
Free University of Bozen/Bolzano
Faculty of Computer Science

A Heuristic Itinerary Planning Approach for
Objects With Time Constraints

Gytis Tumas

Thesis supervisor: Prof. Johann Gamper

Submitted in partial fulfillment of the requirements for degree of Master in Computer
Science at the Free University of Bozen-Bolzano

October, 2011

Acknowledgments

I am grateful for all the people who assisted me in writing the thesis.

First of all I want to thank prof. Johann Gamper for the supervision, support and advices
throughout my work.

Thanks to Andrea Janes for the constructive feedback and useful hints.

Last but not least I want to thank the Central Tourist Office of Bolzano-Bozen, and
especially the Info Team member Nadja Sternkopf, for the availability and provided in-
formation, which was helpful for my dissertation.

Abstract

This thesis deals with a context- and user-aware approach to the itinerary planning in
Geographic Information Systems (GIS). In order to assist tourists in planning and en-
joying their trips we present the Orienteering Problem with Multiple Time Windows
(OPMTW), a new routing problem combining objectives and constraints of the existing
routing and scheduling problems such as Orienteering Problem, Vehicle Routing Problem
and Travelling Salesman Problem with Time Windows. An effective iterative local search
heuristic method is proposed to solve the OPMTW in real time and it is implemented
for the client-server architecture with an application for mobile devices running the iOS
operating system.

In the course of this work, existing problems of routing and itinerary planning are dis-
cussed and some of the most popular existing commercial itinerary planning tools are
analysed. The obtained results from the computational tests confirm the effectiveness
and the fastness of the introduced heuristic approach for the itinerary planning and sug-
gest that that the full-scale application for tourists is feasible.

Contents

1 Introduction 11

2 State of the Art 13

2.1 Existing Tools for Itinerary Planning . 13

2.1.1 YourTour . 13

2.1.2 Plnnr . 14

2.1.3 GoPlanIt . 14

2.2 Time Independent Approaches for the Generation of Routes 15

2.2.1 Travelling Salesman Problem . 16

2.2.2 Variants of the Travelling Salesman Problem 16

2.3 Time Dependent Approaches for the Generation of Routes 18

2.3.1 Travelling Salesman Problem with Time Windows 19

2.3.2 Orienteering Problem with Time Windows 20

2.3.3 Team Orienteering Problem with Time Windows 20

3 The Problem Definition and Heuristics 21

3.1 Orienteering Problem with Multiple Time Windows 21

3.1.1 Considering the Real World Features 21

3.2 Heuristics . 22

3.2.1 Selection of the Vertices . 22

3.2.2 Constructing the Neighbourhood 23

3.2.3 The Insertion Attempt . 23

3.2.4 Summary of the Algorithm . 24

3.3 Algorithm Illustration . 25

3.3.1 Iteration 1 . 26

3.3.2 Iteration 2 . 26

3.3.3 Iteration 3 . 27

3.3.4 Iteration 4 . 27

3.3.5 Iteration 5 . 27

4 Application of the Heuristic Approach for Itinerary Planning 29

4.1 Sample Data . 29

7

4.2 Estimating Values for the Average Service Time at Objects 30

4.3 Calculation of the Costs Between the Objects 30

4.4 User Profile . 31

4.4.1 Intensity of the Trip . 32

4.4.2 Dining Constraint . 33

4.5 Generating k-unrepetitive Itineraries . 33

5 Implementation 35

5.1 Server-side . 35

5.2 Mobile Client for iPhone . 35

5.2.1 Technologies Used . 35

5.2.2 Mobile Application Usage Scenario 36

6 Evaluation 39

6.1 Quantitative Evaluation . 39

6.1.1 Data . 39

6.1.2 Experimental Results . 39

6.2 Qualitative Evaluation . 41

6.2.1 Used Methodology . 41

6.2.2 Outcome . 42

6.2.3 Comparison Analysis . 43

7 Conclusions and Future Work 45

References 47

List of Figures

1 YourTour suggested path and its customizable preferences 13

2 Screenshot of the Plnnr tool showing a generated itinerary 14

3 The calendar-style recommendation made by the GoPlanIt web tool . . . 15

4 A symmetric Travelling Salesman Problem with four cities 16

5 Vehicle routing problem . 17

6 A sample graph with different POIs and the data about them 18

7 Finding the proximity between the time windows of two vertices vi and vj 23

8 The subpath of P before, during and after the insertion of the vertex v . . 24

9 The initial data for the illustration of the heuristic approach for the OPMTW 25

10 The graph data after the first insertion . 26

11 The graph data after the second insertion 26

12 The graph data after the third insertion 27

13 The graph data after the fourth insertion 28

14 The graph data after the fifth and final insertion 28

15 The snippet of the sample JSON response to the Google Directions API
query . 31

16 The screenshots of the SmartTrip app: on the left - the home screen, in
the middle - POI preferences, on the right - restaurant preferences 37

17 The screenshots of the SmartTrip app: recommended itineraries showed
on the map and in the detail view . 37

18 A server JSON response containing the information about the generated
itineraries . 38

19 The three itineraries generated by the system based on the preferences
specified by the expert . 43

9

List of Tables

1 The packages of the source code for the JAVA application on the server side 35

2 The packages of the source code for the mobile application 36

3 Results of Solomon’s test problems with random geographic data, (m = 1) 40

4 Results of Solomon’s test problems with clustered geographic data, (m = 1) 40

5 Results of Solomon’s test problems with a mix of random and clustered
geographic data, (m = 1) . 41

10

1 Introduction

Sometimes getting lost in a city is the best way to know it. However travellers more often
prefer to be aware of their location and have the knowledge of different places of the city
beforehand in order to choose the way how and when to visit them. On the other hand
planning a good itinerary in an unknown city is not an easy task for a person to solve
by herself. Even having the access to the data about the city and its famous objects, the
quantity of the information can be overwhelming to make the right decision. There are
usually plenty of factors for a user to consider, such as the types of the different points
of interests, their reachability, the opening hours, entrance prices, distances between each
other, etc. Besides that people who wish to explore the new city are typically interested
not only in the famous objects of the city but also in the events happening there, such
as concerts or exhibitions. Moreover the experience of the visit to a city may be often
enriched by dining at the local places, going out for a drink or simply a snack.

In most cases an average day-tripper tourist plans his trip by consulting the websites,
forums or the printed guidebooks. Since the time span of a trip is usually too short to
visit all places of interest (POIs), a user chooses some places that she believes will be the
most valuable. Once the decision is made, a tourist has to decide at what times the POIs
could be visited and starts planning the route. However as noticed by Vansteenwegen et
al. [1], the tourist comes across several problems by choosing an approach like this. First
of all the information in the guide books is rarely up-to-date and the opening hours of
the different POIs can change frequently: the theater plays can be moved and museums
can have renovations and be closed for some time. Morover even if a tourist is able to
identify the most valuable attractions and construct the route to visit all of them while
staying within the schedule, she remains unaware if the route is optimal and if there are
other routes with the better schedules available.

Another option for a tourist is to delegate the itinerary planning task to the staff of the
Local Tourist Organizations (LTOs). LTOs usually combine the information obtained
from the tourists (i.e. their preferences, time and money constraints) with the knowledge
about the local attractions (type, opening hours, location) and suggest an itinerary for
the tourist. However one of the problems that LTOs face is the speed of suggesting an
itinerary: sometimes it is impossible to consider all the information about the user and
the knowledge about the POIs in order to suggest an itinerary in a feasible time, thus the
LTOs limit themselves with suggesting some predefined itineraries in this way partially
or completely ignoring the user profile. Another problem that LTOs face are the legal
constraints, because of which the businesses such as restaurants cannot be recommended
explicitly in order to main the LTO’s neutrality.

In order to address the problem of the itinerary planning for tourists when the opening
times of the places are important, existing similar problems have been investigated, in-
cluding the different variations of the well-known Travelling Salesman Problem (TSP).
Additionally, some of the most popular existing and publically available commercial web-
based itinerary planning tools have been analysed. Based on the empirical evaluation of
the commercial tools and the analysis of the problems that address the construction of
itineraries, we define our own variant of the Orienteering Problem with Time Windows
(OPTW) which takes into account multiple time windows and construct a fast and effec-
tive iterative local search heuristic method to solve it. Moreover the developed algorithm
has been implemented for the client-server architecture together with an application for
mobile devices with the iOS operating system, that is able to generate multiple itineraries
in a feasible time for a user. Computational tests confirm the effectiveness and speed of

11

the methods used, and suggest that the full-scale itinerary planning application is feasi-
ble. The developed system is also tested by an expert in a tourism field and is evaluated
qualitatively.

12

2 State of the Art

2.1 Existing Tools for Itinerary Planning

To address the problem and help a user not to get lost in the tremendous amount of
information while travelling, different applications and systems have been developed in
the recent years, that try to construct the itineraries based on the user feedback of various
granularity. In this part some of the most recent online tools that perform this task are
analysed.

2.1.1 YourTour

YourTour is a website that lets users create multiple-day road trip itineraries. As the
first input it requires only the departure/destination points (that can be selected either
as a city or an airport), travelling dates and the amount of people travelling. Given this
data the tool constructs the detailed customized path connecting different places, selects
the hotels to stay and provides the estimated fuel costs required to traverse the path
(Figure 1). After that a user can customize the suggestions by specifying the amount of
her interest for the different categories (Culture, Shopping, Nature, etc.) as well as the
preferences for the hotels.

