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Abstract

Time is present in almost all application domains, and many applications have
to store and manage time-varying data. Temporal databases aim to provide
specific support for the management of such data. Data have associated one or
more time dimensions. The valid time indicates when a stored fact was, is, or
will be valid in the modeled reality, whereas the transaction time records when
a fact is stored in the database. A lot of research has been conducted in this
field over the past decades, focusing mainly on data representation, data mod-
els, query languages, indexing, and efficient evaluation algorithms for specific
operators. There is little work about integrating temporal support in a DBMS
in a principled way. The support for time in commercial database management
systems is rather poor, despite the need for the storage and management of
temporal data in many applications.

In thesis we provide a novel solution to support time in RDBMS in a princi-
pled way. We introduce and define two new operators, termed unary and binary
temporal unification, which allow to reduce the temporal operators to the non-
temporal counterparts. Temporal unification is a pre-processing step that tem-
porally aligns the argument relations. Then the corresponding non-temporal op-
erators can be applied on the aligned relations. We define reduction rules for the
most important operators of a temporal algebra. The reduction to non-temporal
operation does not only guarantee snapshot equivalence to the temporal oper-
ators, but it preserves also lineage information and allows to take advantage
of efficient indexing and evaluation strategies in state of the art database sys-
tems. We implemented our solution in the PostgreSQL database management
system. The implementation was done in the database system core, by defining
an SQL extension for temporal unification and modifying the parser, analyzer,
and optimizer accordingly. Two algorithms for unary and binary unification
were integrated into the executor unit of PostgreSQL. An extensive empirical
evaluation of the PostgreSQL implementation shows the scalability of our so-
lution, and that it clearly outperforms a solution that is based on timestamp
normalization.
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Chapter 1

Introduction

1.1 Motivation

Time is present in all possible application domains, and most of the applications
have to capture in one form or another time-varying (or time referenced) data.
Examples of such applications can be found in the financial sector, such as
accounting and banking, in the medical sector for the management of patient
histories, scientific applications, monitoring applications, and in the processing
of sensor and streaming data. All these applications have in common that
keeping just the current state of the modeled reality is not sufficient, rather
they need to keep track of the past and store the history of the relevant data.

Motivated by the need for temporal support in database management
systems, considerable research work has been conducted over the last three
decades about the management and efficient processing of temporal data. The
research ranges from data models and representation and query languages
(e.g., [2, 3, 9, 10]) to the development of operators, index structures, and algo-
rithm to efficiently process such data (e.g., [1, 7, 18, 20, 25]).

Despite the need for the storage and management of temporal data and
many years of active research on temporal databases, the support for time in
most professional and commercially available database management systems
is rather limited. The only temporal support offered in databases are a few
data types, such as Date to store a Calendar date and Period to store a time
interval in a single attribute. Together with such data types, functions and
predicates are provided, e.g., to manipulate dates, to compute the length of
an interval, or to compare two intervals. Although, this support makes some
expression simpler, e.g., to compute a temporal join we can use the intersection
function and the intersection predicate, it does not help for operations such as
union, difference or aggregation. Thus, such extensions do not provide temporal
support in a principled way. This situation forces the application programmer
to use conventional relational database systems merely as enhanced storage
systems and to realize the logic for the processing and management of temporal
data in the application program, which makes the program development more
complicated, error-prone, and costly.

The limited support for the storage and management of temporal data in
(relational) database management systems motivates the research work done in
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this thesis. Thus, the main aim of the thesis to provide support for temporal
operators in a principled way, using as much as possible from the underlying
RDBMS.

1.2 Problem Description

The main problem to process operations such as joins, set operations, and ag-
gregation on temporal data in relational database management systems is due
to the mismatch of temporal data and the relational data model. The relational
system models the data as tables. A table is vertically organized into rows, also
called tuples. The horizontal organization of the table is a fixed set of columns,
where each column represents an attribute. The relational model requires the
data to be in 1NF (1st-normal form), i.e., each attribute assumes an atomic
value.

On the other hand, temporal data is not (or not necessarily) atomic. In this
thesis we assume tuple-timestamping, that is each tuple has a special timestamp
attribute, T , which records the time interval over which the tuple is valid in the
modeled reality. The timestamp is represented as an interval T = [TS , TE),
where TS represents the inclusive starting point of the time interval and TE its
non-inclusive ending point. While such a timestamp attribute can clearly be
stored in a relation in 1NF (i.e., as an atomic attribute), the semantics of an
interval is not just a pair of two numbers, but it represents the set of all time
points between TS and TE . Thus, T is stored as an atomic value, its semantic
however is not atomic. This mismatch prohibits to apply the usual set semantics
and the corresponding operations to manipulate time intervals. For example,
the non-temporal intersection operator will not give the expected result when
it is applied to intersect two temporal relations.

Example 1. Consider the small database shown in Figure 1.1, which we will use
as a running example throughout the thesis. The database consists of two tem-
poral relations, r and s. Both relations have the same schema, (Emp,Dept , T ),
where Emp is an employee name, Dept is a department, and T is a times-
tamp. It is obvious that a non-temporal intersection of r and s would pro-
duce an empty result, i.e., r ∩ s = ∅, since all tuples in the two relations are
different from each other (from a non-temporal perspective). However, the
temporal intersection of the two relation should produce two tuples, namely
r∩T

s = {(Sam,DB, [4, 6)), (Joe,DB, [14, 19))}, since the tuples r1 and s1 inter-
sect over the time interval [4, 6), and r4 and s2 over the time interval [14, 19).

The major problem for the non-applicability of non-temporal operators for
temporal relations is the equality predicate, which is not correctly applied for
set-valued attributes, such as the timestamp attribute T . It returns just one
value true or false for the entire timestamp, rather than one value for each
time point in the timestamp. For instance, the tuples r1 and s1 in Figure 1.1
are obviously not equal if considered as non-temporal tuples. However, with a
temporal semantic they are equal over the common sub-interval [4, 6), for which
equality predicate should return true.

