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Abstract 

Simulation-based optimization (SBO) processes are com-

putationally expensive and the combination with machine 

learning (ML) methods appears as an alternative capable 

of reducing computational time consumption without los-

ing the robustness of the solutions. This study compares 

neural network and random forest algorithms as ap-

proaches to replace simulations during the SBO processes. 

The main objective is to define the best machine learning 

algorithm and the most reliable ratio between simulations 

and predictions. The problem was implemented in the 

Grasshopper + Rhino platform and aimed to minimize the 

annual energy consumption with artificial conditioning in 

an office building. Comparing the convergence and relia-

bility of the hybrid processes, the results show that the 

neural network achieved the best results. The results also 

show that for this particular/specific problem, the ideal 

budget comprises 80% of simulations and 20% of predic-

tions, maintaining the results' reliability and reducing the 

computational cost. 

1. Introduction 

With the recent technological advances in archi-
tectural research, the use of tools capable of pro-
ducing evaluations and analyses of the performance 
of buildings has grown, in addition to producing 
completely new typologies, even before their exe-
cution. Parametric modeling, simulations, and opti-
mization are some of these tools. Parametric 
modeling allows the creation of different building 
typologies from changes in parameters associated 
with their characteristics (Farouk et al., 2019). When 

coupled with simulation tools and optimization 
techniques, optimal solutions can be obtained satis-
fying pre-established performance conditions of a 
building. The coupling among parametric mo-
deling, simulation, and optimization is often called 
simulation-based optimization (SBO). 
In an SBO problem, parametric modeling works to 
modify the solutions, according to some intelligence 
implemented by the optimization algorithm, in 
search of optimal regions of the feasibility space. This 
search is guided by a fitness function that usually 
depends on the objective function of the problem and 
that also requires simulations to be evaluated.  
However, SBO processes demand a vast amount of 
computational time mainly due to the simulations 
involved. To mitigate this issue, Machine Learning 
(ML) techniques have been employed since they can 
predict fitness function values associated with new 
solutions through real simulation data and produce 
evaluations faster than traditional methods (Seyed-
zadeh et al., 2019; Melo et al., 2014). This makes it 
possible to replace some simulations with pre-
dictions acquired by machine learning, training it 
with the results of simulations previously produced 
during the SBO process.  
The use of machine learning techniques for predic-
tion shows promise in optimization problems due to 
the intrinsic nature of optimization algorithms, 
which often generate and evaluate multiple solu-
tions while searching for the optimal solution. This 
process results in the creation of a database contai-
ning solutions previously evaluated by the exact 
function of the problem. This database represents a 
valuable resource for training machine learning 
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techniques, allowing the prediction of new solu-
tions without the need to evaluate each one for its 
exact function throughout the optimization process. 
This approach offers the potential to significantly 
reduce the time and resources required to solve 
optimization problems that demand high computa-
tional costs. 
In the past years, several studies have shown the 
capability of Artificial Neural Networks (ANN) and 
Random Forest (RF) to aid in solving architecture 
and engineering problems. One in particular (Bui, 
Nguyen, Ngo, and Nguyen-Xuan, 2020) estimated 
the amount of energy used for various activities 
within a building, such as heating and cooling 
(energy consumption), using the hybridization of 
the ANN model with the firefly optimization algo-
rithm (EFA). The performance of EFA-ANN was 
validated by comparing the obtained results with 
other methods, such as iteratively reweighted least 
squares (IRLS), ensemble model, smart artificial 
firefly colony algorithm-based support vector re-
gression (SAFCA-SVR), extreme learning machine 
(ELM), which presented best results, and the lowest 
Root Mean Square Error (RMSE) values. Further, 
(Zekić-Sušac et al., 2021) used Random Forest, ANN 
and classification and regression tree (CART) to pre-
dict the cost of energy consumed in public build-
ings. The results have shown that the approach inte-
grating random forest with the Boruta algorithm 
has produced a higher accuracy.  
The neural network was created to mimic concepts 
from the neurobiological field, and it works through 
3 main elements: inputs, hidden layers, and outputs. 
The inputs correspond to the parameters of the 
problem being analyzed. The layers are formed by 
nodes, structures where each input value is asso-
ciated with a weight through mathematical func-
tions and sent to the next layer (Gurney, 1997). 
Finally, outputs represent the predicted value of the 
response variable. 
In contrast, Random Forest is a collection of rando-
mized decision trees (Kam Ho, 1995). These decision 
trees are a machine learning technique that works as 
a tree structure by repeatedly dividing the given 
data into smaller subsets until only one data re-
mains in each subset. The inner and final sets are 
known as nodes and leaf nodes. Then for the final 

