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Abstract 
Occupancy behaviour, including presence at the work-

place, has a significant influence on a building's energy re-

quirements. However, modelling occupancy behaviour is 

complex, multidisciplinary, and stochastic rather than de-

terministic. As little information about the intended use is 

available during the building planning phase, general as-

sumptions about occupancy behaviour are made during 

building simulation and system planning, based on empir-

ical and standardised models. However, these are formu-

lated as generally as possible to achieve the broadest pos-

sible applicability. For example, despite improved simula-

tion techniques, assumptions about occupant behaviour in 

the workplace often lead to deviations from the real situa-

tion, i.e. energy performance gaps. A better understanding 

of the factors that influence occupant behaviour, their 

weighting, and the improved models derived from them 

are proving to be crucial for eliminating performance 

gaps. Using advanced statistical methods and High-Per-

formance Computing, representative samples of potential 

scenarios were created in this study to fully quantify the 

impact on energy performance. This was based on minute-

by-minute occupancy and energy data from a one-year se-

ries of measurements in an open-plan office of Bartenbach, 

Austria. This research, based on High-Performance Com-

puting, presents a breakdown of organisational and indi-

vidual factors influencing energy-related occupancy be-

haviour. The results provide a promising basis for future 

research and pave the way for more targeted and energy-

efficient building planning.  

1. Introduction 

1.1 The Influence of User Behaviour 

The deviations between predicted and actual energy 

requirements are known as energy performance 

gaps (EPG). The real energy demand is usually 

greater than the assumptions on energy demand 

from planning and simulation. Furthermore, perfor-

mance gaps can exist not only in terms of energy de-

mand but also, for example, in relation to the per-

formance indicators of comfort and health. In the 

context of the building design phase, uncertainties 

in building modelling (such as insufficient geomet-

ric and material properties, and environmental 

data) as well as institutional restrictions and tech-

nical limitations of existing modelling tools can be 

identified in the literature as causes of EPGs (Lee & 

Selkowitz, 2006; Van Dronkelaar et al., 2016). In the 

context of the construction phase, the main causes 

include suboptimal installations and system calibra-

tions (and thus inefficient system operation) as well 

as qualitative deviations in construction specifica-

tions (Menezes, 2012). However, the greatest cause 

of performance gaps can be identified as uncertainty 

regarding user behaviour while planning and the 

associated system designs (Calì et al., 2016), espe-

cially deviations resulting from the occupancy mod-

els used (Niu et al., 2016; de Wilde, 2014). These are 

currently mostly based on generally applicable 

models to bridge information gaps in the building 

design phase about subsequent room utilisation (cf. 

models in sia, 2006). It has been shown that these 

models fail when occupancy behaviour is very dy-

namic, e.g. strongly varying presence at the work-

place due to frequent follow-up meetings (Hammes 
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et al., 2021), which can account for around a quarter 

of managers' working time (Panko, 1992). In addi-

tion, organisational and social factors can influence 

occupancy dynamics, for example through flexitime 

arrangements. This information usually only be-

comes apparent after commissioning. With such un-

certainties, it is not surprising that, depending on 

the actual occupancy dynamics, there are large 

ranges in terms of system-related energy require-

ments (cf. Hammes et al., 2021). In addition to occu-

pancy patterns, uncertainty also includes user pref-

erences. Preferences, e.g. regarding visual comfort, 

can differ greatly between individuals (Despenic et 

al., 2017). 

The negative consequence of energy performance 

gaps is usually a higher energy requirement and 

therefore higher operating costs, as well as the risk 

of incorrect system dimensioning. The latter can re-

sult in inefficient operation, which in turn can be re-

flected in energy requirements and can also be to the 

detriment of user comfort. For these reasons, the im-

provement of planning and simulation methods is 

currently one of the most important challenges fac-

ing the construction industry (Menezes et al., 2012). 

Above all, it is important to create a better user map-

ping through improved occupancy models to re-

duce deviations between planning and operation. 

The need for this has already been recognised by the 

scientific community and several papers have been 

written on the subject. In addition, the energy-re-

lated influence of user behaviour and its mapping 

has been included in international research efforts 

(IEA EBC Annex 66 & IEA EBC Annex 79). 

