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Abstract 
Daylight illuminance data is required for daylight scheme 

evaluations.while the adoption of daylight-linked control 

(DLLC) systems is a useful strategy for attaining energy 

savings on lighting. For evaluations of these daylighting 

schemes and DLLC, determining the sky conditions 

through sky luminance distributions is required. Moreo-

ver, through these distributions, the 15 CIE standard skies 

can be identified and daylight illuminance for any surface 

of interest can be derived. The crucial issue is that sky lu-

minance data is sparingly measured. Recent studies have 

shown that the use of accessible climatic data and machine 

learning (ML) models for determining the standard skies 

can be viable alternatives. In this study, an ensembled-

based Light Gradient Boosting Machine (LGBM) was used 

to identify the standard sky types in Hong Kong. The pre-

dictions of the LGBM model were then integrated with 

RADIANCE and EnergPlus for daylight and building en-

ergy simulations of a generic shopping mall. The simula-

tion was carried out by comparing the Best fit, ASRC 1992 

and the All-weather models against the measured data. 

Findings show that when tested, the LGBM model cor-

rectly classified the sky types over 70% of the time. Simi-

larly, when used for daylight and energy simulations ac-

ceptable predictions were obtained from all models. Fi-

nally, it was found that the impact of the sky luminance 

distribution model on illuminance prediction is higher 

than that for energy estimation.  

1. Introduction

In Hong Kong, energy spent on lighting contributes 

10% to the electricity demand (Electrical & Mechan-

ical Services Department [EMSD], 2023). Hence, at-

taining a balance between the provision of adequate 

lighting and the reduction of building energy con-

sumption on lighting is crucial for energy-efficient 

designs (Aghimien et al., 2021). Even when daylight 

is admitted into buildings, occupants tend to rely on 

artificial lighting. Technically, daylight is preferable 

because it provides visual comfort and energy sav-

ings (Aghimien et al., 2022). One of the approaches 

for attaining daylight energy savings is the use of 

daylight-linked control (DLLC) systems since these 

can reduce building energy consumption without 

compromising the visual comfort in a room (Bellia 

et al., 2016). In cases where measurements are not 

possible to evaluate these controls, simulation tech-

niques are used.  

Furthermore, for daylight assessment, the daylight 

illuminance in a room is hugely dependent on the 

sky luminance distributions. Unfortunately, ground 

measurement of luminance distributions is rarely 

carried out, and the sky scanners used for such 

measurements are expensive (Granados-López et 

al., 2021). In 2003, the International Commission on 

Illumination (CIE) proposed using the 15 CIE stand-

ard skies which covers the whole spectrum of skies 

in the world to classify the skies (CIE, 2003). Apart 

from actual measurement, daylight illuminance 

data can be obtained and the sky condition, deter-

mined. However, the criteria for determining the 

sky conditions using this approach are sometimes 

based on the vertical and zenith illuminance or irra-

diance data which are not readily available (Lou et 

al., 2017). Moreso, meteorological parameters can be 

used for identifying the skies. However, whether 

these parameters can correctly identify the sky con-

ditions is still a major point of discussion (Aghimien 

et al., 2022). In this study, an ensemble-based 
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machine learning (ML) model called Light Gradient 

Boosting Machine (LGBM) is proposed to identify 

the 15 CIE standard skies using readily available cli-

matic variables. The rationale behind using ML is 

that it provides an alternative approach to sky clas-

sification (Aghimien et al., 2022; Granados-López et 

al. 2021; Lou et al., 2016). Nevertheless, recent works 

have shifted focus to the use of ensemble ML mod-

els as these can provide better predictions, they can 

boost the performance of traditional ML and per-

form well even under noisy data (Mienye et al., 

2022). Importantly, ensemble models perform well 

when the data to be predicted is imbalanced which 

is the case for most real-life classification problems 

(Khan et al., 2024; Mohammed & Kora, 2023). None-

theless, ensembles have not been widely explored in 

previous CIE standard skies studies. Moreover, the 

previous ML works in CIE standard sky classifica-

tion did not attempt to determine the energy perfor-

mance of these methods in actual energy simulation 

scenarios (Granados-López et al., 2021; Lou et al., 

2017). Neither is the comparison of the ML-based 

CIE standard Skies against other sky distribution 

models considered in the previous energy analysis. 

