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Abstract 

Urban Building Energy Modeling and Multi-Objective Op-

timization are two very computationally intensive appli-

cations of Building Performance Simulation. In this re-

search, a simplification algorithm developed to speed up 

thermal simulations at urban scale was tested to assess its 

performance in optimization studies. Since the algorithm 

showed good accuracy at the individual building level, it 

was applied to standalone buildings, considering a set of 

energy efficiency measures and all the possible combina-

tions of four objectives, i.e., heating and cooling needs, 

thermal comfort and costs. The algorithm showed ade-

quate performance in finding the optima with the same in-

puts for most of the considered buildings and combina-

tions of objectives in different climatic conditions, allow-

ing the simulation time to be reduced to one third. 

1. Introduction

In 1965, Gordon E. Moore stated that the number of 

transistors on an integrated circuit would have in-

creased at a rate of roughly a factor of two per year, 

at least over ten years (Moore, 1965). Nowadays, 

such a prediction, known as Moore’s law, is still 

true, and it means that the power of computers is 

approximately doubling every couple of years. 

Thanks to such exponential increases in computing 

resources, two fields of Building Performance Sim-

ulation BPS have been gaining more and more inter-

est in recent years: Multi-Objective Optimization 

MOO and Urban Building Energy Modeling UBEM. 

Rather than offering a one-design solution, MOO 

provides the flexibility of choosing from a set of op-

timal solutions with a more realistic decision-mak-

ing process (Costa-Carrapiço et al., 2020). On the 

other hand, UBEM aims at finding an aggregated 

and simplified way of estimating the operational en-

ergy needs of groups of buildings, overcoming the 

limitations of single building modeling (Reinhart & 

Davila, 2015). 

The major computational cost of MOO and UBEM is 

the main drawback that they have in common. Re-

gardless of other technical aspects, such as the mod-

eler’s skills and knowledge, being too computation-

ally demanding is the first hurdle preventing their 

widespread employment in common practice. In ad-

dition, it is also the main reason why most of the 

UBEM studies present in the literature investigate 

retrofit or design scenarios (Ang et al., 2020) rather 

than performing MOO. Haneef et al. (2021) carried 

out one of the few studies combining UBEM and 

MOO. Considering a residential district of around a 

hundred buildings, they examined different sets of 

renovation measures for the building envelope and 

found the Pareto front with regarding three objec-

tives, i.e., energy, economic and sustainability per-

formances. 

In a previous work (Battini et al., 2021), we pro-

posed a simplification algorithm for UBEM to speed 

up the simulation time limiting the accuracy loss at 

hourly and building scale. The algorithm simplifies 

any arbitrarily shaped building into a representa-

tive shoebox to estimate the building’s indoor tem-

peratures and thermal loads. Since the procedure 

showed good precision in assessing the building’s 

performance at individual level, it could also be 

used to expedite other aspects of BPS, such as MOO. 

Given these premises, the aim of the present work is 

to assess the capabilities of the simplification in per-

forming MOO. A batch of standalone buildings 

were selected to test the procedure and they were 

simulated in three climates. The optimization was 

carried out considering energy efficiency measures 
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pertaining only the building envelope respect to up 

to four objectives, i.e., heating needs, cooling needs, 

indoor thermal comfort, and economic performance. 

The objectives were considered one, two, three and 

four at a time, in order to evaluate the algorithm’s re-

liability with all possible target combinations. 

2. Methodology

2.1 Simplification Algorithm 

The simplification, or “shoeboxing”, algorithm is ca-

pable of converting a building of any shape into a 

shoebox. Thus, from a detailed or starting model, a 

simplified or shoebox model is obtained. The pro-

cess to be employed for simplifying each building 

present in an urban model into its representative 

shoebox has three steps: 

1. Shoebox generation: by solving a non-linear sys-

tem of three equations in three unknowns, the

dimensions of the shoebox are found from the

starting building geometry.

2. Radiation modeling: opaque surfaces are placed

on a portion of each window of the simplified

model, in order to reduce the amount of incom-

ing radiation and reproduce the effect of the

contextual and self-shadings simulated in the

detailed model. To size such equivalent shad-

ing surfaces, a radiation analysis is performed

on both models to compute obstruction ratios

for each orientation and floor.

3. Building adjacency: adiabatic surfaces are used

to account for adjacent buildings.

A more in-depth description of the shoeboxing pro-

cess can be found in a previous work by the authors 

(Battini et al., 2021). Once obtained, detailed and 

simplified models are characterized by the same 

non-geometrical features.  

The procedure does not depend on specific tools to 

be developed, hence it can be reproduced with any 

software having the right capabilities. In this work, 

Rhinoceros and Grasshopper were employed for the 

geometrical conversion, Ladybug Tools SDK was 

used for creating the energy models, and Ener-

gyPlus was utilized as BPS tool. The programs were 

coupled by automating the entire process thanks to 

custom-made Python scripts. 

