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Abstract 
The need to mitigate the risks of overheating in buildings 

due to climate change has highlighted the importance of 

accurate models for predicting indoor temperatures and 

thermal comfort, particularly after retrofitting. To this end, 

white-box models, such as Building Energy Models 

(BEMs), and black-box models, such as Long Short-Term 

Memory (LSTM) neural networks, have been extensively 

used in recent decades. While BEMs provide detailed in-

sights through physically-based simulations, requiring 

calibration for enhanced accuracy, LSTMs provide a data-

driven approach that captures complex thermal dynamics 

with greater simplicity, albeit with less interpretability. 

Few studies have undertaken a comparative analysis of 

these models in terms of prediction accuracy, especially 

across pre- and post-retrofit conditions and different 

lengths of training periods. Thus, in this study, a compar-

ison between the predicting capabilities of calibrated 

BEMs and LSTM in summer was carried out using two real 

monitored mock-ups in Northern Italy representing both 

pre- and post-retrofit conditions. The results show that, for 

the considered limited training periods (8 and 3 days), the 

dataset size does not significantly influence BEM accuracy, 

while LSTM accuracy is more affected. Moreover, BEMs 

show higher prediction accuracy in scenarios with higher 

indoor air temperature (IAT) variability, i.e. where unseen 

data could be less predictable, such as in pre-retrofit con-

ditions. LSTMs, however, excel in low-variability scenar-

ios, such as the post-retrofit conditions in this case. This 

study highlights the critical need for careful model selec-

tion and calibration based on the data availability and 

building typology to ensure prediction reliability. 

1. Introduction

The need to mitigate overheating risks in buildings 

under climate change scenarios, coupled with the 

rise in the adoption of Model Predictive Control and 

fault detection and diagnosis (FDD) systems, led to 

the need for accurate indoor temperature and ther-

mal comfort prediction models, especially for post-

retrofit conditions. To achieve this aim, white-, grey- 

and black-box models have been widely adopted in 

recent decades (Shahcheraghian et al., 2024). White 

boxes, such as Building Energy Models (BEMs), use 

physically based simulations of building dynamics, 

providing detailed insights and good prediction, es-

pecially if a calibration procedure is undertaken. 

Back-box models, such as Long Short-Term Memory 

neural networks (LSTM), employ a fully data-

driven approach to capture complex thermal dy-

namics, offering simplicity and adaptability but at 

the cost of reduced interpretability (Mtibaa et al., 

2020; Lu et al., 2022; Cui et al., 2023). Given that each 

methodology presents its advantages and draw-

backs, and that various models have shown differ-

ing performance in different scenarios, it is im-

portant to undertake a thorough comparison to 

guide model selection. However, to the authors’ 

knowledge, few studies have aimed to compare the 

accuracy of these modeling approaches under dif-

ferent conditions. In Arendt et al. (2018), white-, 

grey- and black-box models are compared in terms 

of indoor air temperature (IAT) predictability, find-

ing that black-box models outperform grey- and 

white-box models in quite almost the considered 

scenario, with grey-box models needing shorter 

training periods for good accuracy. In Afram and 

Janabi-Sharifi (2015), Cui et al. (2023), and Vivian 
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et al. (2024), grey- and black-box models are com-

pared, finding that, on average, LSTM outperforms 

grey-box models albeit grey-box models remain a 

valid alternative, especially in case of low data 

availability. In Hauge Broholt et al. (2022), the ro-

bustness of black and grey-box models of thermal 

building behavior against weather changes is eval-

uated. The authors found that the predictive perfor-

mance of the grey-box models was slightly better 

compared to the black-box model in this case. How-

ever, not all these studies include white-box models, 

building envelopes, and the indoor environment, as 

well as different scenarios such as pre- and post-ret-

rofit conditions. 

One of the main advantages of white-box models 

when compared to black-box ones is that once cali-

brated they can be modified to reflect optimization 

changes in the represented object. Several Standards 

suggest the adoption of calibrated simulations to es-

timate the energy saving achievable through energy 

retrofit measures (EVO, 2012; ASHRAE, 2014). 

However, a few studies verified the accuracy of a 

BEM calibrated in pre-retrofit conditions in predict-

ing the thermal and energy response of a retrofitted 

one (Chong et al., 2021).  

For these reasons, this study has two main objec-

tives, i.e. 

i) to compare the accuracy of BEMs and LSTM 

models in predicting the indoor thermal re-

sponse of buildings considering both pre- and 

post-retrofit conditions and different training 

periods; 

ii) to assess the ability of BEMs, calibrated in pre-

retrofit conditions, to reproduce the post-retro-

fit indoor thermal response, also considering 

post-retrofit, i.e. second-stage, calibration.  

