ext External 

i Of the ith thermal zone 

mis Measured  

m Of the current time step (-) 

m-1 Of the previous time step (-) 

sim Simulated 

supply Of the supply air of the AHU 

VENT Of the supply ventilator 
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