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Abstract 
This paper utilizes High Dynamic Range Imaging and deep 

learning that utilize pixelwise information from the entire 

luminance distribution in the field of view to classify day-

lighting preferences of office workers. Generated luminance 

and contrast similarity maps were used for training convo-

lutional neural network (CNN) models to classify the occu-

pant’s visual preferences. Preference datasets for 11 individ-

uals, collected in real offices, were used to evaluate the pref-

erence classification performance. The results showed the 

superiority of the luminance similarity map as a visual pref-

erence indicator compared to common static lighting pa-

rameters.  

1. Introduction  

The spatial luminance distribution within the field of 

View (FOV) has a high correlation with the human 

perception of brightness and comfort (Wymelenberg 

et al., 2010) and is therefore valuable for assessing vis-

ual comfort and visual preferences in general. Real-

time FOV luminance monitoring is achieved by ac-

quiring per-pixel luminance using High Dynamic 

Range Imaging (HDRI) sensors (Inanici et al., 2006) 

combined with wide-angle fisheye lens, now a well-

established methodology in lighting research 

(Pierson et al., 2021).  

HDRI measurements have been used to correlate 

scene luminance characteristics to subjective visual 

comfort responses (Konstantzos & Tzempelikos, 

2017; Konis, 2014; Suk et al., 2017), as well as for real-

time daylighting and glare control in buildings 

(Newsham, 2009; Motamed et al., 2017; Kim et al., 

2020). Despite these obvious advantages, the full po-

tential towards human-centered daylighting opera-

tions has not been explored. Building systems that 

learn human preferences and integrate them into 

building operations can achieve occupant satisfaction 

as well as energy savings (Xiong et al., 2019; Villa et 

al., 2013). Detecting visual discomfort scenarios does 

not necessarily translate to learning or providing pre-

ferred conditions for occupants. Instead, learning 

lighting preferences without considering discomfort 

scenarios (Xiong et al., 2018) is preferred for opti-

mized visual environment and control in buildings.  

But learning and modeling human visual preferences 

can be extremely complex (Lindelof & Morel, 2008; 

Xiong et al., 2020). True visual preferences dynami-

cally depend on different environmental, contextual, 

or (unmeasurable) subjective factors, outside view 

and aspects such as perceived control (Bakker et al., 

2014) or multi-domain interactions, and have rarely 

been used in building control and optimization appli-

cations.  

The selection of meaningful variables remains a chal-

lenge even when considering only environmental 

factors. Using simple variables such as horizontal or 

vertical illuminance, average luminance or simple 

contrast ratios from captured luminance maps is 

maybe sufficient for specific glare assessment cases, 

but not for inferring preferred conditions, partly due 

to averaging pixel information and neglecting infor-

mation in different parts of the luminance field. Alt-

hough HDRI sensors present information through 

pixelwise luminance maps, there is no agreement on 

which features can better represent visual prefer-

ences of occupants in typical daylighting settings. 

This paper presents a novel method for inferring per-

sonal daylight preferences using image pixelwise 

similarity analysis applied in a deep learning frame-

work. Instead of studying how occupants’ prefer-

ences are affected by instant physical and contextual 

parameters using numeric scaled responses, we uti-

lize information from the entire luminance distribu-

tion in the FOV and extract pair-wise similarity fea-

tures between HDRI-based luminance maps (differ-

ent conditions). We also compare models using 
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common lighting variables with the CNN-based 

models using the new metrics.  

2. Pixelwise Similarity Index and  
Luminance Similarity Maps  

A pixelwise similarity index is introduced to quantify 

the degree of similarity between two luminance dis-

tributions. The index is used to generate a new varia-

ble named the luminance similarity map, which is an 

important part of inferring preference between two 

visual scenes with daylight. It compares pixels at the 

same location inside two luminance maps, one by one 

directly (pixel-wise comparison), and it considers 

both the direction and magnitude of relative lumi-

nance change. In contrast to grayscale images con-

taining color data from 0 to 255, luminance maps 

have much greater variation in pixel intensity. The 

pixelwise luminance similarity index is: 
 

𝐿𝑆𝑖𝑚(𝑥1, 𝑥2) = [𝑠𝑖𝑔𝑛(𝑥1 − 𝑥2)] ∙ (1 −
|𝑥1−𝑥2|

max(𝑥)−min(𝑥)
)             (1) 

 

where x1 and x2 are pixelwise luminance values in lu-

minance maps 1 and 2 respectively (comparative lu-

minance map data) and max(𝑥) and min(𝑥) compute 

the maximum and minimum luminance values from 

the entire two luminance maps for normalization.  