The YourTour provides the detailed information about the places of the tour, such as
the opening hours and the admission prices. However while focusing on the inter-city
travellers with their own transport means the service unfortunately ignores the users who
choose the sightseeing of a particular city on foot - the street level data is not present.
Besides that the service fails to provide restaurant recommendations and makes it difficult
to view the suggested itinerary on a mobile device.

Figure 1: YourTour suggested path and its customizable preferences

13

2.1.2 Plnnr

Plnnr is another web based itinerary planner. Different from YourTour, the Plnnr is
focused on the multiple-day tours within one of the 20 world’s famous city. Additional to
the typical input parameters this services takes into account such preferences of a user as
the preferred trip type (more outdoors, culture, a trip with kids) and the intensity of the
trip. For each day a different itinerary is generated, which always starts and ends at the
user’s hotel and can be further customized by changing the initial preferences or simply
tweaked by removing unwanted places and adding desirable places from the categorized
lists into the already generated itinerary.

Like the YourTour tool, the Plnnr service also takes into account the opening hours of
the places and the time it takes to travel between them on foot or by taxi. However while
the service proposes the daytrips filled with the schedules of visiting different places in a
city, it both lacks the functionality to include the places to have a lunch or dinner and
does not allow a user to plan it herself. Besides that, like YourTour, the Plnnr is not
optimized for a mobile device, which makes it hard to customize the trip while being on
the move.

Figure 2: Screenshot of the Plnnr tool showing a generated itinerary

2.1.3 GoPlanIt

Similar to Plnnr, GoPlanIt is focussing on single or multiple day trips around a city, sup-
plying the schedules of POIs to be visited and maps for the route display. The suggestion
is mostly based on the preferences specified by the user and the proximity of the POIs.
After the trip has been generated a user can always modify it by adding, deleting or
rearranging the items, in the calendar-style graphical interface (Figure 3). If the opening
hours of the POIs are flexible enough, the user can expand or decrease the time slot
assigned by the tool for a specific POI. GoPlanIt has the cleanest interface compared to
the previously mentioned application and it allows several views of the itinerary: using

14

the calendar view a user can analyse better the schedulling proposals and modify them,
using the map view a user can visualise the categorized POI and see their proximity to
each other, while using the printout view the user gets all available information about a
specific itinerary in the print-out friendly format. The main differentce between GoPlanIt
and the previously mentioned tools is that GoPlanIt smartly integrates the restaurant
recommendations based on user’s budget. Moreover it is possible to access the informa-
tion of every suggested POI in details, print out the route with its information or simply
access it on a mobile device. The main drawback of the tool is its data availability: so
far the itineraries can be planned only for the biggest US cities.

Figure 3: The calendar-style recommendation made by the GoPlanIt web tool

2.2 Time Independent Approaches for the Generation of Routes

Many different studies have been carried out analysing the ways to generate the routes
by solving the Travelling Salesman Problem (TSP), the Prize-Collecting Traveling Sales-
man Problem (PCTSP) or the Orienteering Tour Problem (OTP). Such problems as the
PCTSP and OTP are generally called the Travelling Salesman Subtour Problems (TSSP)
[2]. Another similar family of problems are the Vehicle Routing Problems (VRP). All
algorithms available for finding optimal solutions both for TSSP problems and the VRPs
have the exponential complexity with respect to the size of the problem [17]. Therefore
most of the studies try to find some heuristics, which usually allows to obtain reasonable
solutions even though they cannot guarantee the optimal solution. In the following sub-
section first the classical Travelling Salesman Problem (TSP) will be described and then
we take a look at the subproblems and how they can be applied for the generation of the
routes.

15

2.2.1 Travelling Salesman Problem

The TSP is one the most studied problems in the combinatorial optimization. Because
of the problem’s simplicity and its applicability in different fields (tourism, transport
logistics, material handling in a warehouse), plenty of exact and heuristic optimization
algorithms had been developed for it ([3], [4], [5], [6]). The main idea behind the problem
is the salesman who must travel to a set of cities. The task for the salesman is that
of finding the shortest possible tour between all of the cities visiting each one of them
exactly once. The pairwise distance between the cities is given. The problem may be
formally defined as follows. We are given a graph G = (V,A), where V = {v1, ..., vn} is
the vertex set and A = {(vi, vj) : vi, vj ∈ V } is the arc set. A non-negative cost cij is
assigned for each arc. The problem is to find the least cost circuit passing through all the
vertices visiting every vertex exactly once. Such a circuit is called Hamiltonian circuit.

The TSP can be modelled as an undirected weighted graph, such that the cities are the
vertices of the graph, the paths are the edges and a path’s distance is the edge length.
Usually every pair of vertices is connected by an edge, therefore the graph is complete.
The Travelling Salesman Problem can be either symmetric or asymmetric. When we
consider the symmetric TSP the distance between two cities does not depend on the
direction with which we traverse the edge. Thereforethe symmetric TSP is modelled with
an undirected graph. On the other hand in the asymmetric TSP paths migh not exist for
both directions between two cities or the distance can be different. This might happen
if we consider one-way streets or the up-hill streets, where it takes longer time to travel
up-hill than going back down-hill.

Figure 4: A symmetric Travelling Salesman Problem with four cities

2.2.2 Variants of the Travelling Salesman Problem

Prize-Collecting Travelling Salesman Problem (PCTSP), first mentioned by Balas
et al. [7], is a relaxed version of the TSP. While in the original problem a salesman has
to visit all the cities and his goal is to minimize the overall cost of the route, in the
PCTSP a salesman does not necessarily need to visit all the cities, but must collect a
given quota of weights that are associated to the cities (so called prizes). The total cost
will be the length of the trip added to the penalties of the cities that were not visited by
the salesman. Quota Traveling Salesman Problem is a special case of the PCTSP where
all penalties are equal to zero [8].

Orienteering Problem (OP) is another extension of the Travelling Salesman Problem,
first introduced by Tsiligrides [10]. It is also known as the Selective Travelling Salesman

16

Problem or the Maximum Collection Problem. Similarly to the PCTSP, the Orienteering
problem does not seek to include all of the cities/nodes, but rather tries to construct a
path with the maximal total score given the maximal duration of the path as a constraint.
One application scenario for the Orienteering Problem suggested by [18] is a company,
that must services a set of customers, each one with associated different profit. Limited
number of resources (e.g. given time) restrict the number of customers that can be served
and thus force the company to choose just a subset of them, preferably the ones with the
higher profit.

Joest et al. [9] introduce the Enhanced Profitable Tour Problem (EPTP), which
is a variation of the Orienteering Problem (OP). Similarly like the previously defined
approach, the problem consists in finding a particular cycle that maximizes the sum of
the prizes visiting each node at most once and not exceeding the given total cost value
tmax. The EPTP differs from the OP by having the weight assigned both to the nodes
and to the arcs of the graph.

The Vehicle Routing Problem (VRP) can be described as the problem of designing
optimal delivery as the collection routes from one or several depots to a number of geo-
graphically scattered cities or customers, subject to side constraints [11]. It is commonly
used in practice in scenarios where a set of vehicles has to distribute the goods from depots
to a set of customers. The problem may be formally defined as follows. We are given a
graph G = (V,A), where V = {v1, ..., vn} is the vertex set and A = {(vi, vj) : vi, vj ∈ V }
is the arc set. After a non-negative cost cij is assigned for each arc, the VRP consists of
finding a set of least cost routes visiting every vertex exactly once by exactly one vehicle,
where each vehicle starts from a speficied point, known as depot.

Figure 5: Vehicle routing problem

There are different variations of the Vehicle Routing Problem itself, which usually differ
by imposing one or several side constraints to the original problem. One family of the
VRP subproblems are the Capacity constrained VRPs (CVRPs). The capacity is
restricted by assigning a non-negative weight to each point different from the depot. Then
the sum of weights of any rout cannot exceed the given vehicle capacity.

Another constraint that is commonly imposed on the Vehicle Routing Problem is the
bounding of number of cities on any generated route above some value k. Given this

17

constraint a problem can be modelled as a special case of the previously described CVRP
when each node is assigned a weight of 1 and the vehicle capacity is k.

2.3 Time Dependent Approaches for the Generation of Routes

When generating a tour for travellers the path can be constructed by solving one of
the previously described problems. The choice of the problem would depend on the
constraints that we want to impose for the travellers and how we want to design the
graph (for example, if we want to have nodes with different weights/prizes or we allow
the user to specify the maximal cost/length of the path). Our problem of the itinerary
generation could be successfully mapped to one the problems described before, only if
we ignored the time constraints, i.e. any node can be visited at any time. However in
order to better represent the real life scenarios the time constraints of the different points
must be considered. With the following example it is shown that modelling the path
construction as the classical Travelling Salesman Problem is impractical for our scenario.

Consider a tourist who wishes to start his itinerary from his hotel at 10am in the morning
and finish the trip at 4pm. The graph contains the nodes that correspond to the set of
the potential points of interest (POIs) that are assumed to be of great interest for a user
(See Figure 6). The nodes r,m, s and h represent a restaurant, a museum, a shopping
center and a hotel respectively. The hotel is the start and the end point of the trip. For
each object n we are given its opening hours (nopen) and the average visiting time (nvisit).
The weights of arcs represent the distances in minutes between different nodes.