The findings of this study can help researchers and 

engineers select the best model for IAT prediction 

based on data availability and building typology. 

The paper is organized as follows: Section 2 de-

scribes the methodological approach, the experi-

mental setup, and the adopted modeling methods. 

Section 3 reports the comparison between models 

and a critical discussion of the results. Finally, Sec-

tion 5 summarizes the key findings of the research.  

2. Phases, Materials and Methods 

2.1 Phases 

The work is subdivided into the following three 

phases: 

- first, two identical pre-retrofit mock-ups (Cell 

A and Cell B) representative of Italian buildings 

from the 1960s were built and their thermal re-

sponse was monitored and compared in pre-

retrofit conditions to provide proof that the 

construction process led to the same thermal re-

sponse; 

- then, BEMs and LSTM models were created and 

calibrated, and then compared in pre-retrofit 

conditions in terms of model accuracy also con-

sidering different training periods, to identify 

the best solution and training period in this 

case; 

- finally, a comparison between BEM and LSTM 

models in the post-retrofit scenarios was made 

(Cell A was retrofitted in the second year). In 

particular, the LSTM was recreated using the 

post-retrofit data. Conversely, to assess the ca-

pacity of BEMs calibrated in pre-retrofit condi-

tions to predict the post-retrofit IAT after the 

appropriate upgrades, a post-retrofit BEM was 

created by modifying the pre-retrofit calibrated 

one and then recalibrating it only by tuning the 

properties of the new layer (e.g. external insu-

lation) and modified building characteristics 

(e.g. infiltration rate). 

2.2 Experimental Setup 

Two identical free-running experimental test cells 

(Cell A and Cell B) were constructed in Malosco, It-

aly (1041 m a.s.l.), to allow an experimental compar-

ison between pre- and post-retrofit scenarios con-

sidering the same outdoor conditions (see Fig. 1a 

and b), which is a quite rare comparison in the ex-

isting literature. The cells, designed to be repre-

sentative of the construction type and size of a typi-

cal Italian room in a pre-retrofit condition, were 

monitored for two consecutive years. After the first 

year, Cell A was retrofitted with an innovative, non-

intrusive, and modular timber façade system, ena-

bling an experimental comparison between pre- and 
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post-retrofit scenarios under similar external condi-

tions (Fig. 1c). In particular, a novel, prefabricated, 

multi-layered insulation panel made of a self-sus-

tained wood frame filled with mineral wool and en-

closed with OSB panels was applied to the walls 

providing an additional, nominal wall thermal re-

sistance of 7.81 m2K/W (Callegaro & Albatici, 2023). 

No internal loads were present during the periods 

considered to solely assess environmental influ-

ences on indoor conditions, providing ground truth 

data for model calibration. More information on 

construction features, building characteristics, and 

monitoring systems can be found in (Callegaro & 

Albatici, 2023). 

2.3 White-Box Model 

2.3.1 Building energy modeling 
 The Sketchup v. 2013 was used as a graphical inter-

face of the EnergyPlus v.22.2.0 simulation engine 

(DOE 2017) to create the BEM of the test cells, fol-

lowing modeling methods described in (Maracchini 

& D’Orazio, 2022). In particular, the Conduction 

Transfer Function (CFT) was adopted as a heat bal-

ance algorithm with 6 timesteps per hour consid-

ered for calculation. Internal and external convec-

tive heat transfer coefficients were computed by 

adopting an adaptive convection algorithm, since 

generally more reliable for calculating convective 

heat transfer coefficients if compared to other tech-

niques (Costanzo et al., 2014). The Flow Coefficient 

model was finally implemented to model the infil-

tration rate (Maracchini & D’Orazio, 2022). 

 

 

2.3.2 Sensitivity analyses and calibration 
A software tool specifically developed by the au-

thors was used for the model calibration (Marac-

chini, 2023). This tool integrates the Morris method 

for parameter screening (Saltelli et al., 2008; Tian 

and Wei, 2013) with the Non-dominated Sorting Ge-

netic Algorithm (NSGA-II) for the optimization-

based calibration (Martínez et al., 2020; Vera-Piaz-

zini & Scarpa, 2024). In particular, the Morris 

method is used to identify the parameters with un-

certainty that mostly impact model accuracy and 

then those that can be discarded from the calibration 

process to reduce the computational burden with-

out reducing calibration effectiveness. 