The two luminance maps represent two different 

scenes (two different visual conditions). To consider 

the directional relative luminance change in each 

pixel between two conditions, the sign of luminance 

difference is also applied to the similarity index equa-

tion. An absolute similarity of 1 means that the lumi-

nance of those pixels in the two luminance maps is 

the same. Lower absolute pixel similarity values indi-

cate a difference in luminance; a zero-similarity index 

between two pixels means that the luminance differ-

ence at the same pixel location is the maximum pos-

sible (= max-min between the two maps). The -1 sim-

ilarity value is excluded from further analysis to 

avoid repetition.  

The luminance similarity map is generated by di-

rectly comparing two luminance maps and calculat-

ing the luminance similarity index pixel-by-pixel. A 

representative example of generating luminance sim-

ilarity index maps is shown in Fig. 1. After RGB color 

data of two HDR images (two different conditions) is 

converted to luminance maps (Inanici, 2006), the 

luminance intensity of each pixel is used to calculate 

𝐿𝑆𝑖𝑚 values according to Eq. (1). Then all the 𝐿𝑆𝑖𝑚 

values are mapped on the camera FOV to produce the 

entire luminance similarity map in a graphical way 

that includes the relative luminance change (magni-

tude and direction).  

 

 

Fig. 1 – Generating a luminance similarity index map (c) from two 
luminance maps (a and b) corresponding to different conditions 

3. A Comparative Luminance Map  
Dataset for Evaluating Daylight  
Preferences  

To evaluate the ability of different models (and vari-

ables) to infer daylighting preferences, comparative 

luminance map datasets were created with simulta-

neous occupant feedback. HDR images were cap-

tured at the eye level of 11 office occupants in identi-

cal, side-by-side private offices with large windows 

(Xiong et al., 2019) and controllable shades, under 

various daylight and interior luminance conditions 

without glare. Calibrated Canon Rebel T2i cameras 

equipped with fisheye lens were used to generate re-

liable luminance maps. The highest DGP observed in 

the data set was 0.35. Additionally, conditions with 

vertical illuminance exceeding 2760 lux were also ex-

cluded. The daylight conditions were changed every 

10 minutes by adjusting the position of window 

shades, and shortly after the 11 occupants were asked 

about their visual preference between current and 

previous conditions. Electric lights were automati-

cally controlled to maintain the required work plane 

illuminance (300 lux).  

The collected HDR images were converted to lumi-

nance maps and directly compared pixel-by-pixel to 

generate luminance similarity index maps. Since the 

HDR images were acquired under comfort condi-

tions, a resolution of 330 x 330 was selected for this 

study considering the computation load required to 

produce the similarity maps. The luminance maps 

were converted to 11 comparative luminance map 

datasets (one for each occupant) by grouping 
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successive luminance maps into pairwise compara-

tive data (corresponding to current vs previous con-

dition) and linking corresponding occupant binary 

visual preference data (preferring current or previous 

visual condition) to each pair.  

Since the occupants responded with their preference 

between successive conditions every 10 minutes, part 

of the collected pairwise comparative data was con-

sidered to be the test data for assessing the classifica-

tion performance of the trained models. As shown in 

Fig. 2, 40 % of pairwise HDR images with preference 

responses were used as a test dataset and used only 

once for evaluating the trained visual preference clas-

sification models. For the training data, the remain-

ing 60 % of original HDR pairwise images were used 

and augmented by the automatically captured HDR 

images with 2 min-intervals, since the users have 

maintained their visual preference response during 

this time -except if they override the system in the 

meantime. Then, to avoid overfitting, the training da-

taset was randomly divided into 5 to 1 ratio to gener-

ate the validation dataset. The training dataset con-

sists of around 500 luminance map pairs and the test 

dataset is about 40 pairs. 

 

Fig. 2 – Schematic procedure for generating comparative preference 
test and training data 

4. Performance Evaluation of  
Daylighting Preference Learning 
Models Using Common Variables  

In this section we evaluate the ability of different 

methods and variables to infer preferred visual 

scenes with daylight. Using the comparative lumi-

nance map dataset, simple and advanced methods 

using commonly used lighting variables are com-

pared with a deep learning model that uses the lumi-

nance similarity index maps.  

