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Abstract  
Research about Urban Building Energy Models (UBEMs) 

has undergone a significant increase in recent years. In 

most of the papers in the scientific literature, researchers 

claim that UBEMs can be used by policy makers and other 

stakeholders to evaluate and plan energy efficiency 

measures at urban scale. Despite their good purpose, re-

searchers are still the main users of these tools. This work 

tries to make a step forward by calibrating an UBEM on 

real energy consumption data from 489 residential build-

ings of Padua (Italy), and to use the calibrated model to 

assess two energy efficiency measures on the considered 

sample of buildings. Results show that calibrating only 

two coefficients is sufficient to obtain an accurate model 

with a limited computation effort.  The analysis of two ren-

ovation scenarios suggests that deep retrofits on the big-

gest consumers is an effective strategy to abate CO2 emis-

sions at urban level.  

1. Introduction  

Urban building energy models (UBEMs) allow re-

searchers, urban planners, architects, and policy-

makers to simulate and assess the energy perfor-

mance of individual buildings, neighbourhoods, or 

entire cities (Cerezo Davila et al., 2016). Thus, 

UBEMs serve as valuable tools for developing strat-

egies to mitigate the environmental impact of build-

ings, reduce greenhouse gas emissions, and im-

prove the resilience of the urban environment. 

Previous research has shown that simplified build-

ing models based on the electrical analogy offer an 

efficient compromise between low computation 

time and high accuracy (Zarrella et al., 2020). In-

deed, using detailed dynamic building models for 

large scale simulations would not be justified given 

the uncertainty associated with operational, geo-

metrical and physical input parameters, which can 

undermine the reliability of UBEM simulations 

(Prataviera et al., 2022).  

When energy consumption data are available at in-

dividual building level, a possible solution consists 

in calibrating the building parameters so that the er-

ror between measured and calculated energy con-

sumption is minimized (Chen et al., 2020). Bayesian 

calibration is a commonly used technique to adjust 

building models’ parameters and reduce their error 

against metered energy consumption (Sokol et al., 

2017). Dilsiz et al., 2023, provide the ranking for dif-

ferent climates and building forms so researchers 

can choose the top 3-4 parameters to calibrate in-

stead of running a sensitivity analysis (Dilsiz et al., 

2023). The accuracy of urban energy prediction with 

annual temporal resolution can be significantly in-

creased if calibration is performed by using build-

ing-level data (Dilsiz et al., 2023). The same study 

found that using monthly data to calibrate uncertain 

input parameters is not improving the accuracy of 

UBEM simulations. 

This paper presents the lessons learnt during the de-

velopment and calibration of the urban building en-

ergy model for the city of Padua (Italy), which are 

essential steps towards the implementation of a re-

liable digital model for its building stock.  

The calibrated model is then used to assess the im-

pact of two retrofit measures in terms of CO2 emis-

sions. 
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2. Model  

The simulations were carried out using EUReCA 

(Prataviera et al., 2021), an UBEM based on two 

lumped capacitance models: the one-capacitance 

model by ISO 13790 Standard and the two-capaci-

tance model proposed by VDI 6007 Standard, 

shown in Fig. 1.  

The underlying building models were compared in 

detail in a previous study (Vivian et al., 2017).  

The tool creates the lumped parameter model and 

calculates the energy consumption of the buildings 

starting from a georeferenced dataset (a GeoJSON 

file). The dataset includes geometrical variables, i.e. 

polygons representing the buildings’ footprints, 

height, as well as parameters about the building en-

velope, the heating and cooling systems and other 

parameters associated through predefined arche-

types that are valid for Italian residential buildings. 

Internal heat gains were taken from Standards (Eu-

ropean Committee for Standardization, 2019).  

 

Fig. 1 - Representation of the equivalent electrical circuit of the 
7R2C model proposed by VDI 6007 

3. Case Study 

3.1 The City of Padua 

This work focuses on the analysis of 489 buildings 

located in Padua, shown with red shapes in Fig. 2. 