1.2 Related Work 

Zou and Alam (2020) use a post-utilisation evalua-

tion to identify causes of the EPG using content 

analysis and statistical analysis methods using the 

example of a multi-storey office building and to de-

velop a stakeholder-oriented methodological frame-

work to close the EPG. Manual override of auto-

matic systems and inaccurate predictions of energy 

demand outside general business hours were iden-

tified as user-related causes (Zou & Alam, 2020). 

Here, too, user behaviour is determined by more in-

fluencing factors than by framework conditions set 

by the organisational structure. 

Using support vector regression based on opera-

tional data from an office building, significant im-

provements in the prediction of individual user pro-

files were achieved for the case study compared to 

existing models (Weninger & Hammes, 2023). 

Menezes et al. (2012) provide a general overview of 

the causes that can lead to performance gaps. The 

authors also show how the findings from post-occu-

pancy evaluation (POE - the system evaluation after 

commissioning) can be used to create more accurate 

energy performance models. Their results show that 

by combining measurement data with predictive 

energy modelling, the accuracy of energy forecasts 

can be improved (Menezes et al., 2012). 

The role of POE in the breakdown of performance 

gaps and their closure via improved planning and 

simulation methods becomes clear via the thematic 

literature. The comparison of measured data and 

simulation results proves to be essential to ensure 

the validity of models (Fabi, 2013). To break down 

the energy-relevant user behaviour, this study is 

therefore also based on post-occupancy data. 

1.3 Objective 

The negative consequences of EPGs currently pose 

a significant challenge, particularly those EPGs that 

arise due to the indeterminacy of user behaviour. A 

precise measurement of their extent and a break-

down of relevant influencing factors can counteract 

this. This study therefore aims to use post-occu-

pancy data and High-Performance Computing 

(HPC) to break down the user-related energy de-

mand regarding the influencing factors and, based 

on this, to derive recommendations for improved 

planning and simulation techniques.  

As artificial lighting is one of the largest consumers 

of electrical energy in commercial buildings, ac-

counting for around one third (Chow et al., 2013), 

the study focusses on this trade. Furthermore, office 

buildings are the most common type of building in 

most countries in terms of floor space and energy 

requirements (Labeodan, 2015). The study is there-

fore further focused on office buildings. 
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2. Methodology 

2.1 Study Object and Data Base 

The post-occupancy data on which this study is 

based result from the 160 m² open-plan office of Bar-

tenbach GmbH, which was converted into a Liv-

ingLab in 2019 (Fig. 1). Since commissioning, over 

100 sensors have been used to record the indoor and 

outdoor climate and energy consumption of the 

lighting system components as well as user-related 

variables such as occupancy patterns and interac-

tion behaviour with the lighting systems in high res-

olution. In addition to the latter, all system states of 

the integral artificial and daylight lighting system 

are also logged. The recording of user-related varia-

bles is carried out in compliance with data protec-

tion aspects. The Bartenbach LivingLab has already 

been able to derive several improvement measures 

for energy efficiency and comfort from post-occu-

pancy evaluations.  

A special feature of the open-plan office relevant to 

the study is a high daylight input (daylight auton-

omy (DA) of 81.56%, based on the normative work-

place lighting of 500 lx and reference time of 08:00-

18:00, excluding summertime, see (Hammes et al., 

2021)), which means that the use of artificial light is 

primarily limited to the morning and evening 

hours. Furthermore, daylight and artificial light can 

be controlled zonally per desk group (cf. Fig. 1), 

which offers advantages for energy efficiency and 

especially comfort, as individual lighting prefer-

ences can be better mapped (Hammes et al., 2020). 

There are a total of nine lighting zones (=workplace 

zones), four along the skylight and five along the 

south façade (Fig. 1). The study includes 18 people, 

two people per zone. The activity profile of the em-

ployees involved in the study object corresponds to 

that of project managers, which is associated with a 

corresponding occupancy dynamic (cf. time study 

for managers by Panko & Kinney, 1992). The core 

working hours in the study period from Mon-Fri are 

09:00-12:00 and Mon-Thu 14:00-17:00. The employ-

ees have the option of flexitime and working from 

home. Accordingly, there is a high degree of dyna-

mism among residents regarding occupancy times 

at the workplace. To reduce energy-unfavourable 

artificial lighting operating times during absences, 

there is a passive infrared presence control system 

for each workplace. In addition, there is daylight 

control of the artificial light to the standardised 

500 lx per zone. 

