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Abstract 
This study introduces the creation and application of a 

data-driven digital twin for building ventilation systems, 

focusing on a university building as a case study. It em-

ploys a grey-box energy modelling framework to accu-

rately forecast, simulate, and monitor the ventilation sys-

tem's efficiency under diverse conditions. The study col-

lects a substantial dataset to reflect various usage patterns 

and environmental influences, which serves to test and 

validate the component models of the ventilation system. 

These models are integrated into a digital twin platform, 

providing a comprehensive overview of the system's per-

formance and critical indicators in real time. The digital 

twin facilitates informed decision-making for facility man-

agers regarding energy consumption, inefficiency identifi-

cation, and the recommendation of custom retrofitting ac-

tions specific to the building's characteristics and use. The 

findings confirm that digital twins are effective as a tool to 

continuously commission and detect anomalies in build-

ings. The study offers a ventilation modelling and moni-

toring method capable of recognizing rule-based control 

behaviours and changes in systems that occur in cycles, 

like system shifts from winter to summer, and can estimate 

total air mass flow rate with a correlation exceeding 80%. 

1. Introduction  

The European Union (EU) is addressing its energy 

and environmental objectives for 2030 and 2050 by 

focusing on the building sector, which accounts for 

nearly 40% of its energy consumption (European 

commission, 2018). According to the International 

Energy Agency (IEA), this sector is also responsible 

for about 36% of total emissions, broken down into 

residential buildings (22%), non-residential build-

ings (8%), and construction projects (6%) (IEA, 

2019). Digital twin technology is identified as a key 

innovation for improving building operations, par-

ticularly through optimizing ventilation systems 

which play a crucial role in maintaining indoor air 

quality and constitute a substantial part of building 

energy usage. 

Recent advancements in computer science have led 

to the integration of digital technologies like Build-

ing Information Models (BIM) and their advanced 

form, Digital Twins, into building management (Lu 

et al., 2020). Digital Twins, particularly when com-

bined with sensor data, enhance building energy ef-

ficiency through various methods, including model 

predictive control (MPC) (Smarra et al., 2018) and 

facilitating real-time energy-saving decisions 

(Agostinelli et al., 2021). These technologies enable 

precise and efficient modelling of a building's en-

ergy systems. A significant challenge in this field is 

modelling ventilation systems that must account for 

the variability in control actions due to different 

conditions such as seasonality and manual adjust-

ments (Zhang et al., 2022). This research focuses on 

developing a Digital Twin for the OU44 building at 

the University of Southern Denmark. The building 

serves as a live laboratory and is equipped with CO2 

sensors and air diffuser damper position sensors. 

The study combines data-driven and physics-based 

methods to precisely estimate energy consumption 

and conditions in specific rooms. This Digital Twin 

platform offers real-time data on ventilation perfor-

mance and energy utilization.  
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The development of the digital twin uses the 

Twin4Build framework (Bjørnskov et al., 2023), 

which supports grey-box energy modelling of vari-

ous system components. Additionally, this research 

investigates continuous monitoring and anomaly 

detection, addressing the challenges of data collec-

tion and system integration in older systems. The 

findings highlight the profound impact of Digital 

Twin technology in building management, show-

casing through the OU44 case study how such tech-

nologies can improve decision-making, enhance 

monitoring capacity, and adapt to other buildings 

equipped with basic sensors, demonstrating their 

broad applicability in the field. 

2. Grey Box, Ontology-Based Modelling 

Grey-box modelling merges theoretical knowledge 

and data-driven methods to produce models that 

balance comprehensibility with accurate system dy-

namics representation, especially useful for par-

tially understood systems. It incorporates both par-

tial theoretical knowledge and empirical data. On-

tology-based modelling enhances this approach by 

using structured frameworks called ontologies to 

organize information and define relationships spe-

cific to the domain, thereby improving interopera-

bility and facilitating knowledge reuse across differ-

ent applications. The digital twin concept organizes 

these models and tools to serve physical asset de-

signers and operators, defining a digital twin as a 

collection of digital models that predict specific out-

comes, supported by a data-acquisition system for 

real-time physical-digital interaction. A diagram of 

this model-asset interaction is depicted in Figure 1. 

The Twin4build framework leverages the SAREF 

core ontology and its extensions SAREF4BLDG and 

SAREF4SYST (SAREF, 2020).  

It is composed of 5 main classes which provide a 

streamlined modelling flow: 

- Model: Represents the simulation model, com-

posed of 1 or more component models. 

- Simulator: Simulates a model instance for a 

given period. 

- Monitor: This class offers methods to analyse 

estimated and measured data to assess perfor-

mance and detect anomalies. 

- Evaluator: Can evaluate and compare different 

Model instances based on user-defined quanti-

ties of interest. 