The usual set semantics of the relational data model can be used when the
timestamp attribute represents a single time point. This can be achieved by
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r

Emp Dept T

r1 Sam DB [1, 6)
r2 Ann DB [3, 8)
r3 Ann AI [9, 15)
r4 Joe DB [14, 19)

s

Emp Dept T

s1 Sam DB [4, 11)
s2 Joe DB [12, 21)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

r

r1 = (Sam,DB)

r2 = (Ann,DB) r3 = (Ann,AI)

r4 = (Joe,DB)

s
s1 = (Sam,DB) s2 = (Joe,DB)

Figure 1.1: Sample Database.

either using a point-based data model [22, 23, 24] or by timestamp normaliza-
tion [9, 13, 14]. However, such approaches are computationally prohibitive, and
they do not preserve lineage information.

Therefore, in this thesis we study the problem of providing support for time
in RDBMS in a principled way. Such a solution should be

• efficient,

• preserves lineage information, and

• use current relational database technology as much as possible.

1.3 Contributions

In this thesis we propose a novel solution to support time in RDBMS in a
principled way. The core idea of our approach is to split a temporal relation
(i.e., its tuples) along the timeline into tuples over maximal time intervals such
that all tuples that are valid in such a time interval are constant. In other
words, the tuples are aligned along the time dimension. After this alignment of
time intervals the equality predicate works correctly. Thus, the set semantics of
the relational data model becomes applicable, and non-temporal operators can
be used to obtain correct temporal results. Note that this solution preserves
lineage information and takes advantages of available database technology, such
as indexing and query optimization.

More specifically, the technical contributions of this thesis can be summa-
rized as follows:

• We introduce unary and binary temporal unification as two operators to
align temporal relations.

• Using the two temporal unification operators, we reduce the temporal
operators to non-temporal operators.

• We implement temporal unification and the reduction of the temporal
algebra into non-temporal algebra in PostgreSQL.
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• We conduct extensive empirical evaluations of our algorithms, which show
the scalability of the proposed solution, which clearly outperforms a solu-
tion that is based on normalization.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses related work
in the field of temporal databases. Chapter 3 introduces preliminary concepts
including the temporal data model used in this thesis. Chapter 4 presents the
concept of temporal unification and defines the unary and binary temporal uni-
fication operator. Chapter 5 describes the reduction of temporal operators to
non-temporal operators using the unification operators. Chapter 6 describes the
implementation of the two new operators in the PostgreSQL database system.
Chapter 7 evaluates the runtime behaviour of the new operators and compares
the performance of our solution with a solution based on timestamp normaliza-
tion. Chapter 8 concludes and gives directions for future work.
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Chapter 2

Related Work

Temporal databases have been an active research since several decades, which
investigates various aspects to provide support for the storage and management
of time-referenced data in database management systems. In this section we
will provide an overview about the most important research directions (includ-
ing data models, query languages, and query processing techniques) and results
achieved so far; we also point to limitations of current technologies, which mo-
tivates the work done in this thesis.

2.1 SQL-Based Temporal Query Languages

Dealing with interval based temporal relations using standard SQL is difficult
and expensive as illustrated by Richard T. Snodgrass in [19]. In his book, he
describes how non-temporal SQL can be used to define and query temporal
relations, using operations such as temporal join, different kinds of set oper-
ations, etc. Expressing such queries in SQL tends to be extremely large and
error-prone, e.g., a simple temporal set difference needs to be decomposed into
a UNION of four SELECT statements, each with a nested NOT EXISTS clause,
amounting to a total of 47 lines of SQL code. What is worse, such a statement
cannot be evaluated efficiently by any current database management system.

The earliest approach to explicitly add time semantics to query languages
was to introduce abstract data types in a conventional relational query lan-
guage, such as SQL. The approach consists in the definition of new data types,
predicates, and functions for handling temporal data. The main advantage of
this approach is the availability of timestamp data types in the query language
and the simplification of operations that involve timestamp attributes. The new
predicates are heavily influenced by Allen’s 13 interval relations, and they can be
applied in selection conditions over time intervals, where otherwise inequalities
on the end points are required. Though this approach facilitates the manipu-
lation of single timestamp intervals associated to the data, it does not support
the formulation of temporal queries such as aggregation or set difference.

Lorentzos [9, 14] presents the IXSQL language which supports operations on
(temporal) intervals. The language uses two operators, unfold and fold, to nor-
malize timestamps. The unfold operator transforms an interval based relation
into a time point based relation, by decomposing each interval timestamped tu-
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ple into a set of value-equivalent point timestamped tuples. Then the temporal
operations are applied on this time point based intermediate relation. After-
wards, the fold operation transforms the point-based result relation back into
an interval representation by collapsing value-equivalent tuples with consecutive
time points into maximal intervals. The main drawbacks of this solution are
that the intermediate representation does not preserve linage information and
its size depends on the time granularity.

A different approach, which is completely based on point timestamps, is
SQL/TP proposed by Toman [22]. The main idea is to generalize non-temporal
queries to temporal queries. A temporal relation is considered as a sequence
of non-temporal relations (or snapshots). On each of the snapshots the non-
temporal operations can be applied. While such an approach provides a simple
and well-defined semantics, it is unfeasible for any implementation and user
interaction.

The TSQL2 query language described in [4, 12] proposes syntactic defaults
to make the formulation of temporal queries more convenient. A number of new
keywords and clauses are introduced with implicit temporal semantics. While
the formulation of temporal queries becomes easier, adding temporal support in
a principled and systematic way is difficult with such an approach, since most
non-temporal constructs require different and separate extensions.

The problems with TSQL2 are addressed in ATSQL [5], which aims to offer a
systematic way to construct temporal queries from non-temporal queries. The
main idea of this approach is to first formulate the non-temporal query and
then to add a so-called statement modifier which tells the system to evaluate
the query in a temporal or non-temporal way.

2.2 Query Processing

A lot of past research is dedicated to the development of efficient temporal query
processing strategies, including appropriate indexing structures. The most im-
portant operations that have been investigated are temporal join and temporal
aggregation.