Padua is an Italian city located in the in the eastern 

part of the Po Valley and belonging to the Veneto 

Region, with coordinates 45.4° N and 11.9° E and a 

population of about 210 000 inhabitants.  

Italy’s climate is divided into six zones depending 

on the number of heating degree-days, calculated 

using a conventional indoor air temperature of 20°C 

(D.P.R. n. 412 1993). Padua belongs to climatic zone 

E, with 2383 degree-days per year. This zone corre-

sponds to a temperate climate without dry season, 

with hot summer, i.e. to Cfa climate (Peel et al., 

2007). 

 

Fig. 2 - Padua’s map from the Urban Atlas Building Height 

dataset. In red the buildings considered in this work 

The considered sample of buildings is entirely com-

posed by residential apartment blocks, spread 

within the whole city centre. As such, the consid-

ered case study is a realistic representation of 

Padua’s residential building stock in terms of build-

ing envelopes and geometrical characteristics. Gas 

consumption data are available for all the buildings 

considered for 2020, 372 buildings for 2021 and 370 

buildings for 2022. 

4. Methods  

The model development consists of two parts: 

model initialization and model calibration. The first 

part includes preparing the input data and making 

a quality check on building geometries. In this part, 

the nominal parameters of the RC models were cal-

culated, and a first simulation run was performed.  

In the second part, the building parameters were 

than adjusted to minimize the error between simu-

lated and measured gas consumption data. Finally, 

the calibrated building models were used to simu-

late different refurbishment scenarios. 
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4.1 Model Initialization 

In the first phase, the geometrical footprints are im-

ported from OpenStreetMap and converted into the 

GeoJSON format. The buildings for which gas con-

sumption data were available were selected and each 

building was associated with an archetype based on 

the alleged period of construction. The periods 

considered are pre-1945, 1945-1976, 1976-1991, 1991-

2005 and post-2005. These periods were chosen to 

separate buildings according to the energy efficiency 

laws (L.373/76, L.10/91 and D.lgs. 192/2005) in force 

during their construction. Building heights were 

obtained from satellite data (European Environment 

Agency and European Environment Agency, 2022).  

Adiabatic surfaces were selected for those buildings 

adjacent to other buildings, which occurred fre-

quently for buildings in the city centre. An initial 

screening of all 489 buildings was important to as-

sociate archetypes, and spot geometrical mis-

matches between shapefiles and aerial images. 

4.2 Model Calibration 

The calibration relied on annual gas consumption 

data of all 489 buildings, distributed in almost every 

district of the city. The buildings for which gas con-

sumption was available are the red ones in Fig. 2. 

Two parameters for each building were iteratively 

changed until the mean square error between calcu-

lated and actual gas consumption data were mini-

mized. Based on the results of a previous paper 

(Prataviera et al., 2022), the two most influential pa-

rameters selected for the calibration were the indoor 

temperature setpoint 𝑇𝑠𝑒𝑡 and the surface area of the 

external building walls. The latter was changed us-

ing a multiplier called 𝑓𝑤𝑎𝑙𝑙𝑠. These two parameters 

emerged as the most influential ones from a sensi-

tivity analysis carried out on nine input parameters 

that are typically used as inputs for UBEM simula-

tions. The domain of these two variables in the cali-

bration process are 17 – 22 °C for 𝑇𝑠𝑒𝑡 and 0.75 - 1.25 

for 𝑓𝑤𝑎𝑙𝑙𝑠. The optimization was implemented using 

the Trust Region Reflective algorithm (Branch et al., 

1999), as formulated in the least_squares method in-

cluded in scipy’s optimization library (Virtanen et 

al., 2020). The model’s accuracy was evaluated us-

ing different indicators, described in the following 

Equations. 