Figure 6: A sample graph with different POIs and the data about them

Trying to solve the Travelling Salesman Problem on the given graph gives us the solutions
S1 = (h, r,m, s, h) and S2 = (h, s,m, r, h) that are in fact the least cost circuits passing
through all the vertices. However despite the optimal travel distance both of the solutions
would be infeasible in the real life scenario because of the given time constraints. For
instance, using the path S2 a tourist would start his trip at 10am from his hotel (h). From
10:12 till 11:12 he would be at the shopping center (s), still satisfying the opening hours
constraint. Based to the given data, the user should be at the museum (m) for the time
period between 11:26 and 13:26. After that even if the user is scheduled to arrive at the
restaurant at 13:41, which is still within the opening hours constraint, the visiting of the
restaurant would be not feasible anymore because of the given average visiting interval

18

for r, which is 50 minutes.

Instead of skipping some of the objects, the smarter solution would be to suggest the
path S3 = (h,m, r, s, h), following which the user would start her trip at 10:00, reach
the museum (m) at 10:25, spend there 2 hours, then after 15min of walking arrive to the
restaurant (r) at 12:40. Since the restaurant (r) is opened from the noon till 2pm, the
user would be able to fit within the time window, leaving the place at 13:30. From the
restaurant (r) he would arrive at the shopping center at 13:34, leave it at 14:34 and finish
the trip in the hotel (h) at 14:46. Even though the travel cost to traverse the S3 path
is higher than S1 and S2, the path S3 is much more suitable for a user in the real life
scenario.

In order to take into account the opening hours of the objects, we must consider the
constraint that restricts the objects in a graph to be visited outside of their opening
hours (time windows). I describe several of the problems that consider this constraint.

2.3.1 Travelling Salesman Problem with Time Windows

The Traveling Salesman Problem with Time Windows (TSPTW) is a time constrained
variant of the TSP. The problem is NP-hard, and Savelsberg [13] showed that even finding
a feasible solution of TSPTW is NP-complete. In the TSPTW the goal is to find the
minimal cost path visiting all the cities exactly once and at the same time respecting their
time windows constraints, i.e. visiting every node only within its give time window. The
early arrival times are allowed, so given the time window [ai, bi] for a node i, a salesman
can be at the node i before its opening time ai, however in this case the salesman must
wait for the opening time. Moreover every vertex has its service time, i.e. how long
a salesman must wait in the node (starting at least from the opening time ai) before
proceeding to visit the other vertices.

TSPWT is formally defined as follows. We are given a complete undirected graph
G=(V,A) where V = {v0, v1, ..., vn, vn+1} is the vertex set and A = {(vi, vj) : vi, vj ∈
A, i 6= j} is the arc set. Vertex v0 is the starting point, and vertext vn+1 is the end point.
Each vertex must be visited during its time window [ai, bi]. The aim is to determine a
directed path starting at v0, ending at vn+1 and passing through all vertices in V exactly
once. For the minimization objective, there exist two variations of the problem: in the
first the objective is to minimize the arrival time at the vertex vn+1, indepently of the
path costs, while in the second varation of the TSPWT the objective is to minimize the
overall cost, i.e. the travel time on the path, not taking into account the time it takes to
wait at each vertex. The second objective is considered more often in the literature.

There are many heuristics and exact algorithms developed for the Travelling Salesman
Problem with Time Windows. López-Ibáñez et al.[12] have developed a heuristic Beam-
ACO approach, which is a hybrid method combining ant colony optimization with beam
search. Using it the authors were able to obtain optimal or near-optimal (less than 1%
deviation) solutions in a reasonable computation time. Focacci et al. [14] provide an exact
algorithm to solve the TSPTW, by introducing a new approach which merges Constraint
Programming propagation algorithms for searching for the path and Operations Research
techniques for finding the best path.

19

2.3.2 Orienteering Problem with Time Windows

Orienteering Problem with Time Windows (OPTW) differs from its ”cousin” TSPTW in
a similar way as Orienteering Problem (OP) differs from the TSP. Same like the OP, the
Orienteering Problem with Time Windows does not seek to include all of the cities/nodes,
but rather tries to construct a path with the maximal total score of the visited nodes given
the maximal duration of the path Tmax as a constraint. In the OPTW a weight, a time
window and a service time are associated with every node and a cost is associated with
every link. The main goal is to find a path maximizing the benefit for it (which is the sum
of the weights of visited nodes), where every node in the graph is either visited within
its time window or skipped. The problem is classified as NP-hard problem. Righini
et al. [15] present an exact optimization algorithm for the OPTW based on dynamic
programming with decremental state space relaxation strategies. Morover Righini et al.
[15] also propose a heuristic approach for the OPTW problem, where the main focus is
on the initialization of the critical vertex set. It is shown that the new technique reduces
the number of iterations and the computing time needed by the decremental state space
relaxation strategies (DSSR) algorithm to converge to an optimal solution.

2.3.3 Team Orienteering Problem with Time Windows

The Team Orienteering Problem with Time Windows (TOPTW) can be viewed as the
earlier described OPTW where the goal is to determine not one but m tours, each limited
by the same given time budget Tmax. The TOPTW can be also considered as a special
case of the Vehicle Routing Problem with Time Windows and Profits. The main difference
between the OPTW and the TOPTW is that in the later there is more than one route
being created at the same time. An example application scenario could be the company,
who wants to maximize the received profit, by sending a set of salesmen to visit a set of
customers with different profits, where each customer can be visited just during his given
time window.

Vansteenwegen et al. [16] propose a fast heuristic to solve the Team Orienteering Problem
with Time Windows. The heuristic involves an insertion step and a shaking step to escape
from local optima. In order to skip the feasibility checking for all visits when inserting
a new node, the Wait and MaxShift values are recorded. Wait is defined as the waiting
time at a vertex vi in case the arrival to the node vi takes place before its opening time
ai. MaxShift is defined as the maximum time the service completion of a gine visit can be
delayed. In Section 6 we are going to compare the heuristic developed by Vansteenwegen
et al. and our proposed solution.

20

3 The Problem Definition and Heuristics

In this chapter the Orienteering Problem with Multiple Time Windows (OPMTW) is
formalized, which will be used to model and solve our itinerary planning problem for
tourists. Later we propose the fast and effective heuristic approach to solve the problem.

3.1 Orienteering Problem with Multiple Time Windows

We define the Oriented Problem with Multiple Time Windows (OPMTW) as follows.
We are given a complete directed graph G = (V,A), where V = {v0, v1, ..., vn, vn+1} is
the vertex set and A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set, where the vertex v0
represents the starting point of the trip and the vertex vn represents the end point of
the trip. A non-negative cost cij is assigned to each arc, which represents the travel
time from the vertex i till the vertex j for a specific transport mean. For each vertex
i ∈ V, i 6= 0, i 6= (n + 1) we define the pi as the profit of a vertex i, the k time windows
[ai1, bi1], ..., [aik, bik], where aij is the opening time of the jth time window for the vertex
i, and the bij is the closing time of the jth time window and the si as the service time for
the vertex i, which is the estimated time for a user to spend at the vertex i. For more
details about the values for the average service time refer to the subsection 4.2.

For each pair of vertices (i, j) we define the service start time tj as follows:

tj =

{
dj if j = 0,

max(ajk, ti + cij + si) if j 6= 0.
(1)

Here ajk is the opening time of the earliest feasible time window of the node j, and dj is
the departure time from the node j.

In the OPMTW the aim is to determine the directed path P , such that it starts at
the node v0, passes through a subset of vertices of V \{v0, vn+1}, visiting each node at
most once, ends at the node vn+1, maximizes the overall profit

∑
i∈P pi and respects the

constraint ai1 ≤ ti ≤ bik, where bik is the closing time of the latest time window of i.

3.1.1 Considering the Real World Features

Since the graph is directed it does not guarantee that cij = cji, which means that the
travelling time from node i to the node j can be different when going in the opposite di-
rection from j to i. This choice allows the better representation of the real city topologies,
because the time to travel between two nodes/intersections can differ for both ways if a
street is not flat when walking and the driving time between two nodes/intersections can
differ if there are traffic congestions for one way and no for another.

In the real life the touristic objects usually have the opening hours that are composed of
more than one time window of service per day. For example consider a restaurant which
is opened for lunch from 12:00 till 15:00 and again in the evening for dinner from 18:00 till
23:00, or a shopping mall that has two time windows one in the morning and another in
the afternoon, with the closing lunch break. In our problem definition the multiple time
windows are considered, however the overlaps of the time windows for the same object
are not allowed.

21

3.2 Heuristics

In this part the fast and effective heuristic approach that was constructed to solve the
Orienteering Problem with Multiple Time Windows is described. The solution includes
the modification of the insertion procedure proposed by Gendreau et al.[19]. This pro-
cedure was originally used as a step of the heuristics that solve the Travelling Salesman
Problem where the path starts and ends at the same point. Later Gendreau et al. use the
same procedure to solve the Travelling Salesman Problem With Time Windows [20]. The
procedure has been modified in a way that it would be applicable for the Orienteering
Problem with Multiple Time Windows and the start and the end points would not need
necessarily to coincide.