Temporal joins differ from conventional joins in several ways. First, con-
ventional join techniques are designed for the evaluation of joins with equality
predicates. Temporal joins require an intersection predicate, which translate
into inequality conditions on the start and end times of the interval timestamps.
Second, temporal databases are typically larger than non-temporal databases,
since historical data over long time periods are recorded. To efficiently handle
such huge amounts of data, specialized techniques are needed. An overview of
the most important join evaluation strategies and algorithms is provided in [8].
The work in [8, 27] studies the evaluation of temporal joins with different in-
dexing techniques.

One of the most important and perhaps the most difficult temporal opera-
tor is the aggregation, which has been studied in various flavours which mainly
differentiate in how the temporal grouping is accomplished. One of the earliest
solutions for instant temporal aggregation, where the timeline is divided into
time points and for each time point an aggregation group is associated, is the
aggregation tree algorithm proposed by Kline and Snodgrass [11]. This work
has been improved in [15], where the balanced tree algorithm is proposed, which
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avoids worst case scenarios where the aggregation tree ends up in a linear list.
Yang andWidom [26] are the first to propose a disk-based index structure for the
efficient computation of temporal aggregation in the presence of huge amounts
of data such as in data warehouse applications. The temporal multi-dimensional
aggregation operator proposed in [1] is a uniform framework which allows to ex-
press various forms of temporal aggregation, including instant, moving-window,
and span temporal aggregation.

2.3 System Implementations

In spite of the need for temporal support and active research over several decade,
commercial database systems provide little support for temporal data.

The integration of temporal support in the PostgreSQL database system fol-
lows the abstract data type approach. The temporal support is available to the
user by extending the database with the temporal module [17]. This module
adds the definition of the Period datatype, which allows to declare attributes
as anchored time-intervals. For the Period datatype, two type of functions are
defined, namely boolean predicates and period functions. The former merely
allow to evaluate Allen’s 13 interval relations between two Period attributes; ad-
ditionally, comparisons with time points can be done, such as checking whether
a time point is contained in an interval. The period functions introduced in
the temporal module allow to perform basic calculations on time intervals, e.g.,
intersection, union, and minus. Since operations on intervals are not closed,
these functions might throw a runtime error, e.g., for the union of two disjoint
intervals. This module facilitates the formulation of queries over intervals and
supports some operations such as the temporal join and intersection, but it does
not allow to express queries, where tuples need to be split, such as difference or
aggregation.

The Oracle database system provide build-in support for all temporal oper-
ations that are supported in PostgreSQL. This is the definition of the Period
datatype [16] and all predicate and functions associated to it. Additionally,
Oracle adds support for valid and transaction time, which is enabled using the
DBMS WM package, which then allows to declare and create temporal rela-
tions. Querying temporal relations, however, is only possible at a specific time
point; it is not possible, for example, to retrieve the whole history of data, but
only to perform queries on single snapshots. Oracle permits either to explic-
itly specify the time-point in the query or to set an implicit time point for all
following queries by using DBMS WM.GotoDate.

The Teradata Database with release 13.10 will become the database system
that provides most support for temporal data [21]. Similar to PostgreSQL
and Oracle, it will support the Period datatype and all associated functions and
predicates. It has valid and transaction time support in order to create temporal
tables similar to Oracle, including the capability to perform point queries, i.e.,
queries on snapshots. In release 13.10 Teradata announced to support also
temporal statement modifiers in queries; using the keywords SEQUENCED and
VALIDTIME it is possible to perform temporal updates and temporal queries.
However, this support for temporal queries will be limited to simple selects
with inner joins. Statement modifiers for outer joins, set operations, duplicate
elimination, and aggregation are not supported.
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Chapter 3

Preliminaries

In this chapter we introduce some basic concepts and notation about temporal
database systems, which are used in the rest of the thesis.

A non-temporal database stores a segment of real world data, which is often
refereed to as mini-world. This mini-world describes a set of facts, as for example
“The address of client Joe is V ancouver street 8” or “Employee Sam is working
for department DB”. The non-temporal database is kept up to date using
insert, update and delete, to adapt the facts described by the database to the
current state. By keeping the database up to date modifications to the data are
applied, since addresses of clients change and employees might change from one
department to another. As soon as a modification is applied, the old data is
lost, e.g., it is no longer possible to find the old address of a client.

In order to be able to keep this historical information, time is associated to
the data, i.e., the data becomes temporal. By using this time association it is
possible to have the whole history of data in one database, and always be able
to consult data of the past, although it is not valid now.

In the following the most important properties and concepts of temporal
data will be described.

Valid and Transaction Time. The time dimension of temporal data can be
of different point of view, i.e., from the storage or from the mini-world point
of view. Valid time is a time dimension which references to the mini-world
point of view. The information associated to the data is, when was the data
valid in the mini-world. Such information has to be explicitly specified as
the other information to which it is associated. An example of a valid time
information is “employee Joe is working for department DB from 1st May 2000
till 1st June 2000”. The time information which is explicitly specified due to
the employees contract, gives information about the validity of this fact in the
database.

Transaction time is not as valid time explicitly specified, but generated by
the database system using the time of the transaction which modified the data.
The transaction time associated to the data gives information about, when the
data was believed to be valid. An example of transaction time is “employee Joe
is working for department DB from 1st October 2000 to 2nd October 2000”. The
time in this example does not specify the time the employee Joe was working
for department DB, but when it was stored as such. The time in this case
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indicates that the information was stored on October 1, but then either removed
or modified on October 2.

Time Slices and Snapshots. Temporal databases store the whole history of
the data, this means when all tuples from a relation are retrieved then the whole
history is returned. To get just the current state of the database, i.e., the state
of the mini-world which is valid now, the concept of time slices and snapshots
have been introduced. A time slice of the data is a cut at a certain point in
time, e.g., now, resulting in a snapshot of the data at that time. Therefore a
snapshot is a non-temporal relation representing the state of the database at a
certain point in time. The snapshot at the time point now is equivalent to the
state the database would have if it would be non-temporal.

Temporal Sets and Bags. The concept of sets and bags in temporal relations
is similar to their conventional definition. A set is a collection of data which has
no duplicates, whereas a bag is allowed to have them. The main intuition of a
temporal set is, if all possible snapshots of a temporal relation are non-temporal
sets, then this relation is a temporal set and it is a temporal bag otherwise. An
example of a temporal set and bag will be given later in this section.