 

CVRMSE = √∑ ei
2n

i=1 /n /μ   (1) 

CVMAE = ∑ |ei|
n
i=1 /n /μ   (2) 

 

where 𝑒𝑖 represents the absolute error between sim-

ulation and real gas energy consumption for the i-th 

building, n is the total number of buildings, and  

μ the average measured gas consumption.  

4.3 Scenario Analysis 

After calibrating the models, two renovation scenar-

ios were analyzed: 

- Scenario 1: Building envelope renovation, in-

cluding thermal insulation of the external walls, 

roof, and ground floor, as well as the replace-

ment of windows. 

- Scenario 2: scenario 1 with additional replace-

ment of existing gas boilers with air-source heat 

pumps. 

The analysis was focused mainly on the reduction 

of CO2 emissions. The study considered an emission 

factor of 0.260 kg/kWh for the electricity consumed 

and 1.983 kg/Nm3 for natural gas.  

5. Results  

Urban building energy models (UBEMs) allow re-

searchers, urban planners, architects, and policy-

makers to simulate and assess the energy perfor-

mance of individual buildings, neighbourhoods, or 

entire cities.  

5.1 Accuracy of the Initial Model 

Fig. 3 shows the distribution of the errors in the sim-

ulated gas consumption compared to the measured 

ones. It can be observed that the model clearly over-

estimates gas consumption, as the distribution is 

skewed towards positive errors, counting 53 build-

ings above a 50% overestimation. According to sam-

ple checks within the dataset, this overestimation of 

the model depends on few factors, mainly linked to 

geometrical and zoning assumptions; for instance, 

the footprint from GIS data sources is often larger 

than real building dimensions and buildings can be 

partially unheated. Despite these deviations, the 
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model is able to approximate the annual gas con-

sumption with an acceptable error (between -30% 

and +30%) for 345 out of 489 buildings, i.e. for 70% 

of the sample. Here, “acceptable” error should be 

considered in light of the uncertainties that charac-

terize UBEM’s input parameters (operational, geo-

metric and physical parameters of the buildings). A 

previous study has shown that urban simulations 

with standard inputs can lead to deviations up to 

50% for residential buildings (Prataviera et al., 

2022). 

 

Fig. 3 – Distribution of the errors in the annual gas consumption 
before model calibration 

5.2 Model Accuracy After Calibration 

The calibration of the building model parameters 

was carried out using the gas consumption data of 

2020 as a training dataset. The calibrated building 

models (i.e. the same models with updated temper-

ature setpoint and external wall coefficient) were 

then used to simulate the gas consumption of the 

buildings during two consecutive heating seasons, 

i.e. during years 2021 and 2022. Since for those years 

gas consumption data was available only for a sub-

set of the sample (372 buildings for 2021 and 370 

buildings for 2022), Fig. 4 shows the distribution of 

the errors using the percentage of buildings consid-

ered. 

As expected, the best result is obtained on the train-

ing dataset (year 2020), with 92.2% of the buildings 

with errors of the simulated gas consumption in-

cluded between -30% and +30%. The remaining 

7.8% fails to be calibrated due to the limits imposed 

to the two coefficients, which were kept close to 

nominal values (𝑇𝑠𝑒𝑡 = 20 °C and 𝑓𝑤𝑎𝑙𝑙𝑠 = 1) to pre-

serve the physical sense of the simulations. For 

years 2021 and 2022 the percentage drops to 84.1% 

and 84.9%, respectively. The metered data from 

2020 could be biased by the increased occupancy of 

residential buildings due to COVID’s lockdowns.  

Therefore, it is expected that calibrating and testing 

the model using gas consumption data without this 

disturbance would produce lower errors.   