Thus, in this study, the daylight illuminance and 

building energy prediction from the proposed 

LGBM model and for a generic commercial building 

infused with DLLC systems were investigated. The 

objectives of this study were to (i) develop an LGBM 

CIE standard sky classification model (ii) simulate 

daylight illuminance based on the LGBM and other 

acceptable sky distribution models (iii) determine 

energy savings from using DLLC systems and the 

sky models. 

2. Study Methodology

Ten-minute measurements obtained from the City 

University of Hong Kong measuring station be-

tween 2004 to 2005 were used in this study. These 

data consist of solar irradiance, daylight illumi-

nance, sky luminance distributions, geographical 

and meteorological variables. The measurements 

were done using Kipp & Zonen CM11 thermopile 

pyranometers, the MS- 80 Pyranometer, the T-10M 

illuminance sensor and the EKO MS 300LR sky 

scanner. Similarly, the meteorological variables 

such as sunshine duration (sun), cloud cover (cld), 

visibility (vis) e.t.c were collected from the Hong 

Kong Observatory (HKO). These meteorological in-

puts also covered the same measurement period as 

the solar measurements. 

Upon measurement, data quality control was car-

ried out to clean the data as described in Aghimien 

et al. (2022). Upon cleaning, a total of 16,118 and 

10,747 datasets were obtained for years 2004 and 

2005, respectively. The 2004 data was further di-

vided using the ratio of 80 to 20% for training and 

initial testing. This splitting ratio provides sufficient 

data for learning and still gives room for evaluating 

the model against unseen data. Next, the 15 CIE 

standard skies were determined as outlined in Li et 

al. (2013). Therefrom, the sky classification model 

was developed using LGBM and the 2004 input cli-

matic data. Upon model development, the LGBM 

was used to classify the 15 standard skies using the 

2005 test data. By using the model against the 2005 

data, the ability of the model to make predictions 

against a whole year’s worth of data was deter-

mined. For daylighting and energy calculations, a 

generic shopping mall was assumed and, the stand-

ard skies obtained from the LGBM were used to 

simulate daylight illuminance in RADIANCE using 

a climate-based daylight modelling (CBDM) ap-

proach. For a more robust conclusion, the LGBM 

classification was compared with the Best fit skies 

(i.e., the 15 CIE standard skies as classified by the 

sky luminance modelling method), the All-weather 

model (Perez et al., 1993), and the ASRC-1992 (Perez 

et al., 1992). Finally, the energy savings as obtained 

from the different sky models, the top-up DLLC sys-

tem and other building parameters were investi-

gated using EnergyPlus. Importantly, for the day-

light and the building energy simulation, the 2005 

weather data was used. The methodology flow chart 

is shown in Fig. 1.  
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Fig. 1 – Flow chart of research methodology 

3. Case Study and Model Description  

3.1 Case Study  

The generic case study is a 70 m by 70 m 4-storey shop-

ping mall in Hong Kong. The mall has typical floor 

plans comprising retail shops, restaurants, back-of-

house, circulation areas, supporting plant rooms, and 

atria as shown in Fig. 2. In terms of glazing, the overall 

skylight-to-roof and window-to-wall ratios were 5% 

and 44.6%, respectivelyand the visible transmittances 

for the skylight and window were 0.9 and 0.8. The 

lighting power densities for the retail shops, restau-

rants and circulation areas were 10, 9 and 5 W/m2, re-

spectively. Similarly, the design illuminance for the re-

tail shops, restaurants, and circulation areas was 300 

lux, 200 lux and 100 lux, respectively. A fan-coil unit 

was provided for retail shops and restaurants while a 

variable-air-volume system was used in circulation ar-

eas. Water-cooled chillers were used for space cooling.  

The operating hours for the retail shops and circulation 

areas were 09:00-21:00 while the restaurants were 

09:00-01:00. All parameters were chosen following the 

Hong Kong local requirements (EMSD, 2021). DLLC 

systems were equipped in the perimeter zones, and 

these were twice the window height while the refer-

ence point for lighting control was placed in the mid-

dle of the room.  Finally, obstructions of 56.3 were po-

sitioned in all four major principal orientations (i.e., 

north, east, south and west). The atria, ground and 

third-floor plans were considered in this analysis. 

Fig. 2 – Floor plan and section of case study building 

3.2 CIE Standard Skies Classification 

The CIE standard skies contain five clear, five inter-

mediate and five overcast skies, and these cover the 

whole spectrum of skies in the world (CIE, 2003). 