Point and Interval Based Relations. In a temporal relation the data has
associated timestamps, to represent them although there are various possibili-
ties. The two options which dominate in the temporal databases field are, point
based and interval based. The former associates to each data entry exactly one
time point, this means in a relation one tuple only represents a fact of a single
point in time. To have the same fact on a different time point, a different tuple
has to be inserted into the relation. The latter, the interval based temporal
model, associates time intervals to the data. This means a single tuple can
range over a finite set of consecutive time-points.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

(Sam,DB)

Sam,DB) (Ann,AI)

(Joe,DB)

(a) Temporal Bag.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

(Sam,DB)

(Ann,DB) (Ann,AI)

(Joe,DB)

(b) Temporal Set.

Figure 3.1: Interval Based Relations.

Figure 3.1 shows a graphical example of two interval based relations, where
the time intervals are represented on the time line. For instance we can see the
tuple (Joe,DB) ranging over 5 consecutive time points. The same tuple in the
point based representation would be a set of 5 different tuples, where each covers
just a single time point. In the figure it is also possible to see the difference
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between an interval based temporal bag and an interval based temporal set. All
snapshots in the temporal set are sets, whereas the snapshot at timepoint 4 in
the temporal bag would not result in a set.

Lineage Information. The lineage information is in particular important for
interval based relations. The interval stored in a tuple has more information as
just the single points would have, i.e., the information about the start and end.
Consider the example in Figure 3.1, and the tuples to be contracts of employees,
then by looking at the interval we know that the tuple (Sam,DB, [1, 6)) is a
single contract. In the point based representation this information would be
either lost or needs to be explicitly specified.

Temporal Data Model. This thesis focuses on interval based temporal sets.
The representation of the time intervals is right open [a, b), where a starts the
interval and is included, and b ends it but is not included in the interval. When
refereeing to intervals the shorthand T is commonly used, which is equivalent
to the interval notation [TS , TE). Attribute sets are represented by uppercase
letters as A or (A1, . . . , Ak) is used to refer to a tuple’s non-temporal attributes.
Relations are denoted by lowercase letters in bold face, commonly r and s are
used. Tuples of a relation are denoted by lowercase letters in normal style, e.g,
r ∈ r to denote a tuple r in the relation r.
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Chapter 4

Temporal Unification

In this chapter we introduce and define the concept of temporal unification,
which is the process of temporally aligning tuples in a temporal relation.
This is different from timestamp normalization, which decomposes an interval-
timestamped tuple into a set of point-timestamped tuples, thereby loosing
any lineage information. Instead, temporal unification transforms an interval-
timestamped relation, where tuples are temporally not aligned, into an interval-
timestamped relation, where the timestamps are aligned. That is, tuples are
decomposed into one or more tuples over smaller yet maximal time intervals
such that different tuples either have the same timestamp or can be considered
disjoint. Such a unification step preserves lineage information and allows to
apply set semantics and the usual equality predicate.

4.1 Unary Temporal Unification

4.1.1 Definition

Unary temporal unification is the process of unifying tuples of a single temporal
relation with respect to (equality of) a set of non-temporal attributes, B. That
is, a tuple will be unified with all other tuples of the same relation that have
identical values for the attributes B. Each tuple is split into one or more tuples
over maximal disjoint sub-intervals such that all unified tuples with identical
B-values either have equal timestamps or they are disjoint.

Definition 1. (Unary Temporal Unification) Let r be a temporal relation with
timestamp attribute T , non-temporal attributes A = (A1, . . . , Am), and B ⊆ A.
The unary temporal unification, ΦB(r), of r with respect to attributes B is
defined as follows:

z ∈ ΦB(r) ⇐⇒
∃r ∈ r(z[A] = r[A] ∧ z.T ⊆ r.T ) ∧
∀r ∈ r(r[B] �= z[B] ∨ z.T ⊆ r.T ∨ z.T ∩ r.T = ∅) ∧
∀T ⊃ z.T∃r ∈ r(r[B] = z[B] ∧ r.T ∩ T �= ∅ ∧ T �⊆ r.T )

The first condition requires the existence of a tuple r ∈ r from which z takes
the non-temporal attribute values and which temporally covers z. The second
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condition states that for all tuples, r, that are value-equivalent in the attributes
B, either the timestamp z.T is covered by the timestamp r.T or z and r are not
overlapping at all. The third condition enforces z to be temporally maximal,
i.e., z.T cannot be enlarged without violating condition 2.

Example 2. Consider relation r of the running example and consider to unify
it with respect to the non-temporal attribute Dept . All tuples that match
the equality predicate on Dept will be unified. The result of unary unification
is shown in Figure 4.1. For instance, r3 and r4 have different values for the
attribute Dept , hence no unification is applied, and the two tuples are directly
copied to the output. On the other hand, r1 and r2 have equal Dept-values and
they are temporally overlapping. Both tuples are decomposed into two tuples
over disjoint time intervals. Two of the new tuples have the same timestamp,
namely (Sam,DB, [3, 6)) and (Ann,DB, [3, 6)), whereas the other two new tuples
are disjoint.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 t

r

r1 = (Sam,DB)

r2 = (Ann,DB) r3 = (Ann,AI )

r4 = (Joe,DB)

Φdept(r)

(Sam,DB)

(Sam,DB)

(Ann,DB)

(Ann,DB)

(Ann,AI )

(Joe,DB)

Figure 4.1: Unary Unification.

Theorem 1. Let r be a temporal relation with |r| = n, and let z = ΦB(r) be the

result of unary temporal unification with respect to the non-temporal attributes

B. Then we have |z| ≤ n2.

Proof. We do a proof by induction. Base case: n = 1. The result of unifying a
relation with one tuple gives one tuple, which is trivially satisfied, since no splits
are applied. Inductive case: n > 1. Assume that unary unification produces at
most n2 output tuples on an input relation of size n. Then on an input relation
of size n + 1 at most (n + 1)2 = n2 + 2n + 1 output tuples are produced. To
show that this is correct we argue as follows: n2 output tuples are produced
by n input tuples according to our assumption; one additional input tuple, say
r, splits each of the n input tuples into at most three tuples, thus getting 2n
additional result tuples; and r itself is added to the result. Thus, a single tuple
can produce up to 2n+1 result tuples. Figure 4.2 illustrates the inductive step
from two to three input tuples, where the cardinality of the result increases by
2 ∗ 2 + 1 = 5 tuples.