4.1 Common Lighting Variables Used to 
Predict Daylight Preferences 

To evaluate the efficiency of luminance similarity in-

dex-based metrics, a comparison is first made with 

common lighting parameters. The 7 “reference” pa-

rameters listed in Table 1 are selected since they have 

been extensively used to predict lighting preferences 

and comfort in daylighting settings. DGP, average lu-

minance of entire scene, and average luminance of 

40° horizontal band are computed directly by 

Evalglare, while the rest of the parameters can be 

computed by masking the window part. 

Table 1 – Selected reference variables 

Lighting metrics used as model variables 

1. Percentage of pixels exceeding 2000 cd/m2 (𝑝2000) 

2. Average luminance of entire scene (𝑎𝑣𝑙𝑢𝑚) 

3. Daylight glare probability (DGP) 

4. Standard deviation of window luminance (𝑠𝑡𝑑𝑤𝑖𝑛) 

5. Average luminance of 40 ° horizontal band 

(𝑎𝑣𝑙𝑢𝑚𝐵40) 

6. Maximum luminance in window divided by 200 

cd/m2 (𝑤𝑚𝑎𝑥200) 

7. Average luminance in window divided by 200 

cd/m2 (𝑤𝑎𝑣200) 

4.2 Logistic Regression Model Trained 
with Reference Variables 

To estimate the need for using more complex varia-

bles or advanced models to infer personal daylight 

preference, a logistic regression model is first trained 

using Eq. (2) with each of the reference parameters: 

𝑝 =
1

1+𝑒−(β0+β1x1+β2x2)
    (2) 

where 𝛽𝑖  are model parameters and 𝑥𝑖 is the selected 

reference variable from Table 1. Each logistic regres-

sion model was trained using each reference param-

eter computed from each pair of HDR images in the 

dataset. The classification accuracy for each person 

was tested by computing the ratio of correctly classi-

fied test data over the entire test data.  

The classification results with each variable are 

shown in Fig. 3 for each of the 11 subjects (noted in 

the x-axis). In some cases, for example for subjects 1 

and 4, the logistic regression model could classify vis-

ual preferences quite well for most variables. In other 
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cases, the selection of variables significantly affected 

the prediction accuracy. Most importantly, the classi-

fication performance varies significantly between 

subjects. Although this is somewhat expected be-

cause of the natural preference inconsistency be-

tween individuals, sometimes this model fails to pre-

dict any preference at all (although the subject re-

ported specific preference trends). Considering that 

the classification problem in this study is a binary 

classification problem, the trained model with about 

60 % accuracy means that it is not possible to train the 

model with the selected reference parameter. 

 

Fig. 3 – Preference classification results for each subject: logistic re-
gression model trained with selected reference parameters  

The limited and variable classification performance 

can be attributed to the simplicity of the logistic re-

gression model or the insufficiency of the selected 

variables. To eliminate the first possibility, the perfor-

mance of more advanced (deep learning-based) mod-

els is evaluated with the same reference variables. 

4.3 ANN Model Trained with  
Reference Variables   

An Artificial Neural Network (ANN) model that uses 

the reference variables to estimate personal visual 

preference was evaluated next. As shown in Fig. 4, 

two constant values, representing one reference pa-

rameter, were computed from current and previous 

luminance maps and used as input to the model. This 

ANN model contains three hidden layers, and each 

hidden layer consists of 100 neurons. After all the 

neurons in the hidden layers extract relationships be-

tween two input values, two output values were 

computed. The model classifies the person’s visual 

preference by selecting the greatest between these 

two values. In addition, a second ANN model (Fig. 4) 

was trained using all 7 reference parameters to check 

if the classification accuracy could be increased. The 

only difference is the number of input values (2 x 7 = 

14 values were input to the hidden layers in this case). 

