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Abstract 
Accurate prediction of Global Horizontal Irradiance (GHI) 

is crucial for optimizing solar power generation systems, 

especially in mountainous regions characterized by com-

plex topography and specific microclimates. These areas 

face significant challenges due to limited availability of re-

liable data and accuracy issues stemming from the dy-

namic nature of the atmosphere and local weather condi-

tions. This scarcity of precise GHI measurements impedes 

the development of accurate solar energy prediction mod-

els, affecting both economic and environmental aspects. 

In this framework, this paper proposes a novel methodol-

ogy to address data scarcity challenges in solar energy pre-

diction, particularly focusing on Alpine regions. We em-

ploy machine learning techniques such as Random Forest 

(RF) and Extreme Gradient Boosting (XGBoost) regressors, 

in conjunction with synthetic data generation, to predict 

GHI. To assess our approach's accuracy, we selected Bol-

zano as a case study and modelled the PV AC power out-

puts before and after optimizing GHI data. 

1. Introduction 

Solar energy stands as a pivotal pillar of sustainable 

development, as underscored by the International 

Energy Agency (IEA, 2020). Consequently, accurate 

solar irradiance prediction plays a central role in 

harnessing this renewable resource efficiently, in 

particular when it comes to the Global Horizontal 

Irradiance (GHI). However, obtaining accurate GHI 

measurements presents formidable challenges, 

rooted in the dynamic nature of the atmosphere and 

the variability of weather conditions (Qazi et al., 

2019). Furthermore, assembling a comprehensive 

and precise dataset of GHI measurements is often a 

resource-intensive endeavour, demanding expen-

sive equipment and periodic maintenance (Kalogi-

rou, 2009). Indeed, inaccuracies in GHI measure-

ments can reverberate through the entire solar en-

ergy prediction process, carrying ramifications that 

ripple through economic and environmental aspects 

(Kosmopoulos et al., 2015). 

Machine learning (ML) techniques have gained trac-

tion in the field of solar energy prediction, holding 

significant promise for technological advancements 

(Javed et al., 2019). However, a major concern arises: 

the effectiveness of these ML algorithms relies heav-

ily on the quantity and quality of the training da-

taset (Javed et al., 2019). Frequently, the scarcity of 

accessible data becomes a bottleneck, hindering the 

creation of accurate solar energy prediction models. 

Therefore, there is a pressing demand for cost-effec-

tive approaches capable of efficiently obtaining and 

utilizing GHI data to enhance the accuracy of solar 

energy prediction models. 

In response to this pressing challenge, our study in-

troduces a new approach designed to enhance the 

accuracy of GHI predictions, even when confronted 

with limited datasets. Our method capitalizes on the 

power of machine learning, specifically the Random 

Forest (RF) regressor (Breiman, 2001), to identify the 

optimal distribution of training data based on cloud 

opacity values — a pivotal factor in GHI measure-

ments. Subsequently, we harness the same RF re-

gressor to construct a new RF model, which gener-

ates synthetic data points. These synthetic data 

points undergo augmentation via techniques such 

as flipping, rotating, scaling, and the introduction of 

random noise (Maharana et al., 2022). This augmen-

tation strategy enriches dataset variability, enhanc-

601601

Hannes Schenk
Typewriter
Part of
Pernigotto, G., Ballarini, I., Patuzzi, F., Prada, A., Corrado, V., & Gasparella, A.
(Eds.). 2025. Building simulation applications BSA 2024. bu,press.
https://doi.org/10.13124/9788860462022

Hannes Schenk
Placed Image

https://creativecommons.org/licenses/by-sa/4.0/


Aleksandr Gevorgian, Giovanni Pernigotto, Andrea Gasparella 
 

ing model robustness. In the last step of the pro-

posed approach, we trained and tested the Extreme 

Gradient Boosting (XGBoost) regressor (Chen & 

Guestrin, 2016) on the combined structured dataset, 

which integrates the original and synthetic data via 

data augmentation techniques. 

2. Methodology 

2.1 Data Collection 

In our study, we started by collecting hourly values 

of various meteorological and atmospheric quanti-

ties and Global Horizontal Irradiance (GHI) during 

the years 2019 and 2021. We selected four distinct 

Alpine locations (Fig. 1), with intricate topography 

and unique microclimates (Ohler et al., 2020): Bol-

zano (46.50° N, 11.35° E), Aosta Valley (45.75° N, 

7.34° E), Locarno (46.16° N, 8.88° E), and Esine 

(45.92° N, 10.25° E). 