4.1.2 Algorithm

Figure 4.3 shows an algorithm to compute the temporal unary unification. The
input parameters are a temporal relation, r, with non-temporal attributes A

12
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Figure 4.2: Inductive case.

and a set of non-temporal attributes, B ⊆ A. The algorithm returns the unified
relation r.

The algorithm starts by initializing the result relation z to the empty set.
Then the algorithm iterates over all tuples r of the input relation r and collects
in X all time points, which split r. The first time point is the end point of r
itself. Then the algorithm iterates over all tuples s ∈ r of the input relation
that have the same B-values as r. For each such tuple s the start and the end
point of the timestamp are candidates for splitting points. In particular, if such
points are covered by the interval r.TS , they are added to X. After processing
all tuples s, the variable tS is initialized to the start time point of r, which will
be the start time point of the first sub-interval into which r is split. Then for
each time point tE ∈ X in chronological order, a new tuple that ends at tE and
has the same non-temporal attributes as r is added to the result relation z. For
each new tuple, the end time point tE will be the start time point of the next
tuple.

Algorithm: uUNIFY(r, B)

Input: Argument relation r and set of attributes B.
Output: Result of unary temporal unification ΦB(r).

z ← ∅;
foreach r ∈ r do

X ← {r.TE};
foreach s ∈ r s.t. r[B] = s[B] do

if s.TS > r.TS ∧ s.TS < r.TE then

X ← X ∪ {s.TS};
if s.TE > r.TS ∧ s.TE < r.TE then

X ← X ∪ {s.TE};
tS ← r.TS ;
foreach tE ∈ X in chronological order do

z ← z ∪ {(r.A1, . . . , r.An, [tS , tE))};
tS ← tE ;

return z;

Figure 4.3: Unary Unification Algorithm.
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Complexity. The complexity of the uUNIFY algorithm is O(|r|2), where |r|
is the cardinality of the input relation r. For each tuple r of the input relation
r the algorithm iterates over all tuples of r, in order to find its splitting points,
these can be at most 2 ∗ |r| − 1.

4.2 Binary Temporal Unification

4.2.1 Definition

Binary temporal unification is the process of unifying a temporal relation, r,
with respect to another temporal relation, s, using a join-condition, θ. A tuple
in the argument relation, r, is unified with all tuples in s for which θ is satisfied.
Each tuple r ∈ r is split into one or more tuples over not necessarily disjoint
sub-intervals of r.T such that there exists a new tuple for each common interval
with an s-tuple that matches θ, and the time interval of r is completely covered.

Definition 2. (Binary Temporal Unification) Let r and s be two temporal
relations with timestamp attribute T and let θ be a join-condition over non-
temporal attributes between a tuple in r and a tuple in s. The binary temporal

unification, rΦθs, of r with respect to relation s and condition θ is defined as
follows:

z ∈ rΦθs ⇔
∃r ∈ r∃s ∈ s(θ(r, s) ∧ z[A] = r[A] ∧

z.T = r.T ∩ s.T ∧ z.T �= ∅) ∨
(1)

∃r ∈ r(z[A] = r[A] ∧ z.T ⊆ r.T ∧
∀s ∈ s(¬θ(r, s) ∨ s.T ∩ z.T = ∅) ∧ (2)

∀T ⊃ z.T∃s ∈ s(θ(r, s) ∧ s.T ∩ T �= ∅ ∨ T �⊆ r.T )

The expression of binary unification is a disjunction of two terms 1 and 2.
The first term handles the cases where r and s-tuples satisfy the join condition θ

and have a non-empty common sub-interval. For each such common sub-interval
a tuple z is in the result relation, which has the same non-temporal attributes
as r and the intersection as timestamp attribute, T . The second term handles
those sub-intervals of r’s timestamp r.T , which are not overlapping with any
tuple in s that satisfies θ. For each such sub-interval a tuple z is in the result
relation, which has the same non-temporal attributes as r. The last line of
expression 2 ensures that the non-overlapping sub-intervals are maximal. It
follows directly from the definition that the result tuples specified by the two
expressions 1 and 2 are disjoint.

Example 3. Consider relations r and s of the running example database and
consider to unify r with respect to s using the condition θ ≡ r.Emp = s.Emp ∧
r.Dept = s.Dept . The result of this binary unification operation is shown in
Fig. 4.4(a). For instance, the first result tuple, (Sam,DB, [1, 4)), is produced by
r1 over its sub-interval [1, 4), for which no matching tuple in s exists. The second
result tuple, (Sam,DB, [4, 6)), is produced by r1 and s1 over their common time
interval [4, 6). The binary unification of relation s with respect to r using the
same θ-condition is illustrated in Fig. 4.4(b).

14



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 t

r

r1 = (Sam,DB)

r2 = (Ann,DB) r3 = (Ann,AI )

r4 = (Joe,DB)

s
s1 = (Sam,DB) s2 = (Joe,DB)

rΦθs

(Sam,DB)

(Sam,DB)

(Ann,DB)

(Ann,AI )

(Joe,DB)

(a) r using s
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Figure 4.4: Binary Unification.

Theorem 2. Let r be a temporal relation with |r| = n, s be a temporal relation

with |s| = m, and let z = rΦθs be the result of binary temporal unification with

condition θ. Then we have |z| ≤ 2nm+ n.

Proof. We do a proof by induction. Base case: n = 1. The result of unifying a
relation, r, containing one tuple, r, with a relation, s, with m tuples produces at
most 2m+1 result tuples. There are at most m sub-intervals of r.T that overlap
with the tuples in s and at most m+1 sub-intervals of r.T non overlapping with
any tuple in s. This situation is illustrated in Fig. 4.5, where one tuple in r

produces 2 ∗ 2 + 1 = 5 result tuples using a reference relation of m = 2 tuples.
Inductive case: n > 1. Assume an argument relation with n tuples can have up
to 2nm+ n output tuples, then n+ 1 tuples in the input relation can produce
2(n+1)m+(n+1) tuples, which is correct, since 2mn+n tuples can be produced
by n input tuples and an additional tuple can produce up to 2m+1 new tuples
in the result.