We start the algorithm with any path consisting of the two vertices, one of them will
be the start while the other - the end of the trip. At any iteration we try to insert a
vertex v on the partially constructed path P while performing the local reoptimization.
The insertion of a node v is attempted between two not necessarily consecutive nodes vi
and vj , that are in Nh(v), where Nh(v) is the neighbourhood of the vertex v. The choice
of the selection of the next node to insert into the path P is explained in the subsection
3.2.3. The neighbourhood Nh(v) is the set of the closest h vertices already inserted in
the path P, where h is the input parameter. In case when the number of vertices in the
P is less than h, the neighbourhood Nh(v) includes all of the vertices in P. It should be
noted, that to find the closest vertices for a given vertex, we are not using the actual cost
or the distance between them but rather the pseudo-distance, which is composed based
on several factors and that takes into account also the time windows of a node. The
definition of the pseudo-distance is explained in the subsection 3.2.2.

After each trial of insertion we check the feasibility of the path, so that the newly inserted
vertex does not violate the multiple time windows constraint. For all possibilities of vi
and vj in in Nh(v), the best feasible insertion is implemented to continue constructing the
partial solution for the path P. If there is no feasibile insertion for a v, we ignore it. We
continue to procedure of the insertion for other vertices. The algorithm terminates either
after the path P contains z vertices, where z is the input parameter, or all the vertices
have been attempted for the insertion.

3.2.1 Selection of the Vertices

The selection of the vertices to insert is not performed at random, but it is based on
the two criterions c1 and c2, where c1 is ”select the most profitable vertex so far for
the user” and c2 is ”decrease the difficulty of the insertion of a new node”. The choice
of the c1 is intuitive as we want to maxime the overall profit

∑
i∈P pi of the resulting

path, thus we prefer to start inserting the vertices with higher profit. On the other hand,
there are serveral candidate options for the c2 criterion. The level of difficulty for the
insertion of a node can be defined in one the following ways: increasing order of the sum
of the vertices windows widths, increasing order of the widest time window of a vertex,
increasing order of the minimal opening value for a time window ai. Based on the results
of the preliminary tests we choose the increasing order of the sum of the vertices windows
widths, and use it as the c2 criterion to represent the difficulty level of the insertion for
the nodes in the partially constructed path P.

22

3.2.2 Constructing the Neighbourhood

As mentioned before, we try to insert a new vert v between two nodes that belong
to the neighbourhood Nh(v) of the the vertex v. The neighbourhood Nh(v) consists
of h closest vertices to v, where h is the input parameter. In the heuristic methods
that have been developed for the problems without time windows, such as the classical
Travelling Salesman Problem, it is convenient to use the actual cost between vertices
when constructing the neighbourhood, as it was done in [19]. However when dealing with
the approaches that take into account the time windows, the search for the closest vetices
cannot be based just on the cost alone, but the distances between the time windows of
different nodes have to be considered too.

Therefore we define the proximity of the time windows between two vertices vi and vj as
follows:

rij = dt− ot[Ai,Bi],[Aj ,Bj] (2)

where dt is the total time of a day, otx,y - overlapping time of the time intervals x and y,
[Ai, Bi] and [Aj , Bj] - the sum of the time windows for the vertex i and for the vertex j
accordingly. The example of finding the proximity between two nodes is displayed in the
figure 7.

Figure 7: Finding the proximity between the time windows of two vertices vi and vj

One way to define the pseudo-distance dij would be to use a convex combination of the
cost cij and the proximity rij :

dij = αcij + (1− α)rij , whereα ∈ [0, 1]. (3)

However it was shown by [20] that this formulation results in an unstable outcome, because
setting the α value can be difficult as the cost value tends to dominate in some cases,
while the time windows tend to dominate in other cases. Therefore a more convenient
approach would be to add to the neighbourhood Nh(v) the h1 closest points of v already
in the path P with respect to cij and h2 closest points of v already in the path P with
respect to rij , where h1 + h2 = h.

3.2.3 The Insertion Attempt

When inserting a vertex v into the partly constructed path P we are not necessarily trying
to insert it between the two nodes that are consecutive in the path. However after the
insertion the node v become adjacent to the two nodes. Imagine that we want to insert

23

the node v between two vertices vi and vj that are already in the path P. Let vk be a
vertex on the path from vj till the last vertex of P and let the vl−1 and vl+1 be respectively
the predecessor and the successor for any vertex vl in the path P.

To insert the vertex v in the partially constructed path P we perform the following
modifications:

• Delete the edges (vi, vi+1), (vj , vj+1) and (vk, vk+1).

• Insert the edges (vi, v), (v, vj), (vi+1, vk) and (vj+1, vk+1).

Note that such restructuring of the path results in the reversal of the subpaths (vi+1, ..., vj)
and (vj+1, ..., vk). The procedure of the insertion is depicted in the figure 8.

Figure 8: The subpath of P before, during and after the insertion of the vertex v

3.2.4 Summary of the Algorithm

The step by step summary of the algorithm:

Step 1 - Initialization

Insert all vertices of V \{v0, vn+1} into the set S. Order the set based on 2 parameters:
first order decreasingly on the profit of the vertex, then if there are vertices that have the
same profit sort them increasingly on the sum of the widths of their time windows. Start
constructing the path P by adding the first two vertices v0 and vn+1 to it. Initialize z
as the parameter from preferences, defining the intensity of a trip, thus the amount of
vertices within the path.

Step 2 - Insertion attempt

If |P | = z or S = ∅ terminate the algorithm and return the constructed path P. Otherwise
select the 1st vertex from the set S as v and attempt to insert it between two of its h

24

closest neighbours from its neighbourhood Nh(v), using the insertion procedure described
in 3.2.3.

Step 3 - Feasibility check

If at least on feasible insertion can be identified, implement the best one and update the
path P. Remove the vertex v and go to Step 2.

3.3 Algorithm Illustration

The illustration of the algorithm is demonstrated on a sample graph consisting of 9 vertices
V = {v0, ..., v8}, where v0 is the starting vertex and v8 is the ending vertex. The initial
values for the parameters are the following: h=4, z=5, startingTime = 540, endTime =
1260, where h represents the size of the neighbourhood and z is the maximum number
of vertices to be inserted. For every vertex vi its time windows, the service time and the
profit are specified in the table 9. Based on the profit values and the time windows the
set S is initialized as follows: S = {v3, v1, v2, v6, v5}.

Figure 9: The initial data for the illustration of the heuristic approach for the OPMTW

In every iteration the following information describing the current state is illustrated: the
selected new vertex vi for a potential insertion, the neighbourhood Nh(vi) of the vertex,
the two vertices from the neighbourhood between which the vertex vi was chosen for the
best insertion, the contents of the path P, the arrival time svj and the departure time dvj
for every vertex vj ∈ P , the travel cost and the overall profit of the current path.

The euclidean distances between the vertices in the planes correspond to the actual cost
values between the vertices.

We start by putting the first two vertices into the path P = v0, v8.

25

3.3.1 Iteration 1

Selected vertex for insertion: v3; Nh(v3) = P = {v0, v8}; insert between v0 and v8;
P = {v0, v3, v8}

Figure 10: The graph data after the first insertion

For the first insertion the first vertex v3 from the set S is chosen, as it has the highest
profit value. Since there are only two vertices in the path P so far, the neighbourhood
Nh(v3) includes both of them. The vertex v3 is successfully inserted between the two
initial vertices because its insertion does not break the time feasibility constraints.

3.3.2 Iteration 2

Selected vertex for insertion: v1; Nh(v1) = P = {v0, v3, v8}; insert between v3 and v8;
P = {v0, v3, v1, v8}

Figure 11: The graph data after the second insertion

26

For the second insertion the vertex v1 is chosen. Even if the vertex v2 has the same profit
value as the vertex v1, in this case the later has the priority because the sum of its time
windows is smaller than the sum of v2 time windows (for v1 it is 360, for v2 - 480). The
neighbourhood of the vertex v1 also still consists of all three vertices currently inserted
into the path P.

3.3.3 Iteration 3

Selected vertex for insertion: v2; Nh(v2) = P = {v0, v3, v1, v8}; insert between v0 and v3;
P = {v0, v2, v3, v1, v8}

Figure 12: The graph data after the third insertion

In the third iteration the vertex v2 is selected as it has the biggest profit out of all
remaining vertices in the set S. It is inserted between the vertices v0 and v3 as this
insertion results in the cheapest new path P.

3.3.4 Iteration 4

Selected vertex for insertion: v6; Nh(v6) = {v2, v3, v0, v8}; insert between v2 and v3;
P = {v0, v2, v6, v3, v1, v8}

The vertex v6 is selected as the next potential candidate for the insertion. Because the
given parameter h=4, for the first time the neighbourhood of a potential vertex does not
correspond to the path P, but consist only of 4 vertices belonging to the path, between
which the new vertex will be attempted for an insertion. The vertices v2 and v3 were
added to the neighbourhood Nh(v6) for being the closest vertices to v6 with respect to
the cost cij , while the vertices v0 and v8 were added for being closest to v6 with respect
to the time windows proximity rij , defined in (2).

