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Abstract 
Energy use intensity (EUI, kWh/m2·yr) has been widely 

used in the building industry for building energy bench-

marking. However, this EUI-based building energy 

benchmarking could lead to a biased assessment because 

it overlooks other influential factors such as operational 

schedule, occupancy, plug-load, setpoint temperature, 

and weather (hereafter referred to as operational factors). 

To overcome the issue, the authors propose a normaliza-

tion process for the building’s actual energy consumption 

considering the aforementioned factors. In this study, a 

concept of normalization coefficients was introduced 

based on the relationship between the operational factors 

and the change in energy consumption. The eXtreme 

Gradient Boost regression (XGBoost) models were used 

for deriving normalization coefficients that can convert 

the actual heating and cooling EUIs into the normalized 

EUIs per building under the operational factors. Valida-

tion studies demonstrated that the conversion of actual 

EUIs into normalized EUIs using these coefficients can 

contribute to fair building energy benchmarking. In other 

words, the proposed normalization approach holds 

promise for achieving more objective building energy 

performance benchmarking. 

1. Introduction  

Objective building energy benchmarking can play 

an important role in making decisions to improve 

building energy efficiency and supporting gov-

ernment agencies and policymakers in their efforts 

to reduce greenhouse gas emissions (Piscitelli et al., 

2024). Building energy benchmarking is a process 

that diagnoses the energy performance of a build-

ing compared to peer groups generally established 

by building types or climate zones. In conventional 

energy benchmarking systems, energy use intensi-

ty (EUI, kWh/m²·yr) defined as energy use per unit 

floor area has been widely utilized as a perfor-

mance indicator for building energy benchmark-

ing.  However, it has been acknowledged that EUI 

can be an ‘unfair’ metric because it overlooks other 

influential factors such as operational schedule, 

occupancy, plug-load, setpoint temperature, and 

weather (Bogin et al., 2024). Thus, this EUI-based 

building energy benchmarking could lead to a bi-

ased assessment regarding distinguishing energy-

efficient from energy-inefficient buildings. Other 

trials have been undertaken to develop energy use 

per worker in office buildings, and energy use per 

bed in hotels, but they have proved to be unsatis-

factory (Arjunan et al., 2022). Therefore, for more 

objective building energy benchmarking, it is im-

perative to normalize actual energy consumption 

over operational schedule, occupancy, plug-load, 

setpoint temperature, weather (hereafter referred 

to as operational factors).  

As part of the building energy benchmarking, 

many efforts have been made to define ‘peer build-
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ing group’. Recently, data-driven models consider-

ing multiple influential factors have been intro-

duced. For example, by the use of multiple linear 

regression (MLR) models, actual energy consump-

tion is neutralized depending on building type, cli-

mate, or building’s thermal attributes, etc. (Dahlan 

et al., 2022; Kükrer et al., 2023; Gupta et al., 2023). 

Unsupervised clustering methods are adopted to 

define peer groups according to building types, 

climate zones, or building energy usage patterns 

and attributes (Gao & Malkawi, 2014; Zhan et al., 

2020). The aforementioned studies are focused on 

developing a ‘peer building group’ and then com-

paring my target building to the peers.  

Rather than taking that approach, this study intro-

duces an EUI normalization process. The normali-

zation methodology considers the combined influ-

ences of diverse operational factors such as the 

operational factors as well as a combination of 

them. With the introduction of the normalization, 

we aim to assess the ‘pure energy performance 

level’ of buildings.  

With this in mind, this study proposes a bench-

marking approach utilizing normalization coeffi-

cients established by the relationship between op-

erational factors and EUI. The eXtreme Gradient 

Boost regression (XGBoost) models were used for 

deriving normalization coefficients for heating and 

cooling EUIs. The normalization coefficients can 

convert the actual heating and cooling EUIs into 

the normalized EUIs per building under the opera-

tional factors. 

As validation studies, comparative analyses be-

tween actual EUIs and normalized EUIs were car-

ried out. It was substantiated that buildings with 

an identical design exhibit similar normalized en-

ergy consumption. The proposed normalization 

method is expected to reduce the so-called perfor-

mance gap. In other words, the results indicate that 

normalized EUI can be a promising candidate for 

more objective benchmarking of building energy 

performance.  