4.2.2 Algorithm

Algorithm 4.6 shows an algorithm to compute the binary unification. It takes
as input an argument relation, r, a reference relation, s, and a join condition, θ,
over the non-temporal attributes of r and s. The algorithm returns the result
of binary unification, rΦθs.

The algorithm initializes the result relation z to the empty set and then
starts iterating over all tuples r ∈ r. For each tuple r it initializes the variable
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Figure 4.5: Base Case.

tS to the start time point of r and iterates over all tuples s in the reference
relation s in chronological order, which fulfill the join condition θ and have
common time points with r. The variable tS stores the time point until a result
has been produced. First, we check if the tuple r has a sub-interval which is not
covered by any s tuple. Since the matching tuples are scanned in chronological
order, no succeeding s tuple will cover the interval [tS , s.TS). Therefore, it is
added to the result and the variable tS is updated. Next the intersecting part
of the tuple r and s is produced and added to the result. The variable tS is
then set to the maximum of its actual value and the end time point of the newly
created result tuple. We have to take the maximum, since an already produced
tuple could have a higher end time point as the actual one. Once all s tuples are
processed, the remaining part of r (if any) not covered by any s tuple is added
to the result relation. When all tuples of the argument relation are processed,
the algorithm terminates and returns the result relation z.

Algorithm: bUNIFY(r, s, θ)

Input: Argument relation r, reference relation s and join condition θ.
Output: Result of binary unification operator rΦθs.

z ← ∅;
foreach r ∈ r do

tS ← r.TS ;
foreach s ∈ s s.t. θ(r, s) ∧ r.T ∩ s.T �= ∅ in chr. order do

if tS < s.TS then

z ← z ∪ {(r.A1, . . . , r.An, [tS , s.TS))};
tS ← s.TS ;

z ← z ∪ {(r.A1, . . . , r.An, [max(r.TS , s.TS),min(r.TE , s.TE)))};
tS ← max(tS , s.TE);

if tS < r.TE then

z ← z ∪ {(r.A1, . . . , r.An, [tS , r.TE))};
return z;

Figure 4.6: Binary Unification Algorithm.

Complexity. The algorithm needs to scan over all tuples of the argument
relation r, and for each such tuple all tuples in s could in the worst case match
the join condition θ. In addition the set of matching tuples needs to be sorted
resulting in a total complexity of O(|r| ∗ |s| ∗ log |s|).
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Chapter 5

Reduction of Temporal

Operators

In this section we show how operators of a temporal algebra can be reduced to
non-temporal operators, using the unary and binary unification operators intro-
duce before. For each temporal operator we begin with an informal description,
followed by a formal definition, and an illustrative example using our sample
database. Then we formulate the reduction rule as a theorem and prove its
correctness. An overview of the reduction rules is given in Table 5.1.

Operator Reduction

Projection πT
B(r) πB(ΦB(r))

Aggregation Gϑ
T
F (r) G,TϑF (ΦG(r))

Difference r−T
s (rΦr[A]=s[A]s)− (sΦr[A]=s[A]r)

Intersection r ∩T
s (rΦr[A]=s[A]s) ∩ (sΦr[A]=s[A]r)

Union r ∪T
s (rΦr[A]=s[A]s) ∪ (sΦr[A]=s[A]r)

Cartesian Product r×T
s (rΦtrues) �r.T=s.T (sΦtruer)

Join r �T
θ s (rΦθs) �θ∧r.T=s.T (sΦθr)

Left Join r
T
θ s (rΦθs) θ∧r.T=s.T (sΦθr)

Right Join r
T
θ s (rΦθs) θ∧r.T=s.T (sΦθr)

Full Join r
T
θ s (rΦθs) θ∧r.T=s.T (sΦθr)

Table 5.1: Temporal Reduction Rules.

5.1 Projection

The projection operator in temporal databases is a unary operator, which ex-
tracts a subset of the non-temporal attributes and the timestamp attribute, T .
It has the form πT

B(r), where r is a temporal relation and B is a subset of the
non-temporal attributes of r. The operator outputs a temporal relation which
has the schema (B, T ).

17



The projection operator can potentially cause duplicates in the result. That
is, although the input is a temporal set, the output might contain duplicates,
if candidate keys are removed. To retain sets, the projection operator has to
be followed by a duplicate elimination step. Duplicate elimination in temporal
databases is often referenced as coalescing [6], which merges value equivalent
tuples (in the non-temporal attributes) that are overlapping or adjacent, thus
removing the so-called sequenced duplicates [19] of a relation. In this thesis
we define duplicate elimination different from coalescing based on the notion of
constant intervals [1]. The reason for this definition is to keep the correlation
of duplicate elimination and aggregation the same as for non-temporal data, i.e.,
duplicate elimination is equivalent to aggregation with no aggregation function
using grouping over all attributes.

Throughout this thesis we assume a duplicate eliminating temporal projec-
tion which always produces sets in the output.

Definition 3. The temporal projection of a relation r on attributes B ⊆ A is
defined as

π
T
B(r) = {z | ∃r ∈ r(z[B] = r[B] ∧ z.T ⊆ r.T ) ∧

∀r ∈ r(r.T ⊇ z.T ∨ r.T ∩ z.T = ∅ ∨ r[B] �= z[B]) ∧
∀T � ⊃ z.T∃r ∈ r(T � �⊆ r.T ∧ T

� ∩ r.T �= ∅ ∧ r[B] = z[B])}

The first line requires the existence of an r-tuple from which z takes the
values of the projected attributes, B, and whose time interval contains z.T .
The second and third lines require z.T to be a constant interval over all tuples
that have the same values for B as z.