Our data collection process relied on two primary 

sources: local weather stations for GHI data and sat-

ellite imagery for other predictor variables. Specifi-

cally, for Bolzano, we obtained GHI data from the 

weather station situated at the Free University of 

Bozen-Bolzano campus. For the remaining loca-

tions, we collected GHI data from weather stations 

located in close proximity to each respective site. 

Additionally, we acquired the Actual Meteorologi-

cal Year (AMY) dataset from Solcast.com (Solcast, 

n.d.). This dataset encompasses seven crucial mete-

orological and atmospheric parameters, including 

air temperature, cloud opacity, precipitable water, 

relative humidity, surface pressure, wind direction, 

and wind speed. We also incorporated solar geom-

etry variables, as well as time-related information 

such as azimuth and zenith angles, year, month, 

day, and hour, to serve as predictors in our analysis.  

2.2 Data Preprocessing 

Before analyzing the dataset, data preprocessing 

was conducted according to (Nugroho et al., 2021). 

This preprocessing phase included essential data 

cleansing steps, with a primary focus on the re-

moval of missing values and a thorough identifica-

tion and treatment of outliers. 

 

Fig. 1 – Map of selected alpine locations  
(source: https://en-gb.topographic-map.com/) 

2.3 Data Splitting and Optimization 

To ensure robust model training and evaluation, we 

partitioned the dataset into training (1 %) and test-

ing (99 %) subsets, simulating a scenario with lim-

ited data available for training, using data from the 

years 2019 and 2021 for the training and testing sub-

sets, respectively. Subsequently, we embarked on 

the task of optimizing the training dataset. This 

optimization process was fueled by the pursuit of 

the most effective distribution of training data, with 

the primary goal of maximizing the model's perfor-

mance in terms of metrics such as the coefficient of 

determination (R2) score, Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean 

Bias Error (MBE). In essence, we sought to find the 

ideal arrangement of training data that would yield 

the best predictive accuracy. To accomplish this, we 

leveraged the Random Forest (RF) regression 

model, which allowed us to discern the distribution 

that corresponded to specific cloud opacity values, 

a fundamental factor influencing GHI measure-

ments. 

2.4 Synthetic Data Generation and 
Augmentation 

The process of generating synthetic data revolved 

around a Python-based algorithm designed to har-

ness the capabilities of the Random Forest (RF) 

regressor. The objective was to create synthetic var-

iables of predictors known as input features and 

generate new predicted GHI data points that closely 

mimicked real-world conditions while significantly 

expanding the size of our training dataset. 

We created a grid of input feature values that cov-

ered the full range of possible values for each fea-

ture, utilizing the same feature ranges and resolu-
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tions as the original, limited training dataset. This 

enabled us to construct a more diverse and expan-

sive dataset than the original one. Subsequently, we 

passed the input features through the trained Ran-

dom Forest (RF) model to predict the corresponding 

GHI values. This approach enabled us to create sup-

plementary data points, thus improving the preci-

sion of our ML algorithm for GHI prediction. This 

strategy significantly enriched our training dataset, 

effectively expanding its size by a factor of up to 200 

times its original magnitude. 

To further improve the diversity of the dataset, we 

implemented a range of established data augmenta-

tion techniques (Maharana et al., 2022):  

- Flipping: mirroring existing data points to in-

troduce variations that capture inverted scenar-

ios, such as changes in solar angles. 

- Rotating: applying rotations to data points to 

simulate different solar angles and azimuths, 

thereby expanding the dataset's coverage of po-

tential conditions. 

- Scaling: introducing scaling factors to data 

points to represent varying magnitudes of me-

teorological and atmospheric parameters, effec-

tively diversifying the dataset. 

- Introducing Random Noise: injecting con-

trolled random noise into the synthetic data to 

mimic the inherent variability in real-world 

atmospheric conditions. 

2.5 Model Testing and Evaluation 

In the next stages of our methodology, we employed 

the Extreme Gradient Boosting (XGBoost) regressor 

(Chen & Guestrin, 2016) as our primary machine 

learning model. This model was trained using a 

structured dataset from 2019, which we created by 

combining the original dataset with the synthetic 

and augmented data. To evaluate the model's per-

formance thoroughly, we used a testing dataset 

from 2021, ensuring the robustness of our approach 

by testing the model with data from a different year. 

2.6 PV System Modelling 

To understand the impact of our methodology in 

increasing the accuracy of predicted GHI, we uti-

lized the PVLib library (PVLIB, 2020) to model the 

AC power output of a photovoltaic (PV) system, 

focusing on Bolzano as a case study. PVLib is an 

open-source library that provides a set of tools for 

simulating the performance of PV energy systems. 