3.3.5 Iteration 5

Selected vertex for insertion: v5; Nh(v5) = {v0, v3, v1, v8}; insert between v0 and v3;
P = {v0, v5, v3, v6, v2, v1, v8}

27

Figure 13: The graph data after the fourth insertion

Figure 14: The graph data after the fifth and final insertion

The vertex v5 is attempted for the last insertion between its neighbours, which are the
vertices v0 and the v3 for their cost cij , and the v1 and v8 for their time windows prox-
imity. The best local insertion is determined to be between the vertices v0 and v3. Since
v0 and v3 were not consecutive in the path P that is being constructed, the subpath
v3,...,v0 will be reversed. This results in the fact that the vertex v2 which belongs to
the mentioned subpath will be visited on its second time window [900; 1170] rather than
the first one [510; 720]. After the feasibility check of all time constraints, the path
P = {v0, v5, v3, v6, v2, v1, v8} is returned as the output.

28

4 Application of the Heuristic Approach for Itinerary
Planning

In this chapter we describe how we applied the proposed heuristic approach that solves
the Orienteering Problem with Multiple Time Windows in order to make an itinerary
planning system aimed for the visitors and tourists of South Tyrol. The main goal of the
system is to suggest a day trip itinerary for a tourist within a city, which would satisfy
the tourist most, given her time constraints and the preferences. Before designing the
prototype some assumptions had to be made both about the users of the system and
about their behavior. The validity of the assumptions have been evaluated together with
the system itself by an expert using it. The results of the evaluation are described in
section 6.

4.1 Sample Data

For the application a subset of the semi-actual data about of the most popular touristic
places in Bolzano (Italy) were used. The descriptional data and the categorization of the
points of interest (POIs) and the dining places have been downloaded from the free online
worldwide travel guide WikiTravel (http://wikitravel.org/en/Main Page). The website
categorizes the points of interest into 4 main categories, namely ”See”, ”Do”, ”Buy” and
”Eat”.

Each of the categories have different subcategories, such as ”Musuems”, ”Churches”,
”Theaters” etc. Based on the categorization, and the selected subset of objects for our
purposes of the system, 5 categories for the points of interest and 3 categories for the
dining places were identified, namely:

• ”Landmarks”

• ”Museums & Galleries”

• ”Entertainment & events

• ”Nature & environment”

• ”Pubs, bars, discos”

• ”Budge dining places”

• ”Mid-range dining places”

• ”Splurge dining places”

Where available, the actual opening hours of the places were used, both for POIs and for
dining places. Such objects as statues or parks were naturally assigned the 24/7 opening
time. Apart from the type categorization, each object is also categorized as being an
event or a simple point of interest. The events differ from the other objects first of all by
the happening dates. While most of the objects have constant time windows for weekdays
or weekends all over the year (except for holidays), the events usually happen only once in
the life time or have a constant occurrence date, for example on a specific day every week.
Thus the attention must be paid to the data selection preference of the user. Morover
the restrictions of the visiting time of the place with respect to the time windows for

29

event objects is different than the one for other objects. Normally the non-event objects
can be visited any time after the opening time of any of their windows, as long as the
service time is not longer than the closing time of the window. On the other hand for
the event objects the arrival of the user to the object after the opening time of the time
window should not be feasible anymore. For example, we cannot suggest a tourist to visit
a theater play, if he can arrive to the theater half an hour after the beginning of the play.
However to address this issue we do not need to modify the algorithm. It is enough to
set the service time of an event object equal to the the length of its time window. For
example if a play in the theater starts at 8pm, ends at 10pm, the service time must be
120min. In this case the algorithm will consider any arrival after the beginning of the
play as an infeasible vertex visit.

For the choice of the start/end points of the trip, the users are provided with the separate
set of the objects, which are typically the most common starting places for the day-
trip itineraries, containing the city hotels, hostels, several landmarks and the train/bus
stations.

4.2 Estimating Values for the Average Service Time at Objects

When dealing with constructing itineraries for the touristic objects where the time con-
straints such as the opening times or the travel times between objects are of great im-
portance, we cannot ignore another time constraint which is the service time per object.
This value is highly subjective and is dependent on a big amount of factors, many of
which are dependent greatly on the users themselves. What is more, in most of the cases
the service time cannot be chosen as one of the user’s preferences in advance, because
a tourist is simply unaware of how much it would take to visit a specific gallery, have a
lunch at a restaurant or enjoy a park.

However there are automated methods which allow to predict the average time a user
would spend in a specific place. One way to automatically obtain the data of the average
visiting times is by using the publicly available Flickr data [25]. Flickr is one of the
most popular image hosting portals, which allow the users to access the geotagged data
through its api. The tagging of the photos usually include not only the geo data, but
also the POI names and the time information when the pictures were taken. Having
access to this information, it is possible to predict the average staying time of the tourists
in different places, assuming the constant frequence of the photo taking process. Since
in our approach we are addressing also the places for dining, it is improbable that the
frequence of taking photos while having lunch can be constant. We leave the analysis of
the geotagged and timetagged photo data and its application for our approach for the
future work and instead assume the heuristic average service values for different places.

4.3 Calculation of the Costs Between the Objects

In order to calculate the travel costs between the different objects, we generate the transit
time between every pair of the object in the city by using the publicly available Google
Directions API (http://code.google.com/apis/maps). The Google Directions API is part
of the Google Maps API Web Services, which is a collection of HTTP interfaces to Google
services providing geographic data. These web services use HTTP requests to specific
URLs, passing URL parameters as arguments to the services.

Generally, these services return data in the HTTP request as either XML or JSON. The

30

Google Directions API calculates the distance as part of the directions query, when users
specify origins, destinations and the optional waypoints. The data can be either specified
as text strings (e.g. ”Bolzano, Italy” or ”Piazza Walther, Bolzano, Italy”) or as lati-
tude/longitude coordinates. For the higher precision we are using the latitude/longitude
coordinates. The request data also contains the parameter that defines the transport
mean (walking, driving, public transport). The sample JSON response from the Google
Directions API is shown in the Figure 15.

We store every calculated pair-wise costs between all objects. It should be noted, that the
travel cost between two objects oi and oj can be different than the one going backwards
from oj and oi.

The sample request for the Google Directions API service:

http://maps.googleapis.com/maps/api/directions/json?origin=46.500031,11.349395&
destination=46.497483,11.349101&mode=walking&sensor=false&units=metric

Figure 15: The snippet of the sample JSON response to the Google Directions API query

4.4 User Profile

When initially modelling the user needs some of the assumptions about the potential users
of the system had to be taken into account. Later on the assumptions were evaluated by
an expert in the tourism field.

31

The following assumptions had been made about the potential users of the system:

• a1 - a user prefers the itineraries that are shorter in distance, i.e. the total amount
of travelling between places is minimized

• a2 - if not explicitly stated, a user prefers the itineraries that contain more places,
about which the user expressed positive opinion in her preferences

• a3 - the preferences of the user are expressed in the interval scale

• a4 - the time gap between two dinings that is smaller than 4 hours is unacceptable
for a user

While the a1 assumption is straightforward, on the other hand the a2 and the a3 as-
sumptions need an elaboration on a more detailed level. Since the heuristic approach for
the OPMTW problem proposed in the section 4.2 works on the graph where each vertex
has its profit value per user, we have to map the user preferences to the profit values of
the vertices on the graph. We do this by collecting the explicit feedback from the users
by letting them choose the benefit value for each possible category of the objects in a
graph. In our case the benefit value for each category is expressed by a number from 1
to 100, therefore each vertex on a graph will get assigned its profit as a number equal to
its category benefit value.

As stated before, when constructing the itinerary, the algorithm will try to maximize
the profit of all visited vertices. Given the fact, that we allow the user to choose the
preferences in the interval scale, there might be the instances of the constructed itineraries
where the priority is given to the bigger amount of vertices with lower profit values than
to the smaller amount of vertices with higher profit values. Consider an example of two
insertion alternatives. In the first case two nodes va and vb are inserted into the path,
where both vertices va and vb belong to the category with the benefit value of 75 (thus
va = vb = 75). In the second case the node vc is inserted into the path, where the
vertex vc belongs to the category with the benefit value of 100 (vc = 100). Based on our
interval scale assumption for the preferences, the insertion of the vertices va and vb will
be preferred over the insertion of a vertex vc, because the overall profit of va and vb would
be 150, while the profit of vc would be 100

The validity of the assumption a3 is argueable and its substitution with the one that uses
the ordinal scale for the preferences can be considered.

4.4.1 Intensity of the Trip

Additional user preference that is taken into account when designing the application is
the intensity of the trip. The heuristic approach that was described earlier has the scope
of maximizing the profit of the constructed itinerary, thus it will try to fit as many and as
profitable objects within the travel time span specified by the user. However the tourists
often are not willing to rush through a city visiting as many places as possible, even if
they are interested in the potential objects and they can afford the travel of the itinerary
time-wise. In some cases the tourists might enjoy the itineraries that offer some free time
gaps inbetween the visits of the objects. For this motivation we allow the users of the
system to specify their preferred intensity of the trip by selecting a numeric value. Using
heuristics this value is mapped to the maximal number of the POIs that can be suggested
to the user per path and used as a parameter in the described heuristic approach to solve
the Orienteering Problem with Multiple Time Windows.