Example 4. Figure 5.1 illustrates the temporal set projection on our running
example relation r. For instance, the result tuple (DB, [3, 6)) is produced by
eliminating the duplicates among the tuples r1 and r2.
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r2 = (Ann,DB) r3 = (Ann,AI)

r4 = (Joe,DB)

πT
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(DB)

(AI)

(DB)

Figure 5.1: Temporal Projection.

The following theorem shows how, by using unary temporal unification, the
temporal projection can be reduced to non-temporal projection.

Theorem 3. Let r be a temporal relation with non-temporal attributes A and

timestamp attribute T , and let B be a subset of A. The temporal projection on

r can be reduced to non-temporal projection as follows:

π
T
B(r) ≡ πB,T (ΦB(r)),

where π is the duplicate eliminating projection.

18



Proof. We show the equivalence of the expression produced by the right-hand
side of the theorem and the definition of temporal projection. By expanding
ΦB(r) in Theorem 3, we obtain an expression that is identical to the definition
of temporal projection.

π
T
B(r) ≡ {z | ∃r ∈ r(z�[A] = r[A] ∧ z

�
.T ⊆ r.T ) ∧

∀r ∈ r(r[B] �= z
�[B] ∨ r.T ⊇ z

�
.T ∨ r.T ∩ z

�
.T = ∅) ∧

∀T ⊃ z
�
.T∃r ∈ r(r[B] = z

�[B] ∧ r.T ∩ T �= ∅ ∧ T �⊆ r.T ) ∧
z[B] = z

�[B] ∧ z.T = z
�
.T}

Note that in both cases, in the definition of temporal projection and in the
definition of non-temporal duplicate elimination, duplicates are eliminated due
to the used set semantics.

From the definition of unary temporal unification follows that all unified
tuples (with respect to attributes B) either have equal timestamp attributes or
are disjoint. This implies that all duplicates produced by the projection are
equal over all non-temporal and temporal attributes.

Example 5. Figure 5.2 illustrates the computation of the temporal projection
on attribute Dept using Theorem 3. The first step is to apply unary unification
with respect to the Dept attribute, which is shown in the upper part. Notice the
two tuples (Sam,DB, [3, 6) and (Ann,DB, [3, 6) with the same Dept-value and
the same timestamp. Applying non-temporal projection on unification result
produces the intended result, which is shown in the lower part.
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Figure 5.2: Temporal Projection Reduced to Non-Temporal Projection.

5.2 Aggregation

The instant temporal aggregation operator is a unary operator which requires a
subset of non-temporal attributes, G, of the input relation and a set of aggrega-
tion functions, F , as parameters. For each time point, it evaluates the functions
in F over all tuples that are value-equivalent in the attributes G. In other words,
the operator produces a non-temporal aggregation for each time-point. Since
we use interval-timestamped data and we want to preserve lineage information,
the result is coalesced into constant intervals.
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Definition 4. The temporal aggregation of a relation r using grouping at-
tributes G ⊆ A and aggregation functions F over attributes A is defined as

Gϑ
T
F (r) = {z | ∃r ∈ r(z[G] = r[G] ∧ z.T ⊆ r.T ∧ z[F ] = F (g)) ∧

g = {r�[A] | r� ∈ r ∧ r
�[G] = z[G] ∧ r

�
.T ∩ z.T �= ∅} ∧

∀r ∈ r(r.T ⊇ z.T ∨ r.T ∩ z.T = ∅ ∨ r[G] �= z[G]) ∧
∀T � ⊃ z.T∃r ∈ r(T � �⊆ r.T ∧ T

� ∩ r.T �= ∅ ∧ r[G] = z[G])}

The first condition requires the existence of a tuple r ∈ r from which z

takes its grouping attributes G, whose interval contains z.T , and computes the
aggregation functions F over the grouping set g. The second line builds up the
grouping set g, i.e., all tuples r� ∈ r which have equal attributes for G as z and
contain its time interval z.T . The last two lines require z.T to be a constant
interval over all tuples that have the same values for G as z.

Example 6. Figure 5.3 illustrates temporal aggregation using our running ex-
ample relation, r, as input relation, the attribute Dept for grouping, and the
COUNT aggregation function. For instance, the result tuple (DB, 1, [3, 6)) is
produced by counting the occurrences of tuples with Dept value DB over that
interval, i.e., tuples r1 and r2.
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Figure 5.3: Temporal Aggregation.

The following theorem shows how, by using unary temporal unification, the
temporal aggregation can be reduced to non-temporal aggregation.

Theorem 4. Let r be a temporal relation with non-temporal attributes A and

timestamp attribute T . The temporal aggregation on r using grouping attributes

G and aggregation functions F can be reduced to non-temporal aggregation as

follows:

Gϑ
T
F (r) ≡ G,TϑF (ΦG(r))

Proof. We show the equivalence of the expression produced by the right-hand
side of the theorem and the definition of the temporal aggregation. Thus, we
have to show the following:

Gϑ
T
F (r) ≡ {z | ∃r� ∈ ΦG(r)(z[G] = r

�[G] ∧ z.T = r
�
.T ) ∧ (1)

g = {{r� | r� ∈ ΦG(r) ∧ r
�[G] = z[G] ∧ r

�
.T = z.T}} ∧ (2)

z[F ] = F (g)} (3)
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Consider the sub-expression 1. By expanding the definition of ΦG(r), we get

∃r ∈ r(z�[A] = r[A] ∧ z
�
.T ⊆ r.T ) ∧

∀r ∈ r(r[G] �= z
�[G] ∨ r.T ⊇ z

�
.T ∨ r.T ∩ z

�
.T = ∅) ∧

∀T ⊃ z
�
.T∃r ∈ r(r[G] = z

�[G] ∧ r.T ∩ T �= ∅ ∧ T �⊆ r.T ) ∧
z[G] = z

�[G] ∧ z.T = z
�
.T

The resulting expression is equivalent to the first, third, and fourth line of the
definition of temporal aggregation. It remains to show that g produces in both
cases the same relation, for which we briefly sketch the intuition. Consider the
sub-expression 2. z.T and r�.T are both bound to a unified interval according
to the attributes G. From the definition of unary unification all these intervals
have the same timestamps or are disjoint. Therefore, g in the definition of
temporal aggregation and in the theorem are the same relations for the same
tuple z, except that in the theorem the tuple r� is not projected according to
its non-temporal attributes A. The projection does not cause any conflict, since
g is a bag, therefore no duplicate elimination is applied and the aggregation
functions F are not allowed to be computed over timestamp attributes.