2.2 Multi-Objective Optimization 

2.2.1 Buildings selection for testing 

The simplification algorithm developed was first 

tested on 3072 buildings of complex shape built out 

of polyominoes (Golomb, 1994) to guarantee com-

plex and non-repetitive shapes. Moreover, to assess 

its prediction capabilities under different boundary 

conditions, every building geometry obtained and 

its  related simplified model were simulated in three 

climates, i.e., Bolzano and Messina, Italy, and Den-

ver, US. 

Since performing a MOO is already largely compu-

tationally and time-consuming, a set of buildings 

were chosen from the ones already generated. Fig. 1 

reports the boxplots for the relative annual differ-

ences between detailed and simplified models in the 

three climates. The results are reported as a function 

of the number of floors of each building and show 

how, for both targets, the simplified model predic-

tion always falls within ± 20 % difference. Five 

buildings for each target (i.e., heating and cooling) 

were chosen for each climate, thus thirty building 

were used in the MOO. In order to employ repre-

sentative buildings in this work, starting from the 

relative annual differences obtained by the previous 

study, buildings corresponding to the minimum, 

first quartile, median, third quartile and maximum 

difference were selected. In this way, it was possible 

to study buildings whose performances are differ-

ent but also representative of the batch which they 

were picked from. Among the starting 3072 possi-

bilities, Fig. 2 reports the buildings selected for the 

analysis. Instead of simulating all buildings in the 

three climates, each building was simulated in the 

same climate from which it was selected. Thus, ten 

buildings were simulated per each climatic condi-

tion. 

2.2.2 Optimization 

The aim of the present optimization is to test 

whether the detailed and simplified building mod-

els’ non-dominated solutions match in terms of in-

puts. Thus, the optima found should have the same 

values for the inputs rather than the outputs. 
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Fig. 1 – Boxplots for annual heating and cooling needs relative differences depending on buildings’ number of floors for the entire building 

Since the algorithm was developed for urban scale 

applications, the variables considered in this first 

study only focus on the envelope. Since in UBEM, 

the information regarding the systems is usually not 

available, retrofit or design scenarios mainly pertain 

to the buildings’ envelope. Thus, three variables 

were considered: 

- insulation type: all external opaque surfaces are

characterized by the same composition, three

types of insulation were selected, i.e., XPS, min-

eral wool, and cellulose fiber.

- insulation thickness: the thickness of the type of

insulation varied from 2 to 20 cm with a step of

2 cm.

- type of window: five different types of win-

dows were chosen, such as double glazing with

air filling, double glazing with argon filling and

high solar factor, double glazing with argon fill-

ing and low solar factor, triple glazing with ar-

gon filling and high solar factor, and triple glaz-

ing with argon filling and low solar factor.  

In Table 1, the variables considered are reported 

along with their properties and related investment 

costs. As far as insulation is concerned, the invest-

ment cost per square meter was computed in func-

tion of the thickness s according to the formulas re-

ported for each type of material. The investment 

costs considered in this study for the opaque and 

transparent envelope are the same as those em-

ployed by Haneef et al. (2021) and Pernigotto et al. 

(2017). Given the low number of combinations, a full 

factorial analysis was carried out and all possibili-

ties were simulated.

Fig. 2 – Selection of buildings for each target and climate 
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Table 1 – Variables for MOO 

Insulation 

Insulation Thermal conductivity [W m-1 K-1] Density [kg m-3] Specific heat [J kg-1 K-1] Investment cost [€ m-2] 

XPS 0.035 30 1450 112.5 ∙ s + 55.6 

Mineral wool 0.038 130 1030 213.6 ∙ s + 70.2 

Cellulose fiber 0.045 160 2000 363.7 ∙ s + 74.6 

Windows 

Window Glass transmittance [W m-2K-1] SHGC [-] Investment cost [€ m-2] 

Double glazing air filling 2.72 0.76 247.30 

Double glazing argon filling high SHGC 1.14 0.61 404.33 

Double glazing argon filling low SHGC 1.10 0.35 439.06 

Triple glazing air filling high SHGC 0.61 0.58 477.65 

Triple glazing air filling low SHGC 0.60 0.34 454.49 

Thus, the real Pareto solutions were found, since no 

optimization algorithm was used. 