32

4.4.2 Dining Constraint

Since all eating places in our application is modelled in the same way as all other POIs, the
algorithm might suggest many of them, given the high user preferences for dining places
and the satisfiability of the time constraints. However we do not want a user to eat 4 or
5 times per day, no matter what are the preferences for the specific types of restaurants.
For this reason in order to better represent the real life scenarios we introduce the so
called dining constraint. The dining constraint makes the insertion of a POI that belongs
to the dining category infeasible, if there is another dining POI already inserted in the
path P within 4 hours time distance from the arrival time to the first POI.

4.5 Generating k-unrepetitive Itineraries

As discussed before, some assumptions had to be made about the users before designing
the system. The assumptions included the statements that a user prefers the shorter
itineraries as well as the itineraries that have higher overall profit value. However the
assumption of the overall profit value had always had the precedence over the shorter-trip
assumption. To better represent the user needs about the priorities of the assumptions,
the user is given the freedom of choosing between several itineraries that differ both in
the profit and in the cost of the trip and in this way the user can decide himself which
itinerary provides more satisfaction.

One solution to address the similar problem was suggested by Lederer et. al [21]. His
approach was to generate many routs by introducing penalty for the route elements that
are already present in another route. In this way, Lederer’s modificaiton of A* algorithm
was able to produce not only the optimal route, but also other alternatives that might be
satisfactory for the user.

In our case the problem is addressed by generating up to k unrepetitive paths P in the
developed application, where k is the arbitrary parameter. The generation procedure of
k paths is performed using the earlier mentioned heuristic approach for the OPMTW
and the different values of the preference parameters. After each iteration i, the benefit
values are decreased for every POI, that was inserted in the path Pi. The procedure is
repeated t times, where t is the arbitrary parameter. Then out of t generated paths, k1
unrepetitive paths are selected based on the overall profit and k2 unrepetitive paths are
selected based on the travel cost, where k1 + k2 = k.

After the generation, k-unrepetitive itineraries are suggested to the user. Some of them
will not be optimal based on the time cost or the overall profit of the visited POIs, however
they might be still more satisfactory to the user than the optimal one.

33

5 Implementation

This section presents the design and development process of the itinerary planning sys-
tem aimed for the visitors and tourists of South Tyrol. The system consists of the two
main software components: the heuristic algorithm running on a server, and a mobile
application that serves as a client for the preference elicitation from the user and the
visual display of the results. The development process started with the definition of the
system requirements, the main functionalities and the analysis of possible development
approaches. After the completion of these steps the appropriate system architecture that
fulfills all the stated requirements as well as implements all the defined functionality has
been designed. In this section both components of the system are described.

5.1 Server-side

Package Name Description

opmtw.web Servlets and supporting classes

opmtw.db Database connection

opmtw.pathconstruction The main classes for the computation of the algorithm

opmtw.datamodel The object classes

opmtw.geo Distance calculation between objects

opmtw.json JSON parsing from the Google API responses

Table 1: The packages of the source code for the JAVA application on the server side

The server side has been implemented using Java programming language and Eclipse IDE.
The SQLite 3.7.6 database was used for storing the information about the POIs and the
cost information. Apache webserver has been used together with the Tomcat 7.0.6 servlet
container. Two servlets have been developed in order to respond to the HTTP requests:
POIServlet and ItineraryServlet. The main responsible of the POIServlet is to send the
list of available start and end points to the user. The responsability of ItineraryServlet
was to send the top-k unrepetitive itineraries to the client. All responses were send as an
HTTP resonse in JSON format. The package structure of the main application is shown
in Table 1.

5.2 Mobile Client for iPhone

The mobile application SmartTrip for the iOS devices has been developed. While it was
targeted for the iPhone users, it can be used on any device running the iOS 4.2 or higher
operating system, what currently includes the different variety of iPhones, iPod Touches
and iPads.

5.2.1 Technologies Used

The mobile application was developed in Objective-C programming language using Cocoa
Touch Apple’s proprietary objective-oriented API. As the development environment the
XCode 4.2 was used together with the iOS 4.3 SDK. The application was developed
following the iOS Human Interface Guidelines [24] that describe the principles of the

35

Package Name Description

itinerary.model Stores the model classes of the project representing objects,
such as a POI or an itinerary

itinerary.json JSON parsing and constructing model objects

itinerary.network Connection management

itinerary.viewcontrollers Manipulation of the graphical interface

itinerary.logic The main calculation classes of the mobile app

Table 2: The packages of the source code for the mobile application

superlative user interface and user experience design for the iOS applications. The user
interface for the mobile application has been designed using the Interface Builder - an
integrated tool within the XCode 4.2 development environment.

The communication with the server is implemented over the HTTP protocol. The request
for the retrieval of the starting/ending points and the request for the itineraries generation
are send using the HTTP GET request method. The response from server arrives in JSON
format.

The SmartTrip application is divided into 5 packages located in the source folder of the
project (See Table 2).

5.2.2 Mobile Application Usage Scenario

A typical application usage scenario of the SmartTrip proceeds as follows. On the launch
the application tries to connect to the server and download the list of the places in the
city from which a user can start the trip. The same list is used for the selection of the end
of the trip. After the launch of the application the user is immediately presented with
the home-settings screen (See the leftmost image in Figure 16), where she can choose the
compulsory preferences (such as the start point and the end point of the trip, the travel
date, the starting and the ending times) and the optional ones (the preferences of the
places to visit, the eating preferences and the intensity of the trip). In case if user ignores
the optional preferences, the request for the itinerary can still be send. In this case the
default preference values are used.

If the user decides to express her preferences before sending the request for the itinerary
computation, she can do so by specifying the nominal values for different categories,
specifying her interest in them (See the middle image in Figure 16). After the user clicks
the ”Calculate” button, the HTTP Get request is sent over to the server with the specified
trip parameters. When the generation of the itineraries is finished on the server side, the
mobile application receives the response in JSON format. An example of the response is
displayed in the figure (See Figure 18).

The first out of maximum 3 itineraries is immediately displayed in a map view for the
user. Each suggested POI contains additional information (such as its name, visiting
order, arrival and departure times) which can be view by clicking on the points in the
map. All points are connected by a virtual path based on the visiting order of the POIs.
The lines in the path do not represent the actual walking directions on the street level
but rather indicate the sequence of the points. More detailed itinerary information for
every trip can be viewed in the detail view (See the middle image in Figure 17). The user
can explore the order of the POIs to visit, their name, description and arrival/departure

36

Figure 16: The screenshots of the SmartTrip app: on the left - the home screen, in the
middle - POI preferences, on the right - restaurant preferences

Figure 17: The screenshots of the SmartTrip app: recommended itineraries showed on
the map and in the detail view

times. Any time before or during the trip a user can rebuild the itineraries by tweaking
one or more parameters.

37

Figure 18: A server JSON response containing the information about the generated
itineraries

6 Evaluation

In this chapter we present both the quantitative evaluation performed on the heuris-
tic approach to solve the Orienteering Problem with Multiple Time Windows and the
qualitative approach to evaluate the developed system and the assumptions considered
beforehand.

6.1 Quantitative Evaluation

6.1.1 Data

The heuristic approach for the Orienteering Problem with Multiple Time Windows has
been tested using the well-known Solomon’s data-set of VRPTW instances [22]. Even if
the dataset has been initially designed to test solutions to the Vehicle Routing Problem
with Time Windows (VRPTW), as stated by Solomon the design of the dataset high-
lights several factors that affect the behavior also of the other routing and scheduling
algorithms. Three sets of problems R1-type, C-1 type and RC-1 type have been used for
the testing purposes. Each dataset has multiple problems, where each problems consists
of the following data: the customer id, x coordinate, y coordinate, the demand, the ready
time, the due date and the service time. This data can be easily mapped to our data
model, where x and y coordinates correspond to the latitude and the longitude of the
POIs, the demand corresponds to the profit visiting a POI, the ready time and the due
data represent the single time window per POI and the service time corresponds to the
visiting time of a POI.

The difference between three data sets is the generation of the geographical data. In the
problem set R1 the geographic coordinates were generated randomly, in the set C-1 the
instances of customers were clustered geographically, while in the set RC-1 there is a mix
of random and clustered structures. The coordinates of customers are identical for all
problems within one data set type. Some have very tight time windows, while others have
time windows which are hardly constraining. The problems are 100 customer euclidean
problems where travel times equal the corresponding distances.

It should be noted that even if the data was designed to be tested on algorithms that
address problems with single time windows, the data are perfectly fine for the test with
multiple time windows, as it is done in our case.