The training was monitored using the cross entropy 

loss function: 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝𝑖)]
𝑁
𝑖=1  (3) 

   

where yi is the binary preference label (e.g., current vs 

previous condition), pi is the probability that the per-

son prefers the current condition, and N is the data 

size. A stochastic gradient decent algorithm with 0.9 

momentum was used as optimizer with batch size = 

16. In addition, 10-3 was used both for learning rate 

and for L2 regularization strength. Then, 100 epochs 

were predefined for training the ANN models, mon-

itoring validation loss to avoid overfitting. Following 

one of the recommended early stopping criteria 

(Prechelt, 2012), the training procedure was termi-

nated when the validation loss at a specific epoch (t) 

was greater than the loss at previous epoch (t-5) 

twice. 

The ANN model classification results (Fig. 4) showed 

better overall classification performance compared to 

logistic regression while the performance variation 

among variables was reduced. In addition, the ANN 

model trained with all the reference variables 

(marked with red markers) performed similar or bet-

ter than models trained with single variables for 

every subject. However, the classification accuracy is 

still low for several subjects even with this complex 

model. This indicates that the static lighting variables 

cannot really estimate daylight preferences; they can-

not include important visual information located in 

different areas of the visual scene and they cannot ex-

press the change in perceived luminance distribution 

(similar values of input parameters have different 

preference labels and vice versa). As discussed next, 

the pixelwise luminance similarity-based metrics 

present a clearer characterization of personal day-

light preferences. 
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Fig. 4 – Preference classification results for each subject: ANN model 
trained with selected reference parameters and with all parameters 
together 

5. Using The New Luminance Similar-
ity Index Maps to Infer Daylighting  
Preferences 

5.1 CNN Model Architecture Trained with 
Luminance Similarity Index Maps 

In contrast to the reference variables, similarity index 

maps extracted from luminance similarity maps are 

in 2D array data format. A Convolutional Neural 

Network (CNN) model structure is therefore devel-

oped to preserve pixelwise information and patterns 

as much as possible. Luminance similarity index 

maps are both used solely and together to study their 

ability to classify personal visual preference. As 

shown in Fig. 5, the CNN model consists of 4 convo-

lutional layers and 2 fully connected layers. Unlike 

typical CNN model architectures, which consist of 

convolutional and maxpool layers, only convolu-

tional layers were used. This is because computing 

maximum values in the maxpool layers might result 

in erasing important similarity index patterns, which 

can be the combination of positive and negative sim-

ilarity index values. Instead, convolutional layers 

with stride 2 were selected, which not only preserve 

necessary information but also reduce CNN model 

parameters considering computational efficiency.  

Stride 1 is only used in the first convolutional layer to 

capture pixelwise information in detail as much as 

possible. All the layers used 32 kernels with size of 3 

x 3 to extract helpful features for preference classifi-

cation. After the input luminance similarity index 

maps move through the 4 convolutional layers, the 

initial 330 x 330 size is reduced to 42 x 42 and input to 

the fully connected layers to link all the parameters 

with each other. By selecting the greatest between the 

two output values, the CNN model will classify the 

occupant’s preference. 

Similar to ANN model training, loss function was 

evaluated using cross entropy, a stochastic gradient 

decent algorithm with 0.9 momentum was used as 

optimizer with batch size = 16, and 10-3 was used both 

for learning rate and for L2 regularization strength. 

50 epochs were set for training in this case and the 

same early stopping criteria were applied to prevent 

overfitting. 

 

Fig. 5 – CNN model architecture, trained with luminance similarity 
index maps 

5.2 Classification Performance of CNN 
Model with Luminance Similarity  
Index Maps 

The CNN models using luminance similarity index 

maps show excellent classification performance com-

pared to other models (Fig. 6). More importantly, the 

CNN models performed much better than the ANN 

especially for Subjects 5-11, where the previous mod-

els performed poorly. This proves that the luminance 

similarity map, which contains a great amount of 

pixel-wise information from each pair of daylighting 

conditions, is a superior preference indicator when 

used in powerful deep learning models, in contrast to 

constant variables used in previous studies.  

 

Fig. 6 – Preference classification results for each subject: CNN 
model trained with luminance similarity index maps. The results of 
ANN model trained with all reference variables are shown for com-
parison 
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The training results of Fig. 7 show that the CNN 

model with the similarity index maps presents stable 

training, fast convergence and excellent test accuracy. 

That is the case for all 11 occupants in the dataset. 

Therefore, the similarity index is a superior metric 

when inferring personal visual preference in daylight 

scenes; in fact, the luminance similarity map concept 

is valuable even when compared with other powerful 

CNN models considering raw luminance maps. 