These 15 CIE skies are derived from a number of 

mathematical expressions which are mainly com-

posed of the relative distribution, the standard gra-

dation function and the relative scattering indicatrix 

function (Li et al., 2013).  

Full details of the 15 CIE standard skies and its mod-

elling approach using the sky luminance method 

can be found in Aghimien and Li (2022). This 

method was used in this study (Section 4.1) as the 

baseline method for comparing the LGBM sky clas-

sification performance.  

3.3 Light Gradient Boosting Machine  

Ensemble models combine several ML models to 

build a single and more powerful model than its 

original constituents (Mohammed & Kora, 2023). 

These models are widely adopted due to their abil-

ity to reduce overfitting and efficiency when dealing 

with imbalance data (Khan et al., 2024). The LGBM 

is a highly efficient ensemble of decision trees (DT) 

used to minimize a loss function (Ooba et al., 2023). 

This model has been widely adopted and hence, 

used in this study. 

Before model development, the relationship of the 

inputs was first checked using Pearson’s correlation 

analysis. This helps to determine the model input 
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relationship and prevent multicollinearity. The 

findings show no likelihood of collinearity in the 

data. For the model structure, thirteen input varia-

bles were used and these consist of solar altitude an-

gle (α), clearness index (Kt), diffuse fraction (Kd), tur-

bidity (Tv), atmospheric pressure (atp), cloud cover 

(cld), sunshine duration (sun), visibility (vis), rela-

tive humidity (rhm), dew point temperature (dpt), 

dry bulb temperature (dbt), wet bulb temperature 

(wbt) and wind speed (wsp). While the output was 

the 15 CIE standard skies identified by the sky lumi-

nance method. Furthermore, the output data were 

encoded since they have categorical attributes, and 

then the data was split. The 2004 data was used for 

training and initial testing in the ratio of 80 to 20%. 

Next, the split data were separately scaled using the 

min-max method to prevent data leakage. Then, the 

Grid search method was used to optimize the model 

while K-fold cross-validation was used to prevent 

overfitting. Upon optimization, the best LGBM hy-

perparameters were; column subsampling by the 

tree: 0.9, learning rate: 0.01, number of estimators: 

300, number of leaves: 60, and subsample: 0.8. After 

model development, the 2005 data were scaled and 

used as additional new sets of data to retest the 

model’s performance. Finally, the model was as-

sessed using accuracy (Accu), precision (Pre), recall 

(Re), F1-score (f1) and receiver operating character-

istic (ROC). By using these arrays of metrics and set-

ting their average as “weighted“, issues related to 

data imbalance were catered for. Details of these 

evaluation metrics can be found in Hossin and 

Sulaiman (2015). 

4. Results and Discussions

4.1 CIE Skies Luminance Classification 

As shown in the frequency of occurrence (FOC) plot 

in Fig. 3, the overcast skies (Skies 1 to 5) represented 

32.1 % of the sky condition. Partly cloudy skies 

(Skies 6 to 10) and clear skies (Skies 11 to 15) repre-

sented 44.3% and 23.5%, respectively. Skies number 

1, 8 and 13 were the most represented sky types with 

FOCs of 17.5, 37.0% and 16.0%. These also repre-

sented the most represented sky types for each typ-

ical sky. Overall, the FOC result showed that the 

data (i.e., predicted sky types) was imbalanced as 

expected. Thus, making the use of the LGBM model 

a good alternative. 

4.2 LGBM Standard Skies Classification 

The statistical performance of LGBM on the 2004 

test data was assessed. The ROC for the identified 

skies and the micro average value were presented. 

As shown in Fig. 4, the area under curve (AUC) of 

the identified skies ranged from 0.87 (i.e., Sky 5) to 

0.99 (i.e., Skies 13 to 15). Similarly, the micro average 

ROC had an AUC of 0.98. A perfect classifier will 

usually have an AUC of 1.00. Hence, the findings 

show that the ROCs were quite close to a perfect 

classifier. This result means that the LGBM model 

can classify the 15 CIE standard skies with reasona-

bly good accuracy and there is a tendency to obtain 

high recall and low false positive rate across the 

skies during classification. 
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Fig. 3 – FOC of the best fit 15 CIE Standard Skies 

Next, the LGBM performance was evaluated by us-

ing the confusion matrix in Fig. 5. The lighter brown 

box in the matrix shows instances where predictions 

were accurate. As expected, Skies 1, 8 and 13 were 

the most correctly classified skies and these had cor-

rect predictions of 482, 1098 and 2310, respectively, 

which is generally in line with the observed FOC of 

the skies (i.e., Section 4.1). 