Example 7. Figure 5.4 illustrates the computation of the temporal aggrega-
tion using Theorem 4. The first step is to apply the unary unification with
respect to the Dept attribute, which produces two tuples (Sam,DB, [3, 6) and
(Ann,DB, [3, 6) with the same Dept-value and the same timestamp. Then, by
applying non-temporal aggregation on the unification result we get the intended
result, in particular the value 2 over the interval [3, 6).
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Figure 5.4: Temporal Aggregation Reduced to Non-Temporal Aggregation.

5.3 Difference

The temporal difference is a binary operator which subtracts from the first
relation the tuples for which in the second relation a value-equivalent tuple at
the same time-point exists.

Definition 5. The temporal difference between two temporal relations r and s
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is defined as

r−T
s = {z | ∃r ∈ r(z[A] = r[A] ∧ z.T ⊆ r.T ∧

∀s ∈ s(s[A] = z[A] ⇒ s.T ∩ z.T = ∅) ∧
∀T ⊃ z.T∃s ∈ s(s[A] = z[A] ∧ s.T ∩ T �= ∅ ∨ T �⊆ r.T ))}

The temporal difference contains for each tuple, r ∈ r, a result tuple over all
maximal sub-intervals of r.T , which are not covered by a value-equivalent tuple
in s.

Example 8. Figure 5.5 illustrates the temporal difference for our running ex-
ample. For instance, the result tuple (Sam,DB, [1, 3]) is produced from r1 over
the (maximal) time period that is not covered by any tuple in s with the same
name and department values.
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Figure 5.5: Temporal Difference.

The following theorem shows how, by using binary temporal unification, the
temporal difference operator can be reduced to the non-temporal difference.

Theorem 5. Let r and s be two temporal relations with non-temporal attributes

A and timestamp attribute T . The temporal difference between r and s can be

reduced to the non-temporal difference as follows:

r−T
s ≡ (rΦr[A]=s[A]s)− (sΦr[A]=s[A]r)

Proof. We show the equivalence of the sets produced by the right-hand side
of the theorem and the definition of the temporal difference. Let zr be the
result of rΦr[A]=s[A]s. Then zr can be partitioned into z

�
r and z

��
r , where z

�
r is

produced by expression 1 and z
��
r by expression 2 of Def. 2. In a similar way,

we have zs = sΦr[A]=s[A]r, which can be partitioned into z
�
s and z

��
s . Now we

have to show that r−T
s = (z�r ∪ z

��
r )− (z�s ∪ z

��
s ). First, we show that z�r = z

�
s.

By substituting θ in Def. 2 with r[A] = s[A], the expressions 1 that produce
these two sets become identical and the equivalence follows immediately. Thus,
zr will not be in the result of the non-temporal difference. Since z

�
s and z

��
s

are disjoint and z
�
r = z

�
s we have that z

�
r and z

��
s are disjoint, too, and we get

r −T
s = z

��
r − z

��
s . Second, we show that the sets z

��
r and z

��
s are disjoint by

showing that the corresponding expressions 2 in Def. 2 cannot be satisfied in
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conjunction, i.e.,

∃r ∈ r(z[A] = r[A] ∧ z.T ⊆ r.T ∧
�s ∈ S(r[A] = s[A] ∧ s.T ∩ z.T �= ∅)

∧
∃s ∈ s(z[A] = s[A] ∧ z.T ⊆ s.T ∧

�r ∈ r(r[A] = s[A] ∧ r.T ∩ z.T �= ∅)

is always false, which can easily be seen. Finally, we get r −T
s = z

��
r , and

the expression that produces z
��
r is identical to the definition of the temporal

difference, i.e., ∃r ∈ r(z[A] = r[A]∧z.T ⊆ r.T ∧∀s ∈ s(r[A] �= s[A]∨s.T ∩z.T =
∅) and the intervals are maximal.

Example 9. Figure 5.6 illustrates the computation of the temporal difference
using Theorem 5. Notice that for this operation the binary unification has to
be applied in both directions. Then the non-temporal difference between the
two unification result determines the intended result of temporal aggregation.
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Figure 5.6: Temporal Difference Reduced to Non-Temporal Difference.

5.4 Intersection

The temporal set intersection is a binary operator which retains all tuples of
one relation for which in the other relation a value-equivalent tuple at the same
time-point exists.

Definition 6. The temporal intersection between two temporal relation r and
s is defined as

r ∩T
s = {z | ∃r ∈ r(z[A] = r[A]∧

∃s ∈ s(r[A] = s[A] ∧ z.T = r.T ∩ s.T ∧ z.T �= ∅))}

The temporal intersection contains for each tuple r ∈ r the sub-interval of
r.T which is completely covered by a value equivalent tuple in s.
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Figure 5.7: Temporal Intersection.

Example 10. Figure 5.7 illustrates the temporal intersection for our running
example. For instance, the result tuple (Sam,DB, [4, 5]) is produced from the
intersection of the tuples r1 and s1.

The following theorem shows how, by using binary temporal unification, the
temporal intersection operator can be reduced to the non-temporal intersection.

Theorem 6. Let r and s be two temporal relations with non-temporal attributes

A and timestamp attribute T . The temporal intersection between r and s can be

reduced to non-temporal intersection as follows:

r ∩T
s ≡ (rΦr[A]=s[A]s) ∩ (sΦr[A]=s[A]r)

Proof. The proof for temporal temporal intersection is similar to the proof of
Theorem 5. In this case we need to show that r∩T

s = (z�r∪z
��
r )∩(z�s∪z

��
s ). From

the reasoning of the previous proof we know that z�r = z
��
r , when θ is the equality

predicate r[A] = s[A], hence the non-temporal intersection on the right-hand
side will retain the set z

�
r. Further, we know that z

��
r and z

��
r are disjoint, so

we get r ∩T
s