2. Methodology 

2.1 Data Collection 

For a reference building, a three-story medium 

office building developed by the US DOE (Deru et 

al., 2011) was selected (Fig. 1). The gross floor area 

of the building is 4,500 m2 with a window-to-wall 

ratio (WWR) of approximately 33.3%. The aspect 

ratio of the building is 0.6. Based on the building 

energy code compliance in South Korea (MOTIE, 

2023), the thermal insulation values for the external 

walls, floor, and roof of the building were set as 

0.48 W/(m2·K), 1.81 W/(m2·K), and 1.81 W/(m2·K), 

respectively. The window U-value and SHGC were 

set to 2.0 W/(m2·K) and 0.38, respectively. Lighting 

power density was set to 8.1 W/m2, and the infiltra-

tion rate was set to 0.5 ACH. Also, the building 

was modelled with an ‘Ideal Loads Air System’ 

instead of detailed HVAC systems.  

After developing the reference building model as a 

‘baseline’, the authors used Latin hypercube sam-

pling (LHS) in order to generate 200 medium office 

buildings with different operating conditions 

(Mckay et al., 2000). The operating conditions were 

regarded as the key factors affecting the building’s 

operational energy consumption, independent of 

the building’s thermal properties. The factors in-

cluded operational schedule (starting hour, opera-

tion hours), occupant and appliance densities, 

heating and cooling setpoint temperatures. Addi-

tionally, weather data from 90 locations in South 

Korea, were collected (KMA, 2022), and the mete-

orological characteristics of each location were ana-

lysed in terms of heating and cooling degree-days 

(HDD, CDD). A total of 18,000 simulation runs 

were conducted (=200 operation conditions times 

90 locations). The details of the factors are tabulat-

ed in Table 1. 
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As the output variables of the sample buildings, 

we collected the annual heating and cooling energy 

consumptions (kWh/m2·yr) exclusive of domestic 

hot water because heating and cooling energy are 

closely correlated with building thermal perfor-

mance. In addition, the reference building’s energy 

consumption was calculated based on the reference 

operating conditions that are referred to ASHRAE 

standard 90.1 (2022) and Seoul weather data. These 

conditions include a starting time of 9:00 AM, 8 

hours of operation, an occupant density of 0.16 

person/m2, appliance density of 8.61 W/m2, and 

heating and cooling setpoint temperatures of 20 °C 

and 26 °C, respectively. Additionally, Seoul weath-

er data exhibits HDD of 2,730 K d and CDD of 903 

K d. Note that we used the reference building’s 

energy consumption as the numerator and the 

sample energy consumption as the denominator 

(Fig. 1). 

2.2 Surrogate Model 

Based on the EnergyPlus simulation runs, we 

trained an XGBoost regression model as a surro-

gate model for obtaining the normalization coeffi-

cients. XGBoost is an efficient implementation of 

gradient boosting based on decision trees (Chen & 

Guestrin, 2016). XGBoost builds a series of decision 

trees iteratively, where each tree corrects the errors 

of the previous one, thereby improving the overall 

model's prediction accuracy.  

The input variables of the XGBoost regression 

models are shown in Table 1. Two XGBoost models 

were constructed to derive heating and cooling 

normalization coefficients, respectively. A total of 

18,000 input-output pairs obtained from the pre-

simulated EnergyPlus samples were partitioned 

into training and testing sets, or 7:3 (12,600:5,400). 

In other words, the models were trained with 

12,600 training datasets, and the models’ accuracies 

were tested against 5,400 testing datasets.  