Lastly, the model’s performance on the initial and 

new sets of test data (i.e., 2004 and 2005, respec-

tively) is presented in Fig. 6. It was observed that for 

the 2004 data, the Accu was 74.7% while the Pre Re 

and f1 were also above 70%. As expected, the 
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performance dropped for the new 2005 test data. 

Nonetheless, its Accu and Re were above 70% while 

the Pre and f1 were 66.91 and 67.77%, respectively. 

Overall, the result shows that for most of the predic-

tions, the LGBM correctly identified the 15 CIE 

standard skies for more than 70% of the instances. 

This implies that good predictions were obtained.  

 

Fig. 4 – ROC Curves of all 15 standard skies  

 

Fig. 5 – Confusion matrix of LGBM model on 2004 test data 
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Fig. 6 – Performance of LGBM on 2004 and 2005 test data 

4.2.1 LGBM feature importance 
The feature importance of the LGBM model was as-

sessed using the permutation importance method. 

As shown in Fig. 7, Kd, Tv and Kt were the most im-

portant inputs. Next to these, were α, cld and sun. 

Since these variables have been extensively used as 

sky clearness indicators, this result validates their 

high level of relevance. However, other meteorolog-

ical variables had lower importance. From this anal-

ysis, the important features can be subsequently 

used in places with limited data for developing sim-

pler sky models. 

 

Fig. 7 – Feature importance of LGBM inputs 

4.3 Daylight Illuminance Simulation 

For daylight illuminance simulation, the Best fit 

standard skies, the LGBM-based standard skies and 

other luminance distribution models were inte-

grated with RADIANCE and the analysis was con-

ducted as described in Section 2.0. Precisely, five 

scenarios were considered for discussion. These sce-

narios include the south atria, then the north and 

south orientations of the ground and third floor, re-

spectively. By selecting these scenarios, extreme and 

less extreme cases were covered. For example, the 

ground and third floors, depict daylight predictions 

with more and less obstruction, respective-

lywhereas north and south orientations show the ef-

fect on sun-shaded and less shaded surfaces, respec-

tively. The prediction error was evaluated using 

%root mean square error (%RMSE) and %mean bias 

error (%MBE). The %RMSE compares forecasting 

errors of different models, while the %MBE 
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determines the tendency of a model to overestimate 

or underestimate. Details of these evaluation met-

rics can be found in Despotovic et al. (2015). As ob-

served in Table 1, all models tend to provide better 

predictions (i.e., lower %RMSE) on the ground floor 

compared to the third and on the north orientation 

compared to the other orientations. Since the model 

was proposed with consideration of obstruction, the 

reason for this might be the likelihood of the south 

orientation, third floor and atria being exposed to 

more of the sky. Overall, the models gave predic-

tions of reasonable accuracy and this was more ob-

vious in the Best fit and LGBM models. In fact, the 

Best fit prediction ranged from 10.17 to 23.73%, 

while the LGBM ranged from 11.5 to 26.17%. Strictly 

speaking, models with %RMSE < 20% are consid-

ered to have higher accuracy (Despotovic et al., 

2015). Hence, showing the efficacy of both models. 

Nevertheless, the All-weather and ASRC-1992 also 

gave acceptable predictions with the latter perform-

ing the least. Also, the observed %MBE indicated 

that most of the time, the predictions were not so far 

from the daylight illuminance values. Furthermore, 

the ASRC-1992 and All-weather models mainly 

overestimated the daylight illuminance, while the 

Best fit and LGBM mostly underestimated. Im-

portantly, for the proposed LGBM the %MBE 

ranged from -0.03 to -3.35%. This implies that most 

of the time, the average difference between the 

measured illuminance and the predicted value from 

the proposed LGBM will be around 3%. 

Table 1 – Statistical performance of models in predicting daylight 
illuminance using RADIANCE simulation 

Scenarios Metrics Best 

fit 

ASRC-

1992 

LGBM All-

weather 

Atrium (South) %RMSE 23.73 33.83 26.17 28.57 

%MBE 2.08 -5.43 2.17 -1.57 

GF (North) %RMSE 10.17 25.67 11.5 16.93 

%MBE 0.13 8.75 -0.03 4.45 

GF (South) %RMSE 19.53 34.63 22.95 27.03 

%MBE -1.38 8.88 -2.06 3.23 

3F (North) %RMSE 11.84 25.56 13.44 16.99 

%MBE -0.17 8.77 -0.28 3.76 

3F (South) %RMSE 20.77 39.75 24.87 28.32 

%MBE -2.49 11.04 -3.35 2.99 

Note: GF represents the ground floor while 3F represents the third floor.  