 

Fig. 4 - Distribution of the errors in the annual gas consumption 
after model calibration 

Fig. 5 shows the calibrated parameters (temperature 

setpoint of the indoor air and external wall coeffi-

cient) obtained with two exit criteria of the optimi-

zation loop, where each dot represents a calibrated 

building model. Blue dots refer to parameters that 

were calibrated with tighter tolerance (10-4 relative 

error between consecutive iterations) compared to 

red dots, that used a wider tolerance (10 -2). As the 

figure shows, the calibration algorithm tends to use 

𝑓𝑤𝑎𝑙𝑙𝑠 as first parameter to calibrate the model, and 

only when the area reduction/increase is not suffi-

cient, then the setpoint temperature changes. Such 

behaviour is clear from the concavity of the curve, 

and it is due to a larger effect of the external wall 

area on the gas consumption, compared to the heat-

ing setpoint temperature. 
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Fig. 5 – Calibrated parameters with different exit criteria 

Table 1 shows the accuracy of the model and the 

computation time of the calibration as a function of 

the tolerance.  

Table 1 – Accuracy indicators and computation time 

Tolerance 𝐂𝐕𝐌𝐀𝐄 𝐂𝐕𝐑𝐌𝐒𝐄 Comp. time 

(min) 

10−4 19.0% 46.1% 209.1 

10−3 19.0% 46.1% 181.7 

10−2 20.2% 46.8% 147.4 

 

Both from the latter table and from Fig. 5, it is clear 

that the tolerance does not strongly influence cali-

bration results. Indeed, blue and red points are al-

most aligned and the CVRMSE and CVMAE indicators 

do not significantly change. Nonetheless, it is worth 

mentioning that using a tolerance of 10-2 seems to be 

the best choice due to the way lower computational 

time to reach the calibration (30% less computation 

time compared to 10-4).  Fig. 6 shows the calibrated 

parameters when the search domain is extended 

from 0.75-1.25 to 0.4-1.6 for the external wall coeffi-

cient and from 17-22 °C to 10-30 °C for the indoor 

air temperature setpoint. Extending the boundaries 

of the optimization domain reduces the errors of the 

model (for instance, CVMAE drops to 9.7% compared 

to the values shown in Table 1) but introduces the 

problem of model interpretability. Fig. 6 shows the 

values of the calibrated coefficients when the search 

domain is extended beyond the previously set lim-

its: the setpoint temperature of indoor air can be in 

a range between 10 °C and 30 °C and the external 

wall coefficient can be in a range between 0.4 and 

1.6. The external wall coefficient compensates the 

uncertainty associated to different parameters, and 

in particular the surface area and the thermal trans-

mittance of external building components. Such un-

certainty is difficult to quantify a priori. On the 

other hand, the setpoint temperature of indoor air is 

a parameter for which it is easier to guess an ac-

ceptable range. Indeed, it is difficult to imagine set-

point temperatures higher than 24 °C and lower 

than 16 °C in the heating season. The buildings for 

which the calibrated parameters fall in this range 

are 59, i.e. approximately 12% of the entire sample. 

Therefore, the model can be considered physically 

meaningful for 88% of the sample. This share drops 

to 81% if the physically acceptable range of the set-

point temperature is reduced to 17-23 °C. 

 

Fig. 6 – Calibrated parameters on extended domain 

Fig. 6 also shows that the archetype selected for a 

certain building does not correlate significantly 

with the calibrated parameters. Indeed, the build-

ings are distributed over the whole calibration range 

regardless of the archetype. 

5.3 Scenario Analysis 

Fig. 7 shows the amount of CO2 emissions of the 

considered sample of buildings in three scenarios: a 

base scenario and the extreme renovation scenarios 

described in Section 4.3. The black line represents 

the base scenario without efficiency measures and 

can be read either on the left axis (absolute CO2 

emissions) and on the right axis (CO2 emissions 
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compared to the total). The orange and green lines 