results, it calculates the average predicted values of 
all independent trees. 
Both methods need training and parameter tuning 
to improve the quality of their responses. Therefore, 
it is necessary to separate the database into two 
parts, one for training and the other for testing. The 
algorithm is exposed to the training part, where it 
learns patterns that will be applied in the test part 
to predict the response variable (Mahesh, 2019). The 
choice of these sets impacts the final quality of 
predictions. Typically, 80% of the data are used for 
training and the remaining 20% for testing, as such 
separation ratio has been theoretically proved to 
deliver good results (Gholamy et al., 2018). Then, 
the response variable predicted by the method is 
compared with the actual values from the database, 
and depending on the performance of the method, 
its parameters are adjusted. 
The main parameters for the neural network are the 
number of iterations, nodes, and layers. For the 
random forest they are the numbers of independent 
trees and its depth. As suggested by (Karsoliya, 
2012), the parameters are obtained by performing 
robust tests with database samples using different 
configurations in order to obtain better results. 
Therefore, this study aims to evaluate and compare 
two ML methods, Neural Network and Random 
Forest, when coupled to an SBO process to indicate 
which one offers the best performance in predicting 
the energy consumption of an office building and 
also discover which is the best percentage of 
simulations replaced by prediction without losing 
the quality of the results. 

2. Methodology and Simulation 

2.1 The Simulation-Based Optimization 
Problem 

A simulation-based optimization problem was 
selected based on the research of previous authors 
(Wetter & Wright, 2004), and it seeks to minimize 
the primary energy consumption based on the an-
nual thermal loads of a single thermal zone that re-
presents an office building (Fig.1). The building 
model combined the East and West offices (grey 
shade in Fig.1) into a single thermal zone and added 
the corridor as internal mass.  
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Fig. 1 – 3D Model of the office building. Source: Wetter, M., Wright, 

J., 2004 
 
The SBO problem quantifies the impact of four 
parameters: building orientation (180° to -180°); 
transmittance of shading elements (0.2 to 0.8); and 
width of the openings to the east and west (0.1 to 
5.9 m).  
We used the Grasshopper for Rhino SBO imple-
mentation from (Waibel et al., 2019). The imple-
mentation uses EnergyPlus for the building per-
formance simulation. We analyzed the problem 
based on TMY2 weather data for Seattle, Washing-
ton, USA. 
We used the RBFOpt mono-objective optimization 
algorithm (Costa and Nannicini, 2018). The single 
objective method is an optimization approach that 
focuses on minimizing or maximizing a single ob-
jecttive value. It is available in the Opossum opti-
mization engine, as it stands out from previous 
work (Waibel et al., 2019). As for this paper, the 
minimizing method was chosen, and its parameters 
were used by default. A maximum of 10000 itera-
tions and evaluations, with local search available 
and 2000 maximum cycles. Additionally, the gene-
ration of 700 solutions served as a stopping criterion 
for each run of the SBO. 