 
Table 1 – List of influential factors used in the normalization 
process  

Factors Unit Range Reference 

Starting hour h [7, 10] 
Building  

audit reports 

Operation hours h [8, 14] 
Building  

audit reports 

Occupant density 
people/

m2 
[0.075, 0.25] ASHRAE (2021) 

Appliance density W/m2 [2.7, 16.1] ASHRAE (2021) 

Heating setpoint 

temperature 
℃ [18.5, 21.5] 

Building  

audit reports 

Cooling setpoint 

temperature 
℃ [24.5, 27.5] 

Building  

audit reports 

Heating degree-

days 
- 

[1,393, 

3,492] 
KMA (2022) 

Cooling degree-

days 
- [452, 1,118] KMA (2022) 

Fig. 1 – Building energy normalization process (Esample: Energy consumption of a sample building, E reference: Energy 
consumption of a reference building, EUIactual: actual EUI of a building, EUInormalized: normalized EUI by a 
normalization coefficient)  
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2.3 Normalization Process  

As illustrated in Fig. 1, the proposed normalization 

coefficient is defined as Eq. (1).  
 

C = Ereference / Esample   (1) 
 

where Ereference denotes the energy consumption of a 

reference building under the reference operating 

and weather conditions (Section 2.1), while Esample 

represents the energy consumption of a sample 

building under different operating and weather 

conditions.  

The coefficients can be regarded as a lumped num-

ber that can account for dynamically interwoven 

effects of the aforementioned operational factors. 

Thus, a normalization coefficient greater than 1.0 

means that the sample building whose thermal 

performance is equal to the reference building con-

sumes less energy than that of the reference build-

ing because of the aforementioned factors, e.g. op-

eration hours, occupant density, setpoint tempera-

tures, weather, etc.  

Then, EUIactual, the actual energy use of a target 

building, can be converted into EUInormalized, normal-

ized energy use as shown in Eq. (2).  
 

EUInormalized = EUIactual × C  (2) 
 

This normalization process can be exemplified as 

shown in Table 2. The normalization coefficients 

are likely to contribute to objective building energy 

benchmarking.  

Table 2 – Normalization example  

 EUI (kWh/m2·yr) 

Ereference 100 

Esample 120 

C 0.83 

EUIactual 150 

EUInormalized 125.0 

2.4 Two Validation Studies 

In order to ascertain the validity of the normaliza-

tion coefficients proposed in this study, it is neces-

sary to collect measured energy data from a variety 

of existing buildings. However, collecting such 

data demands significant costs and time. Therefore, 

the authors conducted two validation studies using 

a series of simulation results.  

- Validation study #1 (buildings’ identical thermal 

performance under different operations) 

We derived the normalization coefficients for 

18,000 buildings with identical architectural de-

signs (‘can be regarded as identical thermal per-

formance’) but varying operation hours and plug-

loads in different locations. Then, three types of 

EUIs were calculated from 18,000 buildings.  

The first EUIs are obtained from the reference op-

erating conditions and defined as the true EUI 

(EUItrue). The second EUIs are calculated according 

to the building’s actual operating conditions and 

defined as the actual EUI (EUIactual). Finally, the 

third EUIs were calculated based on the normaliza-

tion coefficients and defined as the normalized EUI 

(EUInormalized). Then, two differences in EUIs were 

calculated: one is εactual between the EUItrue and 

EUIactual, and the other is εnormalized between the 

EUItrue and the EUInormalized. 

 

- Validation study #2 (buildings’ different thermal 

performance under different operations) 

We generated 1,000 buildings with different archi-

tectural designs under varying operating condi-

tions. In order to generate 1,000 different buildings, 

the authors conducted LHS with seven architectur-

al design variables as tabulated in Table 3. Similar 

to the validation study #1, a comparative analysis 

was performed using three types of EUIs (EUItrue, 

EUIactual, EUInormalized) and two mean absolute per-

centage errors (MAPE) as the evaluation metrics. 

The first is MAPE between the EUItrue and EUIactual, 

while the second is MAPE between the EUItrue and 

the EUInormalized. Then, a correlation analysis was 

conducted between the EUItrue and the EUIactual, as 

well as between the EUItrue and the EUInormalized, 

using the coefficient of determination (R2). 

2.5 Benchmarking Case Study 

In contrast to the validation studies (Section 2.4), 

we developed a benchmarking case study. For this 

purpose, we developed four different buildings 

(denoted by Blds. #1-#4) having different WWR 

and window U-values. The four buildings have 

different operating conditions. Bld. #1 represents 

far superior thermal performance having a WWR 
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of 0.2 and a window U-value of 1.5 W/(m2·K). Blds. 