4.4 Energy Performance Simulation 

Although indoor lamps help improve visual com-

fort, they dissipate heat, which will impact the in-

door cooling requirement. Similarly, by setting the 

DLLC to the target indoor illuminance, significant 

energy savings can be achieved. Based on the pre-

dicted illuminance, the building energy consump-

tion is estimated by EnergyPlus.  The energy simu-

lation result in terms of the energy savings of the 

measured sky and different models are presented in 

Table 2. As pointed out in Section 2, there were only 

10,747 sets of valid data, which is equivalent to 

about 1,791 hours and about half of the daytime for 

the simulation period. Thus, it should be noted that 

the findings in Table 2 only cover half of the year’s 

daylight conditions. As observed, the addition of 

DLLC systems caused energy savings on lighting 

for the measured sky luminance data and the sky 

models. This energy saving on lighting ranged from 

38.1 (i.e., measured sky luminance data) to 38.6% 

(i.e., ASRC 1992). Similarly, for cooling-related end 

uses like fans, and heat rejection there is also a con-

siderable energy savings actualized from the use of 

the DLLC system. This had maximum values of 6.0 

and 4.0%, for fans and heat rejection, respectively. 

Other savings of about 2.5 % were derived from 

pumps while end use without a direct relationship 

with DLLC systems such as equipment and heating 

had no energy savings. Furthermore, it was ob-

served that the energy savings for the different 

models was not so far from the measured data and 

all savings from these models were of similar mag-

nitude. The reason for this might be because the lux 

level and visible window transmittance used in the 

analysis were low. Moreover, the presence of ob-

struction might be of concern since the analysed 

spaces were mainly dependent on the diffuse and 

reflected illuminance. Generally, shopping centers 

have long operating hours and relatively low illu-

minance requirements, hence, larger savings may be 

obtained if it is applied to office buildings. Never-

theless, the closeness of the predicted energy sav-

ings from the sky models to that of the measured 

sky luminance data shows that acceptable predic-

tions were obtained. 
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5. Conclusion 

This paper shows the potential of using the LGBM 

model and accessible climatic variables to deter-

mine the 15 CIE standard skies. The findings show 

that for over 70% of the time, the LGBM model 

could correctly classify the sky types. Hence, the 

proposed model could provide acceptable predic-

tions. The important features in the LGBM model 

were determined. It was shown that sky clearness 

indicators like Kd, Tv Kt, α, cld and sun, were the most 

important features. Therefrom, the LGBM model 

alongside the Best fit, ASRC-1992 and all-weather 

models were used for daylight and energy simula-

tions of a generic shopping mall. For daylight simu-

lation, it was observed that surfaces more exposed 

to the skies like the south and upper floors (e.g. 

third floor in this study) are more prone to error 

during daylight predictions. In terms of %RMSE, 

the Best fit model gave the best predictions while 

the ASRC-1992 performed the least. It was also ob-

served that from the %MBE obtained, the difference 

between the measured and predicted illuminance 

from the proposed LGBM will be around 3% on av-

erage. Finally, electricity consumption was pre-

dicted and findings show that all models gave pre-

dictions which were close to the measured data. 

Most of the savings only deviated within 2 MWh 

which is equivalent to about 1.5% of the saving. 

Generally, an approach for determining the skies 

which can be incorporated into simulation software 

has been proposed. Nevertheless, more work using 

other ensemble models, larger databases and differ-

ent locations is required. 

Table 2 – Energy savings for all four sky models with Top-up control 

End Uses 
Sky  

luminance 

Best 

Fit 
LGBM 

All- 

weather 

ASRC 

1992 

Lighting 38.1 38.2 38.2 38.5 38.6 

Equip-

ment 
0.0 0.0 0.0 0.0 0.0 

Fans 5.9 5.9 5.9 5.9 6.0 

Heating -3.9 -3.9 -3.9 -3.9 -4.0 

Cooling 0.0 0.0 0.0 0.0 0.0 

Heat Re-

jection 
3.9 4.0 4.0 4.0 4.0 

Pumps 2.4 2.4 2.4 2.5 2.4 

Note: Energy savings are expressed as percentages (%) 
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