2.2 The Machine Learning Methods  

Due to the nature of how these ML techniques work 
and the need for a previous database to be created, 
it requires a certain number of solutions through 
simulations to be made. The size and quality of this 
database directly impacts the performance of the 
ML.  
In this work, the first solutions generated by the 
optimization algorithm and evaluated by the exact 
function of the problem constitute the database used 
to train the machine learning techniques. To answer 

one of the questions in this research about the best 
proportion of solutions evaluated by the exact 
function compared to those that will be predicted by 
the ML technique, 5 divisions of the database were 
proposed to be investigated. We started from 50% 
simulated and used as a database, and the others 
50% were predicted. Then in each split 10% was 
added to the simulated percentage until the last 
split, which was 90% simulated and 10% predicted. 
The Python language was used to code the 
algorithm of both ML techniques. To implement the 
neural network and random forest in the Grass-
hopper environment, the GHPythonRemote plugin 
was used (Cuvilliers and Mueller, 2022). This plugin 
allows the connection of external Python instances 
to Grasshopper, enabling the use of several code 
libraries that once were not available. For this 
problem, the Python programming library Scikit-
learn (Sklearn) was used on both ANN and RF. 
In the case of ANN, the MLPRegressor parameters 
were kept as default, with the exception of the 
number of hidden layers and neurons, which were 
set to 30, and the maximum iterations equal to 4000. 
Increasing the number of layers can enhance the 
model's capacity, yet this can only be done to a 
certain extent, since rather than extracting meaning-
ful patterns, the model may start to 'overfit' the data. 
For RF, the RandomForestRegressor from Sklearn, 
the only specified parameters were the maximum 
depth of the tree, set to 15, and the number of trees 
in the forest, set to 100. This follows the same 
concept of the neurons and layers from ANN, where 
higher numbers can increase the model’s quality but 
up to a certain threshold, to avoid overfitting. 
Consequently, the workflow of the SBO processes 
coupled with ML techniques is presented as in 
Figure 2. The optimizer engine generates new 
solutions, by changing the values of the variables, 
and their Fitness Function values F(x) are obtained 
through simulations by EnergyPlus. These solutions 
are stored in a database until the desired number of 
simulations is reached, as defined by the simula-
tion/prediction ratio used. This process is repre-
sented by green arrows. Then, all the values of the 
variables and the respective answers found by si-
mulation up to now, serve as a database to feed the 
machine learning technique. From now on, the ML 
is the one that will provide F(x) to the optimizer 
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engine, with the workflow represented in red and 
black arrows in Fig. 2. 
 

 

Fig. 2 – Workflow on the cases without ML technique (green 

arrows), and with hybrid application (red arrows) 

2.3 The Analysis 

To produce statistics, 25 runs were done for each 
percentage ratio for each of the ML methods. The 
coupling process of the simulation with the 
optimization happens in the evaluation of the 
fitness function of the solutions, composed of the 
building energy consumption.  
A base case was used for comparisons disregarding 
the ML techniques and obtaining the values of all 
solutions by simulation. Adding this case to the 
other 5 that mix simulation and prediction, a total of 
6 x 25 runs of SBO process were carried out, 
evaluating 700 x 25 x 5 solutions in each of the ML 
techniques. 
After that, in order to compare the methods, we first 
assessed the performance of both methods by 
tracing the average of the convergence of the 
solutions found. Then, we evaluated the root mean 
squared error (RMSE) values of some results 
produced by the ML technique, selected according 
to a random sampling of 30 solutions. Finally, we 
compared the optimal results obtained at the end of 
each run through boxplots. 

3. Results and Discussions 

Undoubtedly, in terms of computational resource 
expenditure, solutions whose fitness is predicted 
require much less computational time. On average, 
for the problem in this paper, the computational 
time for predicting the fitness of a solution is 75% 
faster than by simulation, as the first takes around 
818 milliseconds and the second 3.4 seconds. 
Figure 3 presents the convergence values for NN 
and RF application. Both exhibit similar behavior, 
by repeating the values at the end of the process and 
all percentage combinations do not differ 
significantly, since all reached the value of 133 
kWh/m². Even so, the combination of 90% of 
simulated cases with 10% predicted by ML, 
obtained the best response with a consumption 
metric of 133.19 kwh/m² for NN and 133.11 kwh/m² 
for RF. Furthermore, in both applications, the 60/40 
and 80/20 processes are the closest to the 100% 
simulated results, represented in red. 
 