#2-#4 were designed to have proportionally higher 

WWR and window U-values than Bld. #1. In other 

words, Blds. #2-#4 represent far inferior thermal 

performance. The details of the four buildings and 

benchmarking results will be addressed in Sec-

tion 3.4. 

Table 3 – List of design variables and ranges 

Variable Unit Range Reference 

Gross 

floor area 
m2 [450, 22,500] 

0.1-5 ratio of the 

reference building 

Aspect ratio - [0.06, 3] 
0.1-5 ratio of the 

reference building 

Number of  

floors 
- [2, 10] 

Building  

audit reports 

Wall  

U-value 
W/m2·K [0.15, 0.6] 

Building  

audit reports; 

MOLIT (2023) 

Window  

U-value 
W/m2·K [1.5, 3.5] 

Building  

audit reports; 

MOLIT (2023) 

Window-to-

wall ratio 
- [0.2, 0.8] 

Building  

audit reports 

Window 

SHGC 
- [0.3, 0.7] 

Building  

audit reports; 

ASHRAE (2021) 

3. Results 

3.1 Surrogate Model Accuracies 

In order to evaluate the accuracies of the surrogate 

models, three metrics including the root mean 

squared error (RMSE), the coefficient of variation 

of root mean squared errors (CVRMSE), and the 

coefficient of determination (R2) were used on the 

testing datasets (Table 4). The calculated RMSE, 

CVRMSE and R2 scores are 0.03, 2.5% and 0.99 for 

heating normalization coefficients (Cheat), and 0.09, 

8.3% and 0.98 for cooling normalization coefficients 

(Ccool), respectively. In addition, Fig. 2 shows the 

comparison between the simulation and prediction 

results. These results indicate high accuracies of 

the models in predicting normalization coefficients 

for heating and cooling EUIs.  

Table 4 – Surrogate model accuracies 

Output RMSE (-) CVRMSE (%) R2 (-) 

Cheat 0.03 2.5 0.99 

Ccool 0.09 8.3 0.98 

 

       

Fig. 2 – Simulation vs. surrogate model predictions (left: heating, 
right: cooling) 

3.2 Calculated Cheat and Ccool vs. EUI 

Fig. 3 shows the comparison results between the 

normalization coefficient and EUIactual using the 

training datasets of the surrogate models. The rela-

tionship between the two variables appears to be 

inversely proportional. The variability in EUIactual 

demonstrates that even buildings with identical 

thermal performance can exhibit a significant dif-

ference depending on the operating conditions. 

The range of cooling normalization coefficients is 

wider compared to that of heating, suggesting that 

cooling EUI is more sensitive to variations in oper-

ating conditions. 

As exemplified in Table 2, the buildings with the 

normalization coefficients of less than 1.0 fulfil 

demanding operating conditions such as long op-

eration hours, low indoor temperature in summer, 

severe weather locations, etc. Thus, these buildings 

are likely to be wrongly assessed as poor energy 

performance buildings, and vice versa for the 

buildings with normalization coefficients greater 

than 1.0.  
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Fig. 3 – Normalization coefficients (C) vs. EUIactual (above: hea-
ting, bottom: cooling) 

3.3 Validation Study #1 

Fig. 4 shows the distributions of εactual (the differ-

ence between EUItrue and EUIactual) and εnormalized (the 

difference between EUItrue and EUInormalized) for 

18,000 buildings that have identical thermal per-

formance under varying operational conditions. 

For heating εactual, the minimum and maximum 

values were -79.9 kWh/(m2·yr) and 

43.8 kWh/(m2·yr), respectively. In contrast, for 

heating εnormalized, the minimum and maximum val-

ues were -4.7 kWh/(m2·yr) and 6.4 kWh/(m2·yr), 

respectively. Regarding cooling εactual, the mini-

mum and maximum values were -85.8 kWh/(m2·yr) 

and 27.5 kWh/(m2·yr), respectively. In contrast, for 

cooling εnormalized, the minimum and maximum val-

ues were -9.1 kWh/(m2·yr) and 7.5 kWh/(m2·yr), 

respectively. As shown in Fig.  4, the distribution 

of εnormalized is quite marginal compared to εactual.  