6.1.2 Experimental Results

The tables 3, 4 and 5 compare the scores obtained by the OPMTW heuristics with
both the previously presented ILS heuristic and the optimal solutions for the TOPTW
instances. Column one is the name of the problem instance. Column two and three
represent the profit and the amount of visited vertices for the TOPTW optimal solutions.
We are taking only the results with m=1, where m is amount of vehicles/agents used in
TOPTW, thus generalizing the TOPTW to the OPTW. Columns 4-7 report data for the
ILS heuristics, namely the profit, the amount of vertices, the gap between the optimal

Instance Optimum ILS OPMTW

Name Profit Vertices Profit Vertices Gap (%) CPU (s) Profit Vertices Gap (%) CPU (s)

c101 320 10 320 10 0.0 0.4 290 12 9.4 0.42

c102 360 11 360 11 0.0 0.3 240 12 33.3 0.27

c103 400 11 390 10 2.5 0.5 330 11 17.5 0.3

c104 420 11 400 10 4.8 0.3 350 11 16.6 0.32

c105 340 10 340 10 0.0 0.3 310 12 8.8 0.25

c106 340 10 340 10 0.0 0.3 300 11 11.8 0.23

c107 370 11 360 11 2.7 0.3 310 11 16.2 0.25

c108 370 11 370 11 0.0 0.3 360 12 2.7 0.31

c109 380 11 380 11 0.0 0.3 340 11 10.5 0.27

Table 3: Results of Solomon’s test problems with random geographic data, (m = 1)

Instance Optimum ILS OPMTW

Name Profit Vertices Profit Vertices Gap (%) CPU (s) Profit Vertices Gap (%) CPU (s)

r101 198 9 182 7 8.1 0.1 153 7 22.3 0.11

r102 286 11 286 11 0.0 0.2 275 11 3.8 0.3

r103 293 11 286 10 2.4 0.2 266 10 9.2 0.29

r104 303 12 297 11 2.0 0.2 220 9 27.4 0.21

r105 247 11 247 11 0.0 0.1 212 9 14.2 0.21

r106 293 11 293 11 0.0 0.2 177 7 39.6 0.14

r107 299 13 288 10 3.7 0.2 257 10 14 0.28

r108 308 12 297 11 3.6 0.2 224 9 27.3 0.22

r109 277 12 276 11 0.4 0.2 204 8 26.4 0.2

r110 284 13 281 11 1.1 0.3 276 11 2.8 0.3

r111 297 12 295 11 0.7 0.2 216 8 27.3 0.23

r112 298 12 295 11 1.0 0.2 277 11 7 0.32

Table 4: Results of Solomon’s test problems with clustered geographic data, (m = 1)

solution and the ILS solution in percentage and the CPU time taken to solve the problem.
The last 4 columns report the same data about our OPMTW heuristic.

All computations for the ILS heuristics were carried out on a personal computer with
Intel Core 2 2.5 GHz processor and 3.45 GB Ram. All computations for the OPMTW
heuristics were carried out on a personal computer with Intel Core i5-460M 2.53 GHz
processor and 4.00 GB of Ram. The computational power that was used for both set of
computations is very similar thus we can objectively compare not only the correctness of
the computations but the computational times as well.

The average gap between the result of the ILS heuristics and the optimal solution is only
1.9% for all the problem instances. In the worst case the gap is 9.4%. On the hand, the
average gap between the optimal solution and the OPMTW heuristics is 15.8% with the
worst case reaching 39.6%. Even if the ILS outperforms the OPMTW heuristic approach,
the later still provides high quality results that are quite close to the optimal ones.

The average computation time for all problem instances is the same for both ILS and
OPMTW approaches (0.24s). However the OPMTW approach outperforms the ILS
heuristic in two out of three problem set types. For the C1 type of problems the av-

40

Instance Optimum ILS OPMTW

Name Profit Vertices Profit Vertices Gap (%) CPU (s) Profit Vertices Gap (%) CPU (s)

rc101 219 9 219 9 0.0 0.2 214 10 2.3 0.21

rc102 266 10 259 9 2.6 0.2 247 11 7.1 0.23

rc103 266 10 265 11 0.4 0.3 226 9 15 0.2

rc104 301 11 297 11 1.3 0.3 255 10 15.3 0.26

rc105 244 11 221 11 9.4 0.2 231 10 5.4 0.23

rc106 252 11 239 11 5.2 0.2 188 7 25.4 0.14

rc107 277 10 274 11 1.1 0.2 206 7 25.6 0.16

rc108 298 11 288 11 3.4 0.2 222 8 25.5 0.19

Table 5: Results of Solomon’s test problems with a mix of random and clustered geo-
graphic data, (m = 1)

erage computation time for ILS is 0.33s, OPMTW 2.62s. For the type R1: ILS 0.19s,
OPMTW 0.23s. For the type RC1: ILS 0.23s, OPMTW 0.2s. OPMTW outperforms ILS
in 12 out of 29 problems (in the tables marked as bold numbers), and performs worse
than ILS only for the R type of problems.

In conclusion the ILS approach returns higher quality results than OPMTW, however the
results of the OPMTW are still good and close to the optimal results. The computation
time of the OPMTW is faster for the data sets where object instances are clustered
geographically or clustered objects are mixed with the random objects. For the objets
with randomly generated geographic coordinates the ILS approach finds the results faster.

6.2 Qualitative Evaluation

6.2.1 Used Methodology

We chose to evaluate the solution qualitatively in order to understand how good the
solution is for the user. However before the development of the system some assumptions
had to be made what does ”good” mean for the user. The assumptions have been based
on the literature and author’s personal knowledge.

In order to verify the stated assumptions first of all the appropriate empirical method
for the investigation had to be chosen. Based on the need for our system the indirect
expert based evaluation has been chosen as the empirical method to evaluate the system
qualitatively. Between several reasons of the decision to choose the expert based evalu-
ation some include: the availability of the experts and higher validity of the evaluation.
The validity can be guaranteed because an expert can cover the knowledge about various
types of the users for different age groups, nationalities and interests, whereas performing
a direct experiment with a selected sample from a population could result in biased and
imprecise conclusions.

The system presented in this paper was evaluated qualitatively by the tourism expert
Nadja Sternkopf, who is the member of the Info Team in the main tourist office of Bolzano.
The evaluation was conducted in a format of the interview. The expert used the system
and estimated the satisfaction of the potential users, given their preferences and con-
straints. Moreover the expert evaluated the assumptions that have been made in order
to design the application. The results of the evaluation are summarized in the following

41

subsection.

6.2.2 Outcome

Based on the statistical data kindly provided by the Central Tourist Office of Bolzano
(Azzienda di Soggiorno e Turismo, Piazza Walther-Platz 8), the medium duration of
staying at the hotels of Bolzano was only 1,7% days in the first 6 months of 2011 and
1,8% in the first 6 months of 2010. The statistics suggest that tourists usually stay
in the city just for a very short time period, and thus it can be derived that they are
more interested in day routes rather than the recommendations for a week. This was
also confirmed by the expert working in the tourism office, who also underlined that the
question that is asked by the majority of the tourists is the itinerary suggestion for one
day within the city. This can be explained for the specific case of Bolzano city by the
fact, that most of travellers prefer to stay a longer time in the mountains surrounding
Bolzano, and leave just a short time for visiting the city itself.

When designing the system several assumptions have been taken into account, two of
which are the following:

• a1 - a user prefers the itineraries that are shorter in distance, i.e. the total amount
of travelling between places is minimized

• a2 - if not explicitly stated, a user prefers the itineraries that contain more places,
about which the user expressed positive opinion in her preferences

However the relationship was not specified between the two in case of the contradicting
scenarios, for example how much the user is willing to sacrifice the a1 assumption for the
a2 assumption, i.e. how much would a user walk in order to reach his preferred place of
interest, given its relatively long distance from the actual user position. As stated by the
expert, users are more often willing to sacrifice for the a2 assumption, i.e. they prefer to
skip the places that are of great interest to them if the distance/cost to reach them is not
reasonable.

The potential pitfalls were considered for both cases: when a tourist asks for the route
in the city to an expert (in this case, a person working in the tourism office) and when
a tourist relies on our system for the itinerary planning and does not interact with the
epxerts. Several aspects were considered when comparing the two mentioned recommen-
dation sources. First of all, when suggesting the itineraries the experts more often take
into account the given time constraints by the users rather than their preferences. For
example, if a tourist has only 2-3 hours in the city, the expert has predefined routes to
suggest for him given his time constraints, independently from the possible wishes of the
tourist. In this case the preferences of the tourist are ignored, and any potential alterna-
tive path is not considered, which would possibly still satisfy the given time constraints
and be more satisfactory for the user.

Another disadvantage of consulting an expert rather than the itinerary planning system
are the legal issues. Even if an expert has the sufficient knowledge of the restaurants
and is given the exact preferences of a tourist, the expert cannot advice a specific place
for eating because of the legal terms imposed by the law. The expert, being a part of
the tourist association, has to remain neutral when giving advices about businesses, such
as restaurants. To assist the tourist with the restaurant suggestions the experts usually
give the set of places within the specific geographic region (e.g. an old tow, or a city

42

center), provides the neutral information about all of them and finally lets the user to
make the final decision. On the other hand, the system is not constrained by such legal
terms and therefore can provide a better recommendation by taking into account the user
preferences.

6.2.3 Comparison Analysis

To evaluate the effectiveness of the itinerary planning by the system the following exper-
iment has been conducted. The expert was asked to define a request, that is typically
expressed by a tourist, stating the typical preferences and constraints. The expert then
was asked to use the system on behalf of the tourist and estimate the satisfaction of the
potential user.

The following preferences and constraints identifying the typical tourist request have been
stated by the expert:

Start time - 9am. End time - 6pm. Start point - Walther square. End point - Walther
square.

Preferences:

Landmarks - 100/100. Musuems&galleries - 100/100. Entertainment&events - 50/100.
Nature&environment - 50/100. Pubs, bars, discos - 0/100. Cheap restaurants - 65/100.
Mid-range restaurants - 50/100. Fancy restaurants - 0/100.

The three itineraries that have been generated by the system are displayed in the figure
19.