To test the simplification capabilities as broadly as 

possible, the heating demand, cooling demand, 

thermal comfort and economic performance were 

considered as the objectives to be minimized. The 

heating and cooling needs were accounted as an-

nual energy needs expressed in megawatt hour by 

summing up the hourly needs. Thermal comfort 

was evaluated as the annual average of the hourly 

results for the Predicted Percentage of Dissatisfied 

PPD, since it is one of the suggested methods by 

UNI EN ISO 7730 (UNI, 2006) for long-term evalua-

tions of comfort conditions. The costs were consid-

ered by computing the Net Present Value NPV of the 

building by means of an economic analysis with a 

lifespan of 30 years according to UNI EN 15459-1 

(UNI, 2018). The optimal solutions were found for 

all the possible combinations of objectives, thus 

from one at a time to all four together, resulting in 

15 combinations. In this way, it was possible to as-

sess the performance of the procedure with a varia-

ble number of objectives and non-dominated solu-

tions.  

For each case, the optimal solutions found for the 

detailed and simplified models were compared. 

First, the total number of optima was counted. Then, 

it was checked for the presence of non-matching so-

lutions as follows: (i) the solutions that were found 

as optima for the detailed model which were domi-

nated for the simplified one were counted as optima 

not found, (ii) the solutions that were labeled as 

non-dominated for the simplified model that were 

not optima for the detailed one were considered as 

wrongly found optima. On top of these two absolute 

values, for each combination of objectives, the error 

rate in performing a right choice or a wrong choice 

with respect to the total number of real optima was 

computed. 

3. Results and Discussion

Even though the aim of this work is to assess if the 

detailed and simplified models result in having the 

same input values for the optimal solutions, the sim-

ulation outputs for heating and cooling needs, and 

the PPD for the detailed and simplified models were 

visually compared. 

Fig. 3 and Fig. 4 show that the simplified models 

tend to underestimate the heating needs and over-

estimate the cooling ones. Such behavior was pre-

sent also in the previous work from which the build-

ings were selected. However, since prior to this re-

search the algorithm was tested focusing mainly on 

the buildings’ shape rather than varying the ther-

mophysical properties of the envelope, it was not 

possible to state that such a tendency could be true 

in all cases. Fig. 5 reports the boxplots with the PPD 

distribution for all the combinations for the build-

ings considered. Compared with the thermal needs, 

the distributions of the annual average PPDs for the 

simplified and detailed models are much more sim-

ilar. 

From Figs. 3, 4 and 5, it is clear that the differences 

between detailed and shoebox models are inde-

pendent of the starting building’s shape. Thus, to be 

consistent with previous research, the results for the 

optimization were compared in the three climates to 

assess the procedures’ weaknesses more in detail. 
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Fig. 3 – Annual heating needs boxplots for detailed and simplified models of each building for all input combinations 

Fig. 4 – Annual cooling needs boxplots for detailed and simplified models of each building for all input combinations 
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Fig. 5 – PPD boxplots for detailed and simplified models of each building for all input combinations  

Table 2 reports the results for all combinations of ob-

jectives in the three climates. To visually understand 

in which cases the algorithm is performing better, 

the cells reporting the objectives considered were 

color-coded according to the right or wrong error 

rates. The combinations of objectives were colored 

in green if both error rates were lower or equal to 

10 %, yellow if at least one of them was larger than 

10 % and lower or equal to 20 %, and red if at least 

one of the two errors was greater than 20 %. In this 

way, it is possible to have a quick understanding of 

the reported tabular results.  

The number of optimal solutions found for the de-

tailed models is greatly affected not only by the 

number of objectives but also by the type of objec-

tives considered. When antagonist objectives such 

as heating and cooling are in the same optimization 

problem, the number of optimal solutions increases 

much more compared with other cases. Since the 

NPV is related to both heating and cooling annual 

needs, including the economic performance leads to 

an increase of optima as well. Even though from 

Fig. 5 it seems that, for detailed and simplified mod-

els, the distributions for the annual average thermal 

comfort could be similar, Table 2 reports higher er-

ror rates when thermal comfort is included among 

the objectives, mainly for the climates of Bolzano 

and Denver. Generally, in all climates, low error 

rates are reported when having one, three or four 

objectives. Thus, the algorithm’s performance in 

finding the right optimal solutions is more accurate 

when there is a unique solution (i.e., one objective) 

or the number of optima is very large.  

In the climate of Bolzano, the higher error rates oc-

cur when the economic and comfort objectives are 

optimized. When they are coupled with the cooling 

needs for the simplified models, not every optimum 

is found. On the other hand, coupling them with the 

heating needs leads to mainly wrongly labeled op-

tima. As far as the climate of Denver is concerned, 

the results obtained are very similar to those of Bol-

zano. Even though thermal comfort and costs still 

yield the least accurate outcomes, there is an overall 

reduction of the error rates, except for the analysis 

with thermal comfort as sole objective. 

Finally, the climate of Messina is the one yielding 

the most accurate optimization predictions, even for 

the heating demand, which is not a target output for 

this type of climate. Overall, for standalone build-

ings, the algorithm is three times faster in perform-

ing energy simulations for the buildings considered. 