All the most relevant parameters were considered 

for both sensitivity analysis and calibration. The pa-

rameters considered for calibration and the related 

range of variations are reported in Table 1 for both 

pre-retrofit and post-retrofit scenarios. A multiplier 

approach was adopted to avoid compensation er-

rors among layers of the same building component. 

For example, for each component type (walls, roof, 

and floor), all the conductivities were grouped with 

a single multiplier that was varied between a range 

of ±20% (WALL_COND, ROOF_COND, etc.). Simi-

larly, for each component, the density and specific 

heat capacity of all the layers were grouped using a 

volumetric heat capacity (VHC) multiplier, used to 

avoid compensation errors in terms of thermal iner-

tia effects.  

Concerning the target function used in both the sen-

sitivity and calibration processes, different error 

metrics can be used (Martínez et al., 2020). In this 

work, the Root Mean Square Error (RMSE) was used 

Fig. 1 – a) Geometrical description of the experimental units and sensors placement (dimensions in centimeters). b) The two test cells  before 
retrofit; c) Cell A after retrofit 
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as a target function for the sensitivity analysis while, 

for the calibration, a single-objective optimization 

approach was adopted with a target function com-

puted as the product between the RMSE, the R2, and 

a novel indicator introduced in this study, named 

Maximum Absolute Hourly Difference (MAD) com-

puted between simulated and measured data. This 

approach is considered more effective than the use 

of multi-objective optimization since it can provide 

optimized solutions with a lower computational 

time while being sufficiently accurate in terms of 

both absolute errors and inertial effect. 

Concerning the post-retrofit conditions, only the pa-

rameters of the added layer and the modified build-

ing characteristics (e.g. infiltration rates, i.e. flow co-

efficient) are varied for model calibration (see Ta-

ble 1). Due to the low number of parameters consid-

ered, a sensitivity analysis was not necessary in this 

case. 

 
Table 1 – Parameters and related ranges considered in sensitivity 
and BEM calibration processes. Parameters with * are multipliers. 
WIN: windows; VHC: Volumetric Heat Capacity; TA: Thermal Ab-
sorptance; SA: Solar Absorptance; COND: conductivity; SR: Solar 
Reflectance; T: Temperature. Parameters with X in the post-retrofit 
column are considered for calibration of new layers/modified build-
ing characteristics. 

Parameters Range Post-retrofit 
WALLS_COND* [0.8, 1.2] X 
WALLS_VHC* [0.8, 1.2] X 
WALLS_TA [0.8, 0.95] X 
WALLS_SA [0.1, 0.3] X 
ROOF_COND* [0.8, 1.2]  
ROOF_VHC* [0.8, 1.2]  
FLOOR_COND* [0.8, 1.2]  
FLOOR_VHC* [0.8, 1.2]  
ROOF_TA [0.8, 0.95]  
ROOF_SA [0.3, 0.8]  
DOOR_COND* [0.2, 2.0]  
DOOR_VHC* [0.2, 2.0]  
DOOR_TA [0.8, 0.95]  
DOOR_SA [0.3, 0.8]  
WIN_COND* [0.2, 2.0] X 
WIN_TA [0.8, 0.95] X 
WIN_SA [0.3, 0.8] X 
FLOW_COEF [0.0001, 0.007] X 
GROUND_T [°C] [13.0, 17.0]  
GROUND_SR [0.15, 0.25]  

2.4 Black-Box Model 

Concerning black box models, pure Artificial Neu-

ral Networks such as the Long-Short-Term-Memory 

neural networks (LSTM) were adopted using their 

capacity to learn long-term dependencies in dy-

namic systems like buildings (Lu et al., 2022). LSTM 

models consist of chains of neural network mod-

ules, focusing on a cell state mechanism that man-

ages information flow through gates, by adopting 

the following workflow:  

1. First, a forget gate determines what information 

to discard from the cell state. 

2. Then, an input gate decides which new infor-

mation to add to the cell state. This involves a 

gate that selects values to update and a tanh 

layer that generates a vector of new candidate 

values that could be added to the state; 

3. Thirdly, the old cell state is updated with the 

new values identified in the previous step; 

4. Finally, the final output is generated based on 

the updated cell state, which is modified by an 

output gate that applies a tanh function to scale 

the values between -1 and 1. 

In this study, LSTM was developed with the Python 

TensorFlow library (TensorFlow Developers, 2024) 

and calibrated through different steps involving 

generating the network, optimizing hyperparame-

ters, and training it to assimilate system behavior. 

This process includes layering LSTM with a fully 

connected layer and a sigmoid function, normaliz-

ing input data, and adjusting hyperparameters like 

learning rate, hidden layer size, and optimization al-

gorithms (see Table 2) to minimize loss, ensuring 

the model avoids underfitting or overfitting by reg-

ulating training iterations (epochs) (Vivian et al., 

2024). 