- Estimator: Provides methods for performing 

parameter estimation and sensitivity analysis 

using a model instance and user-defined pa-

rameters. 

 

 

Fig. 1 – Digital twin diagram. It uses sensor data in tandem with 
digital models to provide a variety of services for building operators 
and designers (Jradi and Bjørnskov, 2023) 

3. Methodology 

Figure 2 shows the abstract process carried out to 

develop the ventilation model. The methodology 

encompasses an initial phase of characterization 

and data acquisition, followed by the application of 

historical data to train a machine learning algo-

rithm. This algorithm is designed to replicate the 

rule-based control actions for each ventilated room. 

Subsequently, the approach employs historical data 

in conjunction with model estimates to conduct pa-

rameter estimation and refine the model's accuracy 

through fine-tuning.  

The next sections show a general diagram of the 

model, with inputs and outputs. Followed by a de-

scription of a room model which is replicated for 

each room inside the ventilation model, the room 

model contains a controller and a damper model. 

The controller model attempts to mimic the hetero-

genous behaviour of the rule-based controller that 

controls de damper position of each room. 
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Fig. 2 – General modelling methodology 

3.1 Ventilation System Model 

This study considers one of the 4 nearly identical 

ventilation systems in the OU44 building. This sub-

system provides air to a quarter of the areas on the 

building, distributed in 20 rooms with demand-con-

trolled ventilation (DCV) and other 10 auxiliary, 

small rooms like bathrooms and copy rooms with a 

constant air volume (CAV). These rooms span all 4 

levels of the building.  

 

Fig. 3 – Ventilation system model 

Figure 3 illustrates a model of the ventilation sys-

tem. The facility's Building Management System 

(BMS) monitors CO2 levels continuously, capturing 

real-time data every minute from rooms with DCV. 

This data informs the adjustment of damper posi-

tions in each room, which in turn controls the air-

flow according to a model specific to each room. 

These airflow calculations are based on the prede-

termined nominal flow rates designated for each 

room. 

3.1.1 Room model 
The individual room model consists of a CO2-based 

controller which uses both CO2 and time infor-

mation to provide a damper opening position sig-

nal. 

 

 

Fig. 4 – Room ventilation model 

 

The damper model estimates the air flow through 

the damper as a function of the damper position. Us-

ing the model by Huang (Huang, 2011) in its con-

strained form, the model has two 2 main parame-

ters: a corresponding to a unitless air damping coef-

ficient and  𝑚̇𝑎,𝑚𝑎𝑥 which corresponds to the maxi-

mum flow rate of the room damper. The damper’s 

air mass flow rate is described by the equation 1, 

where the constrains for the coefficients c and b are 

given by Equations 2 and 3. 
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𝑚̇𝑎 = 𝑎𝑒𝑏𝑢𝑑 + 𝑐      (1) 

 

𝑐 =  −𝑎             (2) 

 

𝑏 =  𝑙𝑛 (
𝑚̇𝑎,𝑚𝑎𝑥−𝑐

𝑎
)    (3) 

Where: 

𝑚̇𝑎,𝑚𝑎𝑥 is the damper’s nominal air mass flow rate 

(kg/s) 

a is a damper coefficient (dimensionless).  

𝑢𝑑  is the damper opening position [0-1] (percent-

age) 

The maximum air flow (𝑚̇𝑎,𝑚𝑎𝑥) rate for each room 

is taken from the design values given in the build-

ings blueprints. A fine-tuned value is used for the 

second parameter (a) of the model. 

3.1.2 Controller model 
One prevalent challenge encountered in modelling 

ventilation systems of buildings, years after they 

commence operations, stems from the inconsistency 

in the control strategy across all rooms within the 

building, which can fluctuate throughout the year. 

This variability, compounded by the lack of compre-

hensive historical data on adjustments and configu-

rations applied to the control system over time, of-

ten results in the inadequacy of simple rule-based 

controllers’ models to accurately predict the venti-

lation system's actual behaviour across the entire 

building. To address this issue, a data-driven meth-

odology was employed, leveraging artificial neural 

networks, as shown in Figure 5. 

 

 

Fig. 5 – Room ventilation controller model 

 

This approach uses both CO2 concentrations and the 

rooms’ damper positions to train an ANN model 

which attempts to mimic the behaviour of the rule-

based controller assigned to each room.  

3.1.3 Data embeddings 
To capture the configuration of the ventilation 

modes for each one of the rooms and to validate the 

controlling signals each one of the 3 main quantities 

were adapted for its use in the neural network 

model. Equation 4 presents the discretization used 

for the damper position value. A continuous value 

from 0 to 100 is converted to 20 discrete classes with 

an integer from 0 to 19 for each. This is the output of 

the neural network. 