We modeled the AC power output using three dif-

ferent sets of GHI data: measured GHI, GHI pre-

dicted from augmented data, and GHI predicted 

from scarce data. The GHI data served as the pri-

mary input, the impact of which we analyzed before 

decomposing it into Direct Normal Irradiance (DNI) 

and Diffuse Horizontal Irradiance (DHI) compo-

nents for our PV system simulation. The analysis of 

the impact of decomposition on the PV system per-

formance was not implemented as it is outside the 

scope of this research. This approach assumes the 

common scenario where only GHI data is known. 

For the estimation of the diffuse horizontal irradi-

ance (DHI) from the predicted GHI, the model by 

Erbs (1982) was adopted. Furthermore, the Perez 

model, described in (Perez et al., 1987; Ineichen & 

Perez, 2002), was implemented to estimate beam 

and diffuse components on tilted surfaces. 

PV System Configuration 

The PV system was configured using the following 

parameters from the PVLib library (PVLIB, 2020): 

- Temperature Parameters: the open-rack glass-

glass temperature model parameters. 

- Module: the Trina Solar TSM-300DEG5C-07 II 

module, with efficiency of 18.19 %. 

- Inverter Specifications: the ABB MICRO-0.25-I-

OUTD-US-208 inverter. 

 

To evaluate the accuracy of the modeled AC power 

output, we employed four statistical metrics: Mean 

Absolute Deviation (MAD), Root Mean Squared De-

viation (RMSD), Coefficient of Variation (CV), and 

Autocorrelation Function (ACF). These metrics 

were chosen to assess how well each model cap-

tured the smooth transitions in AC power output 

typically observed in real-world PV systems. 

Mean Absolute Deviation (MAD):  

MAD =
1

𝑛
∑|𝑦𝑖 − �̅�|

𝑛

𝑖=1

 (1) 
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Root Mean Squared Deviation (RMSD): 

RMSD = √
1

𝑛
∑(𝑦𝑖 − 𝑦)2
𝑛

𝑖=1

] 

 

(2) 

Coefficient of Variation (CV): 

 CV  =  
𝜎

�̅�
 (3) 

Autocorrelation Function (ACF): 

ACF(𝑘) =
∑ (𝑦𝑖 − �̅�)(𝑦𝑖+𝑘 − �̅�)𝑛−𝑘
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (4) 

Where 𝑦𝑖 is the hourly AC power output, �̅� is the 

mean AC power output, 𝜎 is the standard deviation 

and k is the lag. 

The primary purpose of using these statistical met-

rics is to identify which model best captures the 

gradual changes in AC power output over consecu-

tive hours, thereby minimizing outliers. A model 

with lower MAD, RMSD, and CV values, combined 

with a higher ACF, suggests fewer unrealistic fluc-

tuations and smoother transitions in the predicted 

AC power output. 

To gain deeper insight into the accuracy of modeled 

AC power output under varying GHI conditions, 

we conducted an analysis of how cloud opacity in-

fluences PV AC output. 

3. Results and Discussion 

3.1 Data Splitting and Optimization 

Fig. 2 reports the minimum number of hours with 

favorable sky conditions necessary to train our ma-

chine learning model, enhancing its accuracy in pre-

dicting GHI (Sarmas et al., 2022). As can be seen in 

the figure, various locations across the Alps exhibit 

notable similarities in terms of hours with corre-

sponding cloud opacity values. This insight pro-

vides valuable guidance on pinpointing specific 

days of the year that require attention for instru-

ment inspection, maintenance, and the collection of 

training data for ML models to make precise predic-

tions. Furthermore, this knowledge aids in the more 

accurate calibration of instruments, obviating the 

need for year-round inspections (Lester & Myers, 

2006; Santiago, 2023). 

In addition, our approach offers several advantages 

in terms of data collection. It streamlines data gath-

ering by concentrating resources on days with spe-

cific sky conditions crucial for precise predictions 

(Zellweger et al., 2023). This approach hints at po-

tential optimizations in the allocation of time and re-

sources, which could result in a more cost-effective 

process. This is especially relevant in remote or 

hard-to-access locations where data collection can 

be resource-intensive (Ohler et al., 2020). Moreover, 

improved data quality arises from the reduced in-

fluence of confounding variables like cloud cover or 

extreme weather conditions, which can introduce 

inaccuracies into the dataset (Krishnan et al., 2023). 