represent the effect of the corresponding building 

renovation scenarios on the overall CO2 emissions 

of the considered building sample. These lines 

should be read on the right axis, as shown by the 

arrows. This chart is particularly useful because it 

allows us to rapidly find the number of buildings 

that must be renovated to achieve a certain decar-

bonization objective. For instance, cutting 40% of 

CO2 emissions (i.e. 60% of CO2 emissions post-reno-

vation on the right axis) requires 251 building reno-

vations in Scenario 1 or 89 building renovations in 

Scenario 2. The lower number of building renova-

tions needed to achieve the same goal can be ex-

plained by the fact that Scenario 2 involves a deeper 

retrofit: besides the thermal insulation of the build-

ing envelope, this scenario includes the replacement 

of the existing gas boilers with air-source heat 

pumps for space heating. Consequently, the maxi-

mum CO2 emissions reduction that can be achieved 

by Scenario 2 is higher than that of Scenario 1: if all 

buildings underwent renovation, CO2 emissions 

would be 47.1% of today’s emissions in Scenario 1 

and only 21.2% in Scenario 2.  

 

 

Fig. 7 – Decarbonization chart for different renovation scenarios 

6. Discussion 

The initial development of the Urban Building En-

ergy Model, including the visual check of the build-

ings, was crucial to initialize the building model pa-

rameters. Since this was the most time-consuming 

activity of the project, automating this activity by 

means of machine learning techniques would be 

crucial for a rapid and cost-effective implementa-

tion of UBEMs to large building stocks. A prelimi-

nary simulation with the initial parameters revealed 

that, in most cases, the simulation overestimates the 

buildings' gas consumption for space heating. The 

distribution of the residuals is skewed towards pos-

itive values, with errors often exceeding +70% com-

pared to measured data declared by the gas distri-

bution company. 

Although it is not able to guarantee global optimal-

ity, the proposed calibration process was able to re-

duce these errors significantly. The root mean 

squared error over the entire sample was more than 

halved, and the corresponding distribution of the 

residuals was shifted towards a normal distribution. 

This significant improvement was obtained within 

reasonable computation time (approximately 1 hour 

for each 100 buildings using a 12th Gen Intel(R) 

Core(TM) i7-12700H processor at 2.30 GHz), which 

is another important feature to allow scalability, 

given that each objective function evaluation needs 

to perform a simulation of the entire sample of 

buildings. 

Since calibration is a numerical process, the param-

eters obtained must be verified to check that they 

preserve the physical interpretability of the model.  

Finally, the calibrated Urban Building Energy 

Model was used to study the effects of energy reno-

vation scenarios on the CO2 emissions of the consid-

ered sample of buildings. Although not directly 

shown in the graphs, this analysis allows to deter-

mine the impact of the renovation of specific build-

ings. In other words, this analysis does not assume 

an average consumption of the considered building 

sample but refers specifically to 489 buildings of the 

city of Padua. The same analysis could be scaled on 

a larger sample and enriched with more renovation 

scenarios, thus making a significant step forward to 

plan data-aware urban energy policies. This is par-

ticularly important for a city like Padua, which is lo-

cated in a highly polluted area and is constantly 

ranked among the most polluted cities in Europe 

(European Commission. Joint Research Centre, 

2021). Introducing investment and operating costs 

in this analysis would be very useful to pinpoint the 

most effective efficiency measures for a given 

budget. Introducing more efficiency measures and 

considering techno-economic indicators could 
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therefore be an interesting line of research for future 

developments, with direct implication for policy 

makers and administrators. 

7. Conclusion 

This paper has presented the set-up of an Urban 

Building Energy Model and its practical use for the 

city of Padua (Italy). The model set-up showed that 

using open source data for building geometry leads 

to overestimate the heated volume of the buildings, 

and that a simple calibration of two parameters sig-

nificantly improves the model’s accuracy within 

reasonable computation times. 

The analysis of renovation scenarios shows the im-

portance of deep retrofits on the biggest consumers 

to achieve ambitious decarbonization targets at city 

level. 

Future studies will extend the sample of buildings 

and the set of possible efficiency measures, includ-

ing both heating and cooling season.   
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