 

𝑑 = 𝑟𝑜𝑢𝑛𝑑(
𝐷

100
∙ 19)   (4) 

 

Where d is the discrete value for the damper posi-

tion used as output of the neural network and D is 

the original data point [0,100]. 

 

Equation 5 describes the normalized CO2 concentra-

tion, with the original values in ppm, a gaussian 

normalization (Z-score normalization) is made: 

 

𝑧 =  
𝐶𝑂2−𝜇𝑐𝑜2,𝑖

4𝜎𝑐𝑜2,𝑖
    (5) 

 

Where the mean and standard deviation are calcu-

lated with all the data points of each room (i) corre-

sponding to the year 2023. The denominator in-

cludes four times the sigma value to make it less 

sensible to outliers. Additionally, making the values 

smaller and with a 0-mean. 

 

The time variables were divided in three categories: 

Day of the year, day of the week and time of the day. 

This division allows the model to have a notion of 

the effects of seasons, weekdays and day-night cy-

cles which are typically used to define ventilation 

rule-based controls. To provide insight into the cy-

clic nature of the first two time-variables, the cyclic 

embedding presented in Equations 6 and 7 was 

used. 

 

𝑥𝑠𝑖𝑛 = sin (
2𝜋𝑥

𝑃
)    (6) 

𝑥𝑐𝑜𝑠 = 𝑐𝑜𝑠 (
2𝜋𝑥

𝑃
)    (7) 

 

Where x are the original time of day and day of year 

cyclic features, P is the period of the feature (24 for 

time of day and 365 for day of year). This represen-

tation produces 2 variables per cyclic feature that 

are fed to the neural network as inputs. 

The day of the week feature is encoded using one-

hot-encoding.  
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Table 1 – Hyperparameters used for the neural networks repre-
senting the ventilation controller for each room. 

Hyperparameter Value 

Input size 12 

Output size 20 

Hidden layer 1 size 50 

Hidden layer 2 size 100 

Learning rate 0.001 

Number of epochs 15 

Batch size 64 

4. Case Study 

A case study using sensor data from a living lab 

building from the University of Southern Denmark 

is considered for the implementation of the devel-

oped model. This study focuses on the ventilation 

system of the building. The ventilation system’s dig-

ital twin aims to provide continuous commissioning 

services, anomaly detection and insights into the 

power consumption of the ventilation fan through 

the estimation of the total air flow rate and room 

ventilation conditions. 

4.1 OU44 Building 

Presented in Figure 6, the OU44 building of the Uni-

versity of Southern Denmark is a multi-purpose 

building equipped with different sensors through-

out the building. Specifically, the main rooms and 

offices measure indoor CO2 concentrations, a signal 

that is used in the demand-controlled ventilation 

system of the building. 

The building has 4 nearly identical ventilation sub-

systems which operate independently. Each one of 

these is comprised of an Air Handling Unit, ventila-

tion ducts and room air dampers controlled by a 

centralized controller.  

 

 

Fig. 6 – Façade of the UO44 building, SDU Odense 

 

The ventilation system, depicted in figure 7, in-

cludes a central air handling unit (AHU) that pro-

vides demand-controlled ventilation (DCV) to 20 

study and multi-purpose rooms, and constant ven-

tilation to 10 auxiliary rooms. The system is man-

aged by a Building Management System (BMS), 

which controls the ventilation and aggregates data 

from CO2 and temperature sensors in each of the 20 

main rooms. 

 

   

Fig. 7 – Block diagram of one of the ventilation subsystems in 
UO44, VE01 

5. Results 

5.1 Controller Model 

The data-driven approach attempts to capture the 

rule-based controller behaviour by mimicking the 

measured controlling actions without having to 

manually craft a set of controlling rules for each 

room in the ventilation system. The accuracy of the 

Artificial Neural Network (ANN) models is evalu-

ated by comparing them to the actual measured po-

sitions of dampers in each room. This accuracy is 

calculated as the percentage of instances where the 

ANN model's output precisely matches the discre-

tized position of the damper at every timestamp in 

the test data. The results are presented in Figure 8. 
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Fig. 8 – The accuracy of the Artificial Neural Network (ANN)  
models 

 

The model training process starts with the data em-

bedding described in section 3.1.3 where the CO2 

concentration and time data are pre-processed. 

Then the data is split into training and test datasets 

in the following process: Out of the data for the 

whole year of 2023, the first three weeks of each 

month are used for training and the remaining days 

of each month for testing. Additionally, the months 

of January and February 2024 are used for valida-

tion.  

The sum of all estimated air mass flows for each one 

of the rooms is shown in the Figure 9, where the con-

tinuous blue line represents sensor data, and the 

black dotted line are the simulation results for the 

total air mass flow of the AHU. 

 

 

Fig. 9 – ANN-based controller estimation for a week during the 
month of February 2024, RMSE: 0.6581 kg/s Correlation: 0.9335 

 

The accuracy of the ANN-based controllers is eval-

uated by comparing two key measurements: the 

Root Mean Square Error (RMSE) calculated using 

actual measured positions of the dampers and the 

RMSE calculated using the damper position signals 

provided by the ANN controllers. This comparison 

helps assess the error introduced by the ANN con-

trollers. Table 2 presents the comparison of the 

RMSE obtained when estimating the total system 

airflow when the control signal is the measured 

damper position and the estimated air flow using 

the position signal from the ANN controller model. 

RMSE calculated with all validation data from 2024. 

Table 2 – RMSE and correlation coefficients of mass air flow rate 
with and without ANN controllers. 

Control signal  RMSE [kg/s] Correlation 

Measured 0.6910 0.9684 

ANN control 0.6581 0.9335 

Difference 0.0329 0.0349 

 

5.1.1 Share of air flow from rooms without 
DCV 

The proportion of total airflow to rooms without de-

mand-controlled ventilation was determined by an-

alysing estimated airflow values against measure-

ments from the air handling unit (AHU). The Root 

Mean Square Error (RMSE) for the initial dataset, 

covering January 2023, was determined to be 1.566 

kg/s. This RMSE is considered indicative of the con-

stant airflow volume in rooms equipped with con-

tinuous ventilation. The accuracy of this estimation 

was further assessed by comparing it against data 

collected in subsequent periods, as shown in Figure 

10. 

 

 

Fig. 10 – (Top) Original air flow rate estimation. RMSE: 1.6468 
Correlation: 0.8241. (Bottom) Adjusted air flow rate estimation: 
RMSE: 0.5045 Correlation: 0.8241 

5.2 Continuous Monitoring 

First, the digital twin is implemented for continuous 

commissioning service of the ventilation system 

case study. In this regard, the model enables the 

tracking and identification of irregularities in both 

the overall ventilation system and within each indi-

22



Data-Driven Digital Twining of Ventilation Systems for Performance Optimization:  
A University Building Case Study 

 

vidual room. This is done by continuously compar-

ing an estimated signal with its measured counter-

part, calculating a moving average of the error be-

tween the two signals and defining a threshold that 

would trigger an anomaly signal if surpassed. Fig-

ure 11 shows the continuous monitoring of the ven-

tilation system’s main air flow rate. 

 

Fig. 11 – Continuous monitoring of total air handling unit inlet air 
flow rate from the 5th to the 14th of February 2024 

 

The bottom plot shows the anomaly signal, which is 

calculated by identifying deviations between the ex-

pected and actual damper positions or airflow rates, 

an anomaly is considered when the error average 

exceeds 15% for total airflow and 20% for damper 

positions. In Figure 12, a detailed examination of the 

monitoring models for all these rooms revealed that 

the expected control signal deviated in behaviour 

for 4 rooms. Analysing further, for one of the offices 

with anomalies, it could be seen that the control sig-

nal was manually set to maintain a fully open 

damper position during work hours, disregarding 

CO2 levels. This setup was modified in the following 

year, as depicted in Figure 13, to allow for adjust-

ments in response to measured CO2 levels, thereby 

optimizing ventilation performance and indoor air 

quality. 

6. Conclusion  

This study utilizes grey-box modeling and ontol-

ogy-based methods to blend empirical data with 

theoretical insights for predicting and simulating 

ventilation system performance under various sce-

narios.  

Fig. 12 – Anomaly signals for the rooms of the ventilation system 

 

 

 

Fig. 13 – Anomalous change in the damper controller for Room 
10. The behaviour of the controller is different compared to the 
same period in the previous year 

This approach achieves a balance between interpret-

ability and accuracy, optimizing operations without 

fully depending on complex theoretical processes. It 

replicates rule-based controllers in larger buildings 

by training a neural network with control signals, 

adjusting to cyclic patterns and periodic control 

strategy changes efficiently. Although effective, it 

2024 

Room 10 

2023 

2323



Andres Sebastian Cespedes Cubides, Jakob Bjørnskov, Muhyiddine Jradi 
 

can inadvertently include isolated configuration 

changes, which could be mitigated with larger da-

tasets.  

This research also underscores the challenges in 

data collection and integration within live build-

ings, pointing out the difficulties of merging various 

subsystems into a unified digital twin platform. Fu-

ture efforts involve incorporating variables such as 

temperature and humidity to provide a more com-

prehensive understanding of system performance. 

Additionally, a promising field of study revolves 

around exploring forecasting ventilation power 

consumption and investigating optimization strate-

gies. 
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