 

 

Fig. 1 – Interior of the LivingLab at Bartenbach GmbH in Aldrans, 
Austria - south façade with half-closed sun protection on the right, 
skylight on the left (image source: Bartenbach GmbH) 

The artificial light energy requirement of a zone re-

sults from the logical OR linking of the presence 

profiles of all persons in this zone. To realise pres-

ence detection in the best possible way, the detec-

tion range of the passive infrared sensors used is 

limited to the workplace. 

For the study setting described above, the data basis 

for the study is formed by attendance data per indi-

vidual workstation (pseudonymisation was used to 

ensure data protection), illuminance values and the 

dimming level of the artificial light for each zone. 

The latter two pieces of information were used to 

break down the illuminance value per zone accord-

ing to the proportion of daylight and artificial light. 

The data covers a period from February 2022 to Jan-

uary 2023. The resolution is per minute or change of 

state. 

2.2 Variant Creation via  
High-Performance Computing 

The lighting zones are utilised more or less effi-

ciently depending on the respective user combina-

tion and the associated occupancy dynamics at the 

workplace. This means that with increasing overlap 

of working times in the energy-relevant morning 

and evening hours, the zone is utilised more effi-

ciently in terms of energy if the joint absences are 

high during these times. Furthermore, the position 
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of the workplace is also relevant, as there are differ-

ent daylight potentials per zone. 

There are two people per table group, i.e. for each of 

the 9 controllable lighting zones. Varying the com-

bination of presence profiles and the assigned work-

place zone results in a total of 1.25*1013 combina-

tions (all possible combinations for 9 different pairs 

distributed over nine different workstation zones). 

Considering that individual users can have very in-

dividual behavioural patterns, it can be assumed 

that, depending on the combination of different user 

characteristics, significant differences may occur in 

the influences on the key performance indicators. In 

addition, previous studies have already shown that 

the relevance of the position increases with im-

proved user pairing (Hammes et al., 2022). There-

fore, expanding the understanding of the underly-

ing profile properties proves to be necessary to 

make them usable for planning and simulation as 

well as to reduce performance gaps. 

To gain an understanding of formative user charac-

teristics, a representative sample size of potential 

occupancy scenarios was created using HPC. 10.24 

million samples were generated using Monte Carlo 

simulation. A sample represents a completely ran-

domised variation of user pairings and their posi-

tion in the room. Repetitions of identical user distri-

butions in the room were avoided. In addition, the 

HPC was used to determine the specific artificial 

lighting energy requirement for each sample, based 

on the measured illuminance of the daylight input 

per zone, the artificial lighting energy required to 

achieve the 500 lx and the combined presence pro-

files. The calculations were carried out on the VSC-

5 of the Vienna Scientific Cluster (Austrian National 

Supercomputing Centre). Several batches were 

used, distributed across multiple nodes with each 

batch parallelized to be evaluated on 128 CPU cores. 

The calculation of the samples took approximately 

60,000 hours of core time. 

2.3 Characteristics of the Generated Data 

The real artificial lighting energy requirement is 

237 kWh (based on the lighting zones in the study 

object over the observation period Feb 2022 - Jan 

2023). For a direct comparison of the measured 

value-based data with simulation-based data, the 

occupancy models according to (sia, 2006) were 

matched with the measured illuminance levels or the 

derived demand values for artificial lighting energy 

per zone (172 kWh). The results show significant de-

viations from the real energy demand (38%). 

The representation of the 10.24 million different sam-

ples generated by HPC as a histogram, with the en-

ergy demand as the abscissa, shows an approxi-

mately normal distribution (see Fig. 2). All user pair-

ings (regardless of their position in space) occur al-

most equally frequently. The identified mean value 

of the artificial lighting energy demand with stand-

ard deviation is 239 kWh ± 12. The most unfavoura-

ble combination of the generated samples in terms of 

energy results in an artificial lighting energy demand 

of 285 kWh. The minimum identified is 183 kWh, i.e. 

there is a range between the minimum and maximum 

value of 102 kWh. The range between the minimum 

and maximum values of the samples and the devia-

tion from the simulation highlights the need for a bet-

ter understanding of the defining characteristics of 

user-related performance gaps and a quantification 

of possible ranges of energy demand. Fig. 2 also 

shows 247 kWh for the upper quantile (Q3), 230 kWh 

for the lower quantile (Q1) and correspondingly 

17 kWh for the interquartile range (IQR). The median 

is 239 kWh. The upper whisker is 273 kWh, and the 

lower whisker is 205 kWh. 