 

Fig. 3 – Convergence graphs for NN and RF results 
 
When evaluating the difference between the 
responses acquired by prediction and the same by 
simulation, it can be seen in the Figure 4 that the 
values of the RMSE are generally low, not exceeding 
the margin of 1.65 kwh/m² on the percentage 50/50 
for NN and 1.62 kWh/m² for RF. The 80/20 process 
that obtained the lowest RMSE value is also the one 
that came closest to the real-case convergence curve 
(Figure 3). 
In practical terms, it is safe to say that all 
percentages had an acceptable performance 
regarding the quality of the responses found 
through the prediction with the ML techniques. 
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Fig 4 – RMSE values for each percentage in both techniques 

results 
 
The figure below presents the best results acquired 
in all 25 runs of each of the percentages. Through 
the boxplot, it is noticed that the percentage 60/40 
stands out, obtaining the lowest median for neural 
networks, whose results are presented with a black 
outlayer. Although, the minimum value of 129.886 
kwh/m² that was acquired through the neural 
network initially qualifies it as the best result among 
all processes. However, when performing more 
detailed analysis and simulating with the same 
parameters supplied to the neural network, it was 
noticed that the response obtained by simulation 
was greater than that predicted by the model. 
Consequently, the value of 129.886 kwh/m² cannot 
be considered the lowest among all the percentages. 
Meanwhile, it is possible to observe that the 90/10 
process obtained the lowest median for Random 
Forest, followed by 80/20, which also had the lowest 
dispersion. As for the other processes, in addition to 
a higher median value, they present a greater 
dispersion. 

 

Fig. 5 – Boxplot of best results for each percentage with both 
techniques 

4. Conclusion 

This study aimed to evaluate two methods of ML 
and also discover the best percentage of simulations 
replaced by prediction without compromising the 
quality of the results. The results presented here, for 
both ANN and RF, demonstrate a significant reduc-
tion in the computational cost without affecting the 
optimization process’s performance. For all the 
percentages used, the RMSE values varied between 
0.74 kwh/m² to 1.65 kwh/m² for NN and 0,59 
kwh/m² to 1,62 kwh/m² for RF. 
As for the convergence from both methods, it is 
shown that the neural network, in all its processes, 
converged close to 200 solutions (Figure 3). In the 
RF, however, this convergence takes more time to 
happen, indicating that the neural network pro-
cesses could have been stopped much earlier, 
further minimising the computational cost and out-
performing the random forest application. 
Additionally, the optimal values presented in the 
convergence graph are similar to the curve of the 
results of the 100% simulated case. For the artificial 
neural network, the configuration closest to this was 
80/20, where 80% of the solutions are simulated and 
20% are predicted. The same happens in random 
forest application, where 80/20 not only is the 
closest to the 100% simulated case but also has the 
lowest RMSE value of 0.47 kwh/m² and the second 
lowest median of all processes. Therefore, this is 
indicative that 80/20 is the best percentage, for both 
machine learning techniques presented in this 
study. 
In conclusion, both techniques presented a re-
duction in computational cost, obtaining the best 
results in the 80/20 division and low RMSE values. 
However, the neural network proved to be more 
suitable for this problem, considering that it 
converged faster, which would allow us to reduce  
the number of solutions needed for the problem. 
Still, further research should apply these same 
comparisons to SBO problems with multiple 
objectives. This will help to reassert the best 
technique choice for a hybrid method and signifi-
cantly reduce the computational cost spent on 
solving SBO problems. 
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