Data collected under favorable sky conditions is as-

sumed to yield more consistent and reliable meas-

urements. 

 

Fig. 2 – Cloud opacity range and corresponding hours of measured 
GHI 

3.2 Models Accuracy and Reliability 

Our model has achieved a R2 score ranging from 

0.91 to 0.97 when evaluated against the 2021 testing 

dataset. This outstanding performance signifies a 

robust correlation between the predicted and actual 

GHI values. Importantly, this high level of accuracy 

has been consistently observed across multiple Al-

pine locations, as evidenced in Table 1. 

Furthermore, the low RMSE, MAE, and MBE values 

provide strong evidence of the quality of prediction 

accuracy. Particularly noteworthy is the substantial 

decrease in RMSE and MAE values when synthetic 

data augmentation techniques were applied, indi-

cating that our model's predictions closely align 

with actual GHI values. 
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To provide a more tangible demonstration of our 

approach's impact, we included Scatter Plots in 

Fig. 3, that illustrate the model's performance before 

and after the application of synthetic data genera-

tion and augmentation techniques. The inclusion of 

synthetic data generation and augmentation tech-

niques has not only improved the model's accuracy 

but also strengthened its overall reliability. By sig-

nificantly enlarging our initially limited training da-

taset, our model now exhibits enhanced abilities to 

make precise predictions that can generalize effec-

tively. The synthetic data generation process, cover-

ing a wide range of meteorological and atmospheric 

conditions, has equipped the model to adapt to var-

ious scenarios and comprehended the intricate pat-

terns of GHI in mountainous regions. 

Table 1– Performance metrics for GHI prediction with and without 
synthetic data generation and augmentation techniques  

Aosta Valley 

Method R2 RMSE 

[W m-2] 

MAE 

[W m-2] 

MBE 

[W m-2] 

Data Scarcity 0.84 99.75 71.36 39.03 

Augmented 

data 
0.97 42.64 20.33 3.13 

Bolzano 

Data Scarcity 0.79 114.93 78.61 38.58 

Augmented 

data 
0.91 74.61 41.82 3.06 

Esine 

Data Scarcity 0.80 110.58 73.93 38.80 

Augmented 

data 
0.93 66.40 38.62 3.12 

Locarno 

Data Scarcity 0.80 111.75 77.77 38.73 

Augmented 

data 
0.92 69.97 38.42 3.06 

3.3 AC Power Output Result Analysis 

The study aims also to evaluate the smoothness of 

transitions in AC power output from one hour to the 

next, which serves as an indicator of the model’s ac-

curacy in capturing gradual changes in solar irradi-

ance. This evaluation spans four seasons and con-

siders three scenarios: using measured GHI, pre-

dicted GHI from augmented data, and predicted 

GHI from limited data, as depicted in Fig. 4. 

Fig. 3 – Performance comparison scatterplots 

Across all seasons, the AC power output modeled 

with measured GHI consistently exhibits the 

smoothest transitions with minimal fluctuations. In 

contrast, using predicted GHI from augmented data 

shows moderate fluctuations, while using predicted 

GHI from scarce data exhibits more pronounced ir-

regularities, suggesting lower accuracy. 

Table 2 provides a quantitative assessment of each 

model's performance using statistical metrics 

(MAD, RMSD, CV, and ACF). We can observe that: 

- AC power output modelled with measured GHI con-

sistently shows the lowest MAD and RMSD

values. It also has the lowest CV values, reflect-

ing stable power output predictions, and the

highest ACF values, suggesting smoother tran-

sitions.
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- AC power output modelled with augmented GHI

shows slightly higher MAD and RMSD values

than measured GHI, suggesting moderate accu-

racy. CV values are slightly higher but remain

relatively stable. ACF values are lower than

measured GHI but still indicate relatively

smooth transitions.

- AC power output modelled with scarce GHI exhib-

its the highest MAD and RMSD values, indicat-

ing higher deviations and less accuracy. CV val-

ues are the highest, particularly in winter, indi-

cating the most variability. Low ACF values

suggest more abrupt changes.