 

Fig. 2 – Artificial light energy requirement for the 10.24 million sam-
ples generated via HPC as a frequency distribution 

2.4 Data Evaluation and Limitations 

In a first step, the data generated using HPC was an-

alysed to determine which presence profiles and 

combinations are responsible for particularly low or 

particularly high energy consumption. Advanced 

statistical methods, such as variance analysis 
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(ANOVA), are primarily used for this purpose. In 

addition, their diurnal and seasonal influence is 

evaluated as well as the influence of the room posi-

tion. The post-processing analyses were carried out 

in Python (version Python 3.10, primary libraries 

used: pandas 2.0.0, scipy 1.11.1, scikit-learn 1.3.0). 

Supplementary statistical analyses were carried out 

with JASP (version 0.18.3.0). 

As meetings often take place at the workplace, there 

is a risk of incorrect detections due to people mov-

ing between zones. In addition to this sensor-related 

limitation of the study, there was no gender-specific 

evaluation. Furthermore, two data logging system 

failures totalling 11 days should be mentioned.  

3. Results and Discussion 

An examination of the frequencies of individual 

user combinations in the border areas of the histo-

gram, i.e. the minimum and maximum energy 

ranges, shows that certain user combinations occur 

more frequently than other user combinations. For 

both low energy values and the very high energy 

range, 10,240 samples each were considered, which 

corresponds to 0.1% of the entire data set of 10.24 

million. This is associated with nine user combina-

tions per sample. Fig. 3 shows the frequency combi-

nations of individual user combinations as an exam-

ple for the minimum range (the same was done for 

the maximum range). Based on this distribution, the 

most important user combinations were analysed to 

list the special features that have a positive or nega-

tive impact on energy requirements and therefore 

possibly influence the extent of performance gaps. 

 

Fig. 3 – Frequency distribution of all 153 possible user combina-
tions for the low energy demand area according to Fig. 2 

The attendance data at the workplace was recorded 

in high resolution. This means that measurement 

data is available at time intervals of less than 1 min 

over the study period. The arithmetic mean over the 

time of day of the five profile combinations that oc-

cur most frequently in the minimum ranges com-

pared with the five profile combinations that occur 

most frequently in the maximum ranges shows clear 

differences, particularly in the morning and evening 

hours (cf. Fig. 4a and 4b). These are the times that 

have the greatest influence on energy demand due 

to the study setting (see Hammes et al., 2022). While 

the most frequent user combinations for high en-

ergy demand are characterised by high presence in 

the morning hours (in Fig. 4b, yellow-green area), 

the most frequent user combinations from the low 

energy range show almost no presence here. It can 

also generally be seen that the attendance probabil-

ity is higher for the identified user combinations 

from the maximum range (more yellow). This re-

sults in a higher probability of artificial lighting dur-

ing the day, especially when the sky is overcast. 

 

Fig. 4 – Averaged presence over the time of day for the five most 
frequent user combinations that occur in the area of a) minimal 
energy demand and b) maximal energy demand. Users pseudon-
ymized. Higher probability of presence if the color is yellow, lower 
probability of presence if the color is blue 

These differences are also supported by the statisti-

cal analyses. A two-way ANOVA was conducted to 

determine if there was an interaction between the 

factors profile type and hour of the day on energy 

demand. Prescence times were normally distributed 

within all groups, with skewness and kurtosis sta-

tistics between -2 and +2. There was no homogeneity 

of variances, as assessed by the Levene’s test for 
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equality of variances (p < 0.05); however, because 

the assumption of normal distribution was satisfied 

with an equal number of datapoints in each group, 

the two-way ANOVA is considered robust to this 

violation (Maxwell et al., 2017).  