Table 2 – Hyper-parameters optimization. 

Hyper-parameters Options 
Learning rate [0.01, 0.001, 0.0001] 
LSTM hidden layer size [16, 32, 64, 128] 
Optimization algorithm Adam, RMSprop 

 

2.5 Model Accuracy Comparison 

The evaluation and comparison of the performance 

of the models was carried out both qualitatively 

(graphical comparison) and quantitatively. In the 

latter case, reference is first made to common error 

indicators computed between predicted and ob-

served data, such as RMSE, R2, and the additional 

MAD indicator introduced in this study. 

The period considered for model calibration and 

comparison goes from the 21st of June to the 1st of 

July 2021 for both Cell A (post-retrofit condition) 

456



Calibrated BEMs and LSTM Neural Networks for Indoor Temperature Prediction:  
A Comparative Analysis in Pre- and Post-Retrofit Scenarios 

 

and Cell B (pre-retrofit condition). The hourly da-

taset was subdivided into training and testing da-

tasets. For the training one, different lengths were 

considered for comparison purposes equal to 3 and 

8 days, respectively. The test datasets instead re-

ferred to the last 3 days of the period considered.      

3. Results and Discussion 

3.1 Experimental Comparison 

In this section, a comparison between the experi-

mental IAT profiles obtained for the two mock-ups 

in pre-retrofit conditions (first summer) is reported. 

As can be seen from Fig. 2, a very good agreement 

is obtained in terms of IAT. In particular, RMSE, R2, 

and MAD values computed between the two da-

tasets are equal to 0.14 °C, 1.00, and 0.20 °C, respec-

tively. The R2 value denotes a perfect alignment of 

the two curves in terms of trend and inertial effect, 

while the two error indicators (RMSE and MAD) de-

note a negligible difference between the two 

mockups, even lower than the instrument accuracy, 

thus denoting a complete overlapping between the 

two IAT profiles. Thus, the two cells showed the 

same thermal response, and the two buildings can 

be correctly used for comparative purposes between 

pre- and post-retrofit conditions. 

 

 

Fig. 2 – Comparison between test cells in pre-retrofit conditions 

3.2 Pre-Retrofit Comparison 

In this section, the results of the pre-retrofit compar-

ison are reported and discussed. Fig. 3 reports the 

results of the sensitivity analyses in terms of the 

mean value of the absolute values of the elementary 

effect µ*, which is used to rank the parameters from 

the most to the least important in calibration pro-

cesses (Tian & Wei, 2013).  

 

 

Fig. 3 – Sensitivity analyses results in terms of µ* computed on 
RMSE values [°C]. Only the most parameters are reported for the 
sake of brevity 

As can be seen, in this case, the solar absorptance of 

the walls (WALLS_SA) is the most important pa-

rameter for IAT prediction, followed by door SA 

and window thermal conductivity. Parameters not 

reported in Fig. 3 have a negligible effect on the IAT, 

and therefore are not considered for model calibra-

tion. 

In Fig. 4a, the comparison between BEM and LSTM 

output is provided in terms of IAT profiles, while 

Table 3 reports the values of the accuracy indicator. 

Both the BEMs calibrated with 3 and 8 training days 

(BEM B3 and BEM B8, respectively) show a good 

agreement with the experimental data in both the 

training and testing phases, with a strong reduction 

of the initial RMSE, R2, and MAD (equal to 2.74 °C, 

0.59 and 3.6 °C, respectively, for the training pe-

riod). The overlapping between the BEM B3 and 

BEM B8 model outputs indicates that, in this case, 

BEM models seem not to be affected by the variation 

in training length, thus the shorter length is consid-

ered sufficient for predicting testing data. 

Conversely, as expected, LSTM models (LSTM B3 

and LSTM B8) seem to be more affected by the train-

ing dataset length (see Fig. 4a), with increasing ac-

curacy when longer periods are considered. In gen-

eral, however, LSTMs outperform BEMs in the 

training phase, while the inverse is observed in the 

testing phases. This denotes the difficulty of LSTMs 

to predict new data points with the considered 

training periods and highlights the need for a larger 

dataset for training. 
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Table 3 – Accuracy indicators in pre- and post-retrofit conditions 
with 3 and 8 training days. RMSE and MD values in °C. tr: training; 
t: testing. Best results are underlined 