Fig. 4 – Distributions of εactual and εnormalized (above: heating, 
bottom: cooling) 

3.4 Validation Study #2 

As mentioned earlier in Section 2.4, Figs. 5-6 and 

Table 5 show the results of validation study #2. The 

MAPEs between EUItrue and EUIactual are 25.4% and 

45.4% for heating and cooling, respectively, while 

the MAPEs between EUItrue and EUInormalized are 

only 5.6% and 11.2% for heating and cooling, re-

spectively. In addition, both relationships between 

EUItrue and EUIactual for heating and cooling had 

lower R2 scores of 0.35 and 0.22, respectively, while 

the relationships between EUItrue and EUInormalized 

for heating and cooling had far higher R2 scores of 

0.89 and 0.62, respectively. This means that the 

normalization coefficients can reduce any possible 

biased assessment of the actual EUIs.  

Fig. 5 – Comparison of heating EUItrue vs. EUIactual, EUInormalized
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Fig. 6 – Comparison of cooling EUItrue vs. EUIactual, EUInormalized 

Table 5 – Comparative analysis results 

Dependent variable MAPE (%) R2 (-) 

Heating EUIactual 25.4 0.35 

EUInormalized 5.6 0.89 

Cooling EUIactual 45.4 0.22 

EUInormalized 11.2 0.62 

3.5 Benchmarking Results 

As mentioned earlier in Section 2.5, Table 6 shows 

the four buildings and benchmarking results. 

EUItrue represents energy use under the reference 

operating conditions. heating EUIactual reflects bi-

ased rankings. However, heating EUInormalized are 

close to EUItrue, and renders more objective bench-

marking than EUIactual. 

Similarly, the variances in cooling EUItrue among 

the four buildings were negligible. Nevertheless, 

cooling EUIactual shows substantial differences be-

tween the four buildings, while cooling EUInormalized 

shows significantly smaller differences. Based on 

Table 5, it can be highlighted that EUInormalized can 

serve as a promising candidate for a more objective 

benchmarking of building energy performance. 

4. Conclusion 

This study introduced a normalized building ener-

gy benchmarking approach. The proposed normal-

ization coefficients were established to account for 

the variation in EUI influenced by operational fac-

tors (starting time, operation hours, occupancy, 

plug-load, setpoint temperature, weather).  

Table 6 – Benchmarking results 

Building # #1 #2 #3 #4 

Architectural 

designs 

WWR (-) 0.2 0.4 0.6 0.8 

Window U 

(W/(m2·K)) 
1.5 2.2 2.8 3.5 

Heating 

EUItrue 

(kWh/(m2·yr)) 
54.1 56.0 58.5 61.5 

EUIactual 

(kWh/(m2·yr)) 
39.0 77.3 62.2 42.7 

EUInormalized 

(kWh/(m2·yr)) 
54.1 58.6 59.6 62.3 

Cooling 

EUItrue 

(kWh/(m2·yr)) 
30.0 29.5 28.8 28.1 

EUIactual 

(kWh/(m2·yr)) 
22.1 77.8 77.0 71.0 

EUInormalized 

(kWh/(m2·yr)) 
28.0 30.2 28.3 26.6 

 

The heating and cooling normalization coefficients 

were generated using XGBoost models constructed 

based on a reference medium office building by US 

DOE. Two validation studies demonstrated the 

conversion of actual EUIs into normalized EUIs can 

enable more objective building energy benchmark-

ing (Sections 3.3-3.4). Moreover, the approach 

proved effective for buildings with different ther-

mal performance and architectural designs (Section 

3.5).  

Conclusively, the proposed normalization coeffi-

cients are likely to mitigate potential biases against 

actual EUIs and contribute to better building ener-

gy benchmarking. Additionally, the proposed 

normalization approach may be considered as an 

alternative for reducing the performance gap be-

tween measured and predicted energy use. As a 

further study, we aim to apply the concept of nor-

malization coefficients to several existing buildings 

selected from Korean building energy database. 

The outcomes of this study will be beneficial for 

advancing objective building energy performance 

benchmarking methods and fostering per-

formance-based thinking within the IBPSA 

community. 
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