The results show significant main effects in both fac-

tors (both p < 0.001), with generally higher attend-

ance times in higher energy requirement profiles 

(Mhigh = 5,036 min, Mlow = 2,485 min). More interest-

ingly, there was also a statistically significant inter-

action between profile type and hour of the day, 

F(14, 120) = 1.98, p < 0.05, ω2 = 0.03. Bonferroni-cor-

rected post-hoc tests show that the differences are 

primarily due to the edge of the day in the morning. 

Significant differences (both p < 0.05) between both 

profile types can be demonstrated in the morning 

between 08:00 and 09:00 and between 09:00 and 

10:00. There were no significant differences for the 

remaining time periods. It turns out that the option 

of flexitime regulation is perceived very differently 

by each person, which is reflected in the energy pro-

files. 

An examination of the frequencies of relevant com-

binations for the entire data set, i.e. for all 10.24 mil-

lion samples, shows that the relevant profile combi-

nations for a lower energy requirement also tend to-

wards the lower energy level, while relevant profile 

combinations for a higher energy requirement are 

shifted to the maximum (Fig. 5a and 5b).  The mean 

value of the distribution of the data for Fig. 5a is 

237 kWh, for Fig. 5b 239 kWh, for comparison across 

all samples the mean value is 239 kWh. Less favora-

ble combinations occur slightly more frequently. A 

Chi-Square Goodness of Fit Test for an adjusted 

sample size of 5,000 samples was performed to de-

termine whether the frequencies of lower and 

higher energy requirement profiles were equally 

distributed over the different energy levels. The fre-

quencies did significantly differ between the two 

profile types, X2(8, N = 5,000) = 135.87, p = < 0.001, 

supporting the assumption that the profile types can 

be assigned to the respective lower or higher areas 

of the distribution. As the user combinations gener-

ated via HPC occur equally frequently per zone, this 

emphasizes that with zoned lighting concepts it is 

essential how the zones are occupied. 

 

 

Fig. 5 – Percentage distribution of those samples containing the 10 
most relevant profile combinations for a) low energy demand and 
b) high energy demand; Each applied to all samples 

A final check of the energy deviations between rele-

vant combinations of minimum and maximum 

ranges over the time of day and month shows a con-

tinuous difference in the morning hours over the 

year (Fig. 6). Deviations in the evening hours occur 

primarily in the first half of the year. 

 

 

Fig. 6 – Deviation between the average daily and monthly resolved 
energy profiles from the identified minimum and maximum range, 
applied to the 10 most relevant profiles in each case 
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5. Conclusion 

The results of this study help to decipher the causes 

of the EPG, especially in the lighting area, and to 

identify dependent variables. For this study, a high 

occupancy time in the morning and evening hours 

was identified as a particularly influential factor on 

the EPGs. Statistically significant interactions were 

found between profile type and the morning hours 

of 08:00-10:00. While the energy significance of 

zoned lighting concepts and their advantages for 

user comfort have already been demonstrated sev-

eral times (i.e. in Hammes et al., 2020), the combina-

tion of profiles is essential for the energy require-

ments of dynamic occupancy. The study results also 

show a very wide variation in the probability of 

presence at the workplace, which in the study object 

is due to flexitime arrangements and the high num-

ber of follow-up meetings. Such dynamic processes 

are difficult to depict in simulations, which can lead 

to generally valid models usually resulting in en-

ergy-inefficient operation, which in turn becomes 

visible in EPGs.  

The results of the study show that existing planning 

models can only incompletely depict dynamics in 

the morning and evening hours, which calls into 

question their suitability for application. However, 

the development of an applicable model requires a 

significantly larger data set and further research in 

the areas of user individuality and work processes. 

For more accurate building planning and simulation 

and thus a lower risk of performance gaps, it would 

therefore be advisable to classify the results for dif-

ferent organisational and building typologies. In 

this sense, the approach presented in this paper can 

be seen as a first step towards improved user mod-

elling in simulation processes. Further research ac-

tivities can also be carried out to quantify the influ-

ence of occupancy behaviour and other factors, such 

as weather and user position in the room, on total 

energy consumption and thus make it easier to plan 

by deriving improved models for the simulation. 

The presented work also emphasises the importance 

of POEs to gain insights for improving planning and 

simulation after commissioning and thus reducing 

EPGs. POEs also allow measures to be derived after 

commissioning to improve energy requirements. 

Accordingly, optimisation algorithms could derive 

improved user distributions in the room and thus 

reduce EPGs. 
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