 

 
Fig. 7 – Representative CNN training results for subject #6 

5.3 Impact of Similarity Index Sign  
on Preference Classification  
Performance 

The sign function in the new similarity index indi-

cates the relative change in luminance (e.g., from 

higher to lower and vice versa) for every pixel in the 

map. To examine if this information is useful (and 

necessary), we compared the CNN model classifica-

tion performance using similarity indices without the 

sign. The results of Table 2 show that the model per-

formance was drastically reduced -in some cases 

worse than the models trained with reference param-

eters. Therefore, preserving the direction of change in 

luminance distribution is necessary when inferring 

personal daylight preference, and the luminance sim-

ilarity index is the appropriate metric to capture that 

information. Excluding this information would even-

tually confuse the classification model during all 

stages of training.  

Table 2 – Preference classification accuracy for each subject without 
the sign function (indicating relative change in luminance) and rela-
tive reduction compared to CNN models using luminance similarity 
index maps.  

 

6. Discussion 

Satisfaction with visual conditions dynamically de-

pends on different environmental, contextual and 

subjective factors. Especially for daylighting condi-

tions, the dynamic nature of daylight, related to out-

side views, requires a continuously updated evalua-

tion of comparative preferences. The developed lumi-

nance similarity index that captures dynamic 

changes in luminance patterns, utilized in a powerful 

CNN model, showed an impressive preference clas-

sification performance under fixed contextual set-

tings. Outside view preferences are outside the scope 

of this study; however, there is strong evidence that 

outside view quality, perception and preference af-

fect satisfaction with the overall visual environment 

(Giraldo Vasquez et al., 2022; Chinazzo et al., 2019). 

This study did not consider interaction effects in the 

preference learning framework. The predictive 

framework can be used to study if personal daylight-

ing preferences can change with different views and 

other environmental (Te Kulve et al., 2018; Belia et al., 

2021; Pittana et al., 2023) or contextual factors.   

Our study is focused on personal daylighting prefer-

ences using CNN-based preference classification, 

which is more challenging than predicting comfort 

limits under constant luminance distributions. How-

ever, our results cannot be generalized like visual 

comfort metrics. In addition, our training data set 

was rather limited. It was used to develop the proof 

of concept and test the ability of luminance similarity 

maps as personal preference input variables. More 

daylight scenes with larger variation of luminance 

patterns are needed for a more complete demonstra-

tion of the luminance similarity index concept in real 

settings. 

Finally, in our experimental setting we had the cam-

era next to the person, in order to capture the human 

FOV and extract lighting metrics (used as reference 

parameters). The results of this study showed that 

there is no need to extract these static parameters 

since they cannot really predict daylighting prefer-

ences. The sensor does not necessarily need to match 

the occupant FOV for the purpose of this work, alt-

hough estimating or re-projecting the camera-cap-

tured luminance distribution to the occupant FOV is 

possible (Kim & Tzempelikos, 2021, 2022).  

Classification 

accuracy 
Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9 Sub10 Sub11 

Without sign 0.59 0.61 0.63 0.51 0.68 0.54 0.53 0.56 0.60 0.56 0.59 

Relative reduction 60.7% 64.6% 65.2% 53.8% 75.9% 59.5% 57.9% 62.3% 66.5% 66.3% 69.5% 
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7. Conclusion 

This study presents a new approach for inferring per-

sonal daylight preferences using a new composite lu-

minance similarity index and deep learning tech-

niques. Information from the entire luminance distri-

bution in the FOV was used to extract pair-wise sim-

ilarity features between HDRI-based luminance 

maps (different conditions). The luminance similarity 

index considers both the direction and magnitude of 

relative luminance change instead of instantaneous 

metrics. 

Comparative visual preference datasets for 11 indi-

viduals were generated using collected pairwise 

HDR images. The generated luminance similarity 

maps were directly used for training convolutional 

neural network (CNN) models to classify the occu-

pant’s visual preferences. The results showed the su-

periority of the luminance similarity index map as a 

preference indicator variable. CNN models trained 

with luminance similarity index maps showed im-

pressive classification accuracy for all tested subjects 

in the dataset. Static lighting variables cannot really 

estimate daylight preferences. Preserving the direc-

tion of change in luminance distribution pixel-wisely, 

is necessary when inferring personal daylight prefer-

ence.  
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