Fig. 4 – Modeled AC Power Output by seasons and GHI models 

Table 2– Performance metrics for modeled AC power output with 
GHI data inputs 

GHI data Season MAD 

[W] 

RMSD 

[W] 

CV 

[·]

ACF 

[·]

Measured Summer 16.53 30.17 0.30 0.94 

Augmented Summer 18.83 34.35 0.33 0.93 

Scarced Summer 22.07 37 0.36 0.92 

Measured Fall 15.12 28.06 0.46 0.92 

Augmented Fall 16.76 30.46 0.51 0.9 

Scarced Fall 21.36 37.29 0.58 0.86 

Measured Winter 10.12 20.74 0.71 0.89 

Augmented Winter 12.46 25.93 0.79 0.86 

Scarced Winter 14.97 30.93 0.97 0.77 

Measured Spring 18.67 38.71 0.40 0.92 

Augmented Spring 20.16 42.02 0.46 0.91 

Scarced Spring 23.48 47.06 0.49 0.90 

Fig. 5 illustrates the relationship between cloud 

opacity and PV AC output, highlighting the impact 

of cloud optical properties on power generation. 

The correlation plot shows a clear inverse relation-

ship between cloud opacity and AC power output. 

Higher cloud opacity results in lower power output, 

reflecting reduced solar irradiance. 

The model with measured GHI exhibits a more lin-

ear and consistent correlation, indicating its effec-

tiveness in capturing the impact of cloud opacity on 

power output. This consistency further supports its 

superior performance in modeling smooth transi-

tions. The models with GHI predicted from aug-

mented and scarce data show greater variability in 

correlation, especially pronounced in the model 

with GHI predicted from scarce data. This suggests 

a less accurate representation of cloud effects on 

power generation. This scatter indicates potential 

inaccuracies and greater fluctuations in predicted 

power output. 

Analysis of Figs. 4 and 5, along with the statistical 

metrics in Table 2, highlights that, when using 

measured GHI, the model consistently produces 

smoother transitions in AC power output between 

consecutive hours. This is reflected in its lower 

MAD, RMSD, and CV values, and higher ACF val-

ues, indicating more accurate and stable power out-

put predictions. The model with augmented GHI 

shows moderate fluctuations and variability, indi-

cating acceptable accuracy, though it is slightly less 
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accurate than the model with measured one. In con-

trast, the model with scarce GHI exhibits the highest 

fluctuations and variability, particularly in less pre-

dictable seasons like winter, suggesting significant 

inaccuracies that may lead to over-/underestimation 

of power output. 

Accurate representation of cloud opacity is there-

fore crucial for reliable PV power output modeling. 

Inadequate representation of solar irradiance varia-

bility can lead to unrealistic jumps in power output, 

which are unlikely in real-world scenarios. The aug-

mented model offers a reasonable alternative, while 

the scarce model's high variability and error rates 

make it less realistic. 

Fig. 5 – Correlation between Cloud Opacity and PV AC output 

4. Conclusion

This study addresses the critical challenge of data 

scarcity in solar energy prediction, particularly in 

Alpine regions characterized by complex topogra-

phy and microclimates. Accurate predictions of 

Global Horizontal Irradiance (GHI) are paramount 

for optimizing solar power generation. However, 

limited data availability in such regions poses a sig-

nificant hurdle to achieving precise predictions. To 

overcome this challenge, our approach combines 

machine learning techniques, training data distribu-

tion, synthetic data generation, and augmentation. 

Integration of synthetic data generation and aug-

mentation techniques to expand the training dataset 

enhanced the model's ability to generalize and make 

accurate predictions. Machine learning models 

achieved high accuracies, with an R² score ranging 

from 0.91 to 0.97 and substantial reductions in 

RMSE, MAE, and MBE values across various Alpine 

locations. Findings also suggest that optimizing the 

distribution of training data based on cloud opacity 

values can identify specific days with favourable 

sky conditions for accurate GHI measurements. 

The results of PV AC power output modelling sug-

gest that when using GHI data, decomposed into 

DNI and DHI, predicted with the use of synthetic 

and augmentation techniques, the model shows 

moderate fluctuations and acceptable accuracy. In 

contrast, the use of GHI predicted from scarce data 

exhibited the highest fluctuations and variability, 

indicating significant inaccuracies. This highlights 

the importance of using our approach to increase 

the accuracy of PV system modelling in alpine and 

mountainous regions. 

However, potential applications of this approach 

extend beyond traditional design and performance 

assessment of solar systems. The methodology 

could improve data collection efficiency, reduce 

costs, enhance data quality, and aid in instrument 

calibration. It may also optimize maintenance 

schedules, reduce downtime, lower maintenance 

costs, and extend equipment lifespan. 

Future research will be dedicated to refining syn-

thetic data generation processes, optimizing the in-

tegration of additional meteorological and environ-

mental parameters, and extending the methodology 

to other regions. 
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