Thus, the time required to run an optimization for 

each of these buildings was cut to one third. Even 

though, in some cases, the errors are still not negli-

gible, the algorithm’s performance in finding a set 

of optimal solutions is adequate for the purpose.  
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Table 2 – Optimal solutions comparison in the three climates 

Bolzano 

Objectives 
Total real 

optima 

Total not 

found optima 

Total wrongly la-

beled optima 

Right choice 

error [%] 

Wrong choice 

error [%] 

Average number 

of optima 

Heating 10 0 0 0.00 0.00 1.00 

Cooling 10 0 0 0.00 0.00 1.00 

Costs 10 0 0 0.00 0.00 1.00 

Comfort 10 4 4 40.00 40.00 1.00 

Comfort-Costs 115 36 28 31.30 24.35 11.50 

Cooling-Comfort 101 19 0 18.81 0.00 10.10 

Cooling-Costs 169 13 0 7.69 0.00 16.90 

Heating-Comfort 99 2 50 2.02 50.51 9.90 

Heating-Cooling 289 0 0 0.00 0.00 28.90 

Heating-Costs 353 1 42 0.28 11.90 35.30 

Cooling-Comfort-Costs 403 52 0 12.90 0.00 40.30 

Heating-Cooling-Comfort 299 0 1 0.00 0.33 29.90 

Heating-Cooling-Costs 1025 5 0 0.49 0.00 102.50 

Heating-Comfort-Costs 503 0 52 0.00 10.34 50.30 

Heating-Cooling-Comfort-Costs 1047 5 1 0.48 0.10 104.70 

Denver 

Heating 10 1 1 10.00 10.00 1.00 

Cooling 10 0 0 0.00 0.00 1.00 

Costs 10 2 2 20.00 20.00 1.00 

Comfort 10 4 4 40.00 40.00 1.00 

Comfort-Costs 332 50 17 15.06 5.12 33.20 

Cooling-Comfort 153 16 1 10.46 0.65 15.30 

Cooling-Costs 80 5 0 6.25 0.00 8.00 

Heating-Comfort 87 5 16 5.75 18.39 8.70 

Heating-Cooling 256 8 2 3.13 0.78 25.60 

Heating-Costs 405 8 14 1.98 3.46 40.50 

Cooling-Comfort-Costs 477 56 1 11.74 0.21 47.70 

Heating-Cooling-Comfort 259 8 3 3.09 1.16 25.90 

Heating-Cooling-Costs 912 13 3 1.43 0.33 91.20 

Heating-Comfort-Costs 578 9 31 1.56 5.36 57.80 

Heating-Cooling-Comfort-Costs 918 13 3 1.42 0.33 91.80 

Messina 

Heating 10 0 0 0.00 0.00 1.00 

Cooling 10 1 1 10.00 10.00 1.00 

Costs 10 0 0 0.00 0.00 1.00 

Comfort 10 0 0 0.00 0.00 1.00 

Comfort-Costs 38 0 0 0.00 0.00 3.80 

Cooling-Comfort 15 0 1 0.00 6.67 1.50 

Cooling-Costs 30 2 0 6.67 0.00 3.00 

Heating-Comfort 284 1 1 0.35 0.35 28.40 

Heating-Cooling 290 1 3 0.34 1.03 29.00 

Heating-Costs 615 5 7 0.81 1.14 61.50 

Cooling-Comfort-Costs 38 0 0 0.00 0.00 3.80 

Heating-Cooling-Comfort 297 0 1 0.00 0.34 29.70 

Heating-Cooling-Costs 1014 6 7 0.59 0.69 101.40 

Heating-Comfort-Costs 1067 4 6 0.37 0.56 106.70 

Heating-Cooling-Comfort-Costs 1081 3 4 0.28 0.37 108.10 
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4. Conclusion

In this work, the performance of a simplification al-

gorithm developed for UBEM was tested in order to 

speed up the simulation time of building-level 

MOO. From a previous study, a group of buildings 

was chosen to perform a MOO, and energy effi-

ciency measures and four objectives were selected. 

Heating and cooling needs, thermal comfort and in-

vestment costs were considered as objectives. To 

test the capabilities of the simplification in finding 

the right optimal solutions, all possible combina-

tions of objectives were counted, and the buildings 

were simulated in three different climates. 

Overall, it was possible to reduce to one third the 

thermal simulation time, obtaining adequate results 

for almost all combinations of objectives, regardless 

of the climatic condition considered. More specifi-

cally, the error rates in choosing the right optima 

were lower than 10 % for more than half of the com-

binations of objectives considered. Except for four 

cases, it was always possible to limit the error rate 

to maximum 20 %. Nonetheless, since the optimal 

solutions are related to the prediction accuracy of 

the algorithm, improving the precision of the sim-

plification procedure will lead to more exact solu-

tions. For this reason, a new configuration of the al-

gorithm modeling the incoming radiation on a 

monthly basis is under development by the authors. 
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