Figure 19: The three itineraries generated by the system based on the preferences specified
by the expert

The general feedback expressed by the expert toward all three generated itineraries was
positive, as all of them would be feasible for a potential typical tourist. However the
feedback included multiple notes. First of all despite the high preference value for the
category of ”Museums&Galleries” the expert expressed the potential negative opinion of
a user about the adding of the Museum of Modern Art for all three itineraries. The
main motivation was the general unpopularity of the museum itself, even between the
tourist groups who enjoy museums. This implies that in order to improve on this aspect

43

the system can be advanced in one of the two ways: either the subcategories have to
be considered for some of the categories (e.g. the museums have to be split into the
subcategories that define the museum’s type) or additional parameter which defines the
general popularity of a place should be introduced. The latter approach could be more
feasible if the general popularity score would be used in combination with the user’s
preference toward the category of that place.

Out of all three itineraries the expert chose the second one as the best for the potential
tourist. The main reasons why the second option could be more satisfactory for the
tourist were the following: the exploration of the different city disctrict (by going out of
the old town to visit the Victory Monument) and the visit of the castel Roncolo, which is
considered to be one of the top attractions in the city and can be reached by the beautiful
path that leads to it. The second option was preferred over the third one mainly because
of the suggested visiting time for the recommended restaurant - in the third option the
time to visit it was chosen in the late afternoon, which can be unacceptable for some
tourists, as stated by the expert.

One of the suggestions by the expert with respect to the usability of the system was
missing consideration of the number of times a tourist has already been to a given city,
because the recommended itinerary can depend on this factor too.

Taking into account the feedback provided by the expert, the following conclusions have
been drawn about the itinerary planning approach. By analizing the different itineraries
the expert implicitly suggested that the paths connecting the points of interest can be as
much important as the points of interest themselves. For example, the tourists can be
satisfied with the long distances that lead to the points of interest, as long as the path
itself gives satisfaction to the user. Additional benefit can be added for exploring new
areas, such as the new city districts. Therefore in order to improve the system in the
future, it would be possible to assign not only the cost for the edges that connect the
points of interest but also the benefits, which could be determined dynamically in the
same way as the benefit for points of interest.

44

7 Conclusions and Future Work

Planning a good itinerary in an unknown city is a difficult task for a tourist to solve by
herself. There are usually a plenty of factors to consider when trying to pick a satisfactory
places to visit, such as their types, the reachability, the opening hours etc. Moroever the
task becomes even more challenging when an itinerary has to be chosen which connects
all of the selected points in such a way that a tourist would not need to travel excessively
and the trip would be feasible with respect to the opening hours of the places. Normally
the LTOs (Local Tourist Organizations) try to help the tourists to address the mentioned
task. However LTOs usually tend to partially ignore the user profile due to the time
limitations, and they are restricted by the legal constraints, which prevent them from
suggesting the specific businesses (such as restaurants) explicitly in order to maintain the
LTO’s neutrality.

In order to better address the problem of the itinerary planning for tourists when the
opening times of the places are important a new routing problem was introduced in this
work. The Orienteering Problem with Multiple Time Windows (OPMTW) combines the
objectives and constraints of the existing routing and scheduling problems such as Orien-
teering Problem, Vehicle Routing Problem and Travelling Salesman Problem with Time
Windows. An effective and fast iterative local search heuristic method was developed
in order to solve the OPMTW. The heuristic was evaluated quantitavely using the well-
known Solomon’s data-set of the instances for the Vehicle Routing Problem with Time
Windows. The results of the OPMTW were compared both to the results of the ILS
heuristic and the optimal solutions. The performed evaluation showed that the average
profit gap between the presented OPMTW approach and the optimal solutions is 15,8%,
with the worst case reaching only 39.6%. Moreover the OPMTW approach outperformed
the ILS heuristics in two out of three problem set types, showing the superior performance
of the OPMTW for the datasets where the objects were clustered geographically.

The heuristic algorithm was applied in the development of the itinerary planning system
for recommending multiple unrepetitive trips, based on the user preferences, time con-
straints and the context-based information. The algorithm has been implemented for the
client-server architecture together with an application for mobile devices with the iOS
operating system, that is able to generate multiple itineraries in a feasible time for a user.
The developed system has been qualitatively evaluated by an expert working in a tourism
field.

Based on the output of the evaluation, the following potential future improvements have
been considered. First of all in order to better assess the user needs the formulation
of the problem can be modified by adding the profit weights not only to the nodes in
a graph, but also to the edges connecting them. Another potential improvement that
could be considered in the future is the adding of the common-profit parameter for every
node in the graph, which would be static for all tourists independently of their preferences.
Morover the number of times a tourist has alread been to a given city could be considered,
because the suggestion of an itinerary can also depend on this factor.

45

References

[1] Vansteenwegen, P., Van Oudheusden, D. (2007). The mobile tourist guide: an OR
opportunity. OR Insights; 20(3):217.

[2] Mittenthal, J. and Noon, C.E., (1992). ’An insert/delete heuristic for the travel-
ling salesman subset-tour problem with one additional constraint’. Journal of the
Operational Research Society, 43(3): 277-283.

[3] Baldacci, R., Hadjiconstantinou, E., and Mingozzi, A. An exact algorithm for the
Traveling Salesman Problem with Deliveries and Collections. In Proceedings of Net-
works. 2003, 26-41.

[4] Lawrence V. Snyder, Mark S. Daskin, A random-key genetic algorithm for the
generalized traveling salesman problem, European Journal of Operational Re-
search, Volume 174, Issue 1, 1 October 2006, Pages 38-53, ISSN 0377-2217,
10.1016/j.ejor.2004.09.057.

[5] Jozefowiez, N., Glover, F., and Laguna, M. (2008). Multi-objective Meta-heuristics
for the Traveling Salesman Problem with Profits. Journal of Mathematical Modelling
and Algorithms 7, 177-195.

[6] Baraglia, R.; Hidalgo, J.I.; Perego, R.; , ’A hybrid heuristic for the traveling salesman
problem’, Evolutionary Computation, IEEE Transactions on , vol.5, no.6, pp.613-
622.

[7] E. Balas. The Prize Collecting Traveling Salesman Problem. Networks, 19:621–636,
1989.

[8] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guaran-
tees for minimum-weight k-trees and prize-collecting salesmen. In Proceedings of the
27th Annual ACM Symposium on Theory of Computing, pages 277-283, May 1995.

[9] Matthias Joest and Wolfgang Stille. 2002. A user-aware tour proposal framework
using a hybrid optimization approach. In Proceedings of the 10th ACM international
symposium on Advances in geographic information systems (GIS ’02). ACM, New
York, NY, USA, 81-87.

[10] T. Tsiligrides, ’Heuristic methods applied to orienteering’, Journal of the Operational
Re-search Society 35 (1984), 797-809.

[11] Gilbert Laporte, The vehicle routing problem: An overview of exact and approximate
algorithms, European Journal of Operational Research, Volume 59, Issue 3, 25 June
1992, Pages 345-358.

[12] Lpez-Ibez, M., Blum, C., Beam-ACO for the travelling salesman problem with time
windows, Computers & Operations Research, 37 (9) (2010) 1570-1583.

[13] Savelsberg, M.W.P. 1985. Local search in routing problems with time windows. An-
nals of Operations Research 4 285-305.

[14] Focacci, F., Lodi, A., Milano, M. A hybrid exact algorithm for the TSPTW. IN-
FORMS Journal on Computing, 14 4 (2002), pp. 403417.

[15] Righini, G., Salani, M. Decremental state space relaxation strategies and initializa-
tion heuristics for solving the Orienteering Problem with Time Windows with dy-
namic programming, Computers & Operations Research, Volume 36, Issue 4, April
2009, Pages 1191-1203.

[16] Vansteenwegen, P., Souffriau, W., Berghe, G. W.,Van Oudheusden, D. Iterated local
search for the team orienteering problem with time windows, Computers & Opera-
tions Research, Volume 36, Issue 12, December 2009, Pages 3281-3290.

[17] Silver, E.A., (2002) ’An overview of heuristics solution methods’, The 7th Annual
International Conference on Industrial Engineering, Busan, Korea

[18] B. L. Golden, L. Levy and R. Vohra (1987) The orienteering problem. Naval Res.
Logist. 34, 307-318.

[19] M. Gendreau, A. Hertz, G. Laporte and M. Stan (1992) New Insertion and Postopti-
mization Procedures for the Traveling Salesman Problem. Operations Research Vol.
40, No. 6 (Nov. - Dec., 1992), pp. 1086-1094

[20] M. Gendreau, A. Hertz, G. Laporte and M. Stan (1998) A Generalized Insertion
Heuristic for the Traveling Salesman Problem with Time Windows. Operations Re-
search Vol. 46, No. 3 (May - Jun., 1998), pp. 330-335

[21] Lederer, T. Development of Navigation Systems. (2009) Saarbrcken: VDM Verlag.

[22] Solomon M. (1987) Algorithms for the vehicle routing and scheduling problem with
time window constraints. OperationsResearch 1987; 35:25465.

[23] C. Robson. Real World Research: A Resource for Social Scientists and Practitioners-
Researchers, Blackwell (1993).

[24] iOS Human Interface Guidelines, (2011), Apple Inc.
http://developer.apple.com/library/ios/documentation/userexperience/mobilehig

[25] Flickr API, (2011), http://www.flickr.com/services/api/

48