Model RMSEtr R2tr  MADtr RMSEt  R2t MADt 

BEM B3 0.28 0.93 0.44 0.21 0.99 0.50 

BEM B8 0.36 0.91 0.69 0.24 0.98 0.38 

LSTM B3 0.27 0.98 0.52 0.56 0.99 1.28 

LSTM B8 0.03 1.00 0.20 0.49 0.91 0.95 

BEMB3up 0.44 0.74 0.82 0.70 0.80 1.26 

BEMB8up 1.24 0.56 2.13 1.24 0.88 1.78 

BEM A3 0.30 0.82 0.43 0.40 0.91 0.90 

BEM A8 0.41 0.74 0.84 0.42 0.94 0.74 

LSTM A3 0.01 1.00 0.03 0.10 0.94 0.30 

LSTM A8 0.02 1.00 0.14 0.09 0.94 0.23 

 

3.3 Post-Retrofit Comparison 

One of the main advantages of BEMs when com-

pared to LSTM is that they can be modified to reflect 

changes in the building over its lifetime and that 

were not considered in the training phase. To un-

derstand the capability of BEMs calibrated on pre-

retrofit conditions to predict the thermal response of 

a retrofitted building, BEM B3 and BEM B8 were up-

dated to reflect the energy retrofit modifications 

that occurred in Cell A.  

In Fig. 4b, the comparison between BEM and LSTM 

output is provided in terms of IAT profiles, while 

Table 3 reports the values of the accuracy indicator. 

As expected, despite the improvement, the obtained 

model (BEM B3up and BEM B8up in Fig. 2b) pro-

vides accuracy indicators lower than that previ-

ously achieved for BEM B3 and BEM B8 (see Ta-

ble 3).  

This can be traced back to:  

i) the different construction features that are 

not considered in the model upgrade (e.g. 

infiltration);  

ii) the uncertainty related to the thermal prop-

erties of the newly added materials;  

iii) overfitting/compensation errors that may 

have occurred during the calibration phase 

of B3 and B8 models.  

To reduce the impact of the two first error catego-

ries, a recalibration of B3up and B8up was carried 

out by fine-tuning building infiltration parameters 

a  

b  
Fig. 4 – Comparison between predicted and observed IAT in both training and testing phases considering (a) pre- and (b) post-retrofit 
conditions 
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and thermal properties of the added wall layers, ob-

taining two “two-staged” calibrated BEMs BEM A3 

and BEM A8. The obtained profiles show an accu-

racy higher than that previously observed (Fig. 4b) 

but still lower than that obtained through a full cal-

ibration with all relevant parameters involved (as in 

BEM B3 and BEM B8 cases, see Table 3). This may 

be caused by the presence of overfitting/compensa-

tion errors in the pre-retrofit calibration phase, 

which is also stressed by the different output pro-

files obtained for B3up and B8up (which were iden-

tical in Fig. 4a). Concerning LSTMs (LSTM A3 and 

LSTM A8), better performance is obtained, even bet-

ter than that achieved in the pre-retrofit phase 

(LSTM B3 and LSTM B8) in both training and testing 

phase. Moreover, a lower dependence of LSTM on 

the training period can be observed. This can be due 

to the lower variability and dependence of observed 

indoor data on outdoor predictors in this case (post-

retrofitted Cell A), which makes this scenario easier 

to predict than a pre-retrofit one, even with shorter 

training datasets. 

4. Conclusions 

This study investigated the accuracy of calibrated 

BEMs and LSTM models in predicting IATs in sum-

mer, in both pre- and post-retrofit scenarios. The re-

sults showed that in pre-retrofit conditions BEMs 

have consistent accuracy regardless of the training 

dataset size. Post-retrofit updates to pre-retrofit cal-

ibrated BEMs decreased their accuracy due to unac-

counted changes and uncertainties. Recalibration of 

new parameters improved the performance, alt-

hough it did not reach pre-retrofit accuracy levels, 

probably due to overfitting/compensation errors in 

the pre-retrofit phase. Therefore, particular atten-

tion should be paid to this aspect or compensation 

errors when using calibrated simulations should be 

reduced. LSTMs increase accuracy with longer da-

tasets in pre-retrofit conditions while performing 

better in post-retrofit, benefiting from reduced data 

variability and external dependencies, indicating 

shorter training datasets could be sufficient in this 

scenario.  

The main limitation of this study lies in the use of: 

a) a single and limited monitoring period, b) a single 

construction system, and c) a specific building ge-

ometry and location for carrying out the compari-

sons. Therefore, future studies should be carried out 

to extend this work and make the results more gen-

eralizable. Further studies will also investigate the 

accuracy of calibrated BEMs in predicting other im-

portant output variables not considered in this 

study, such as relative humidity and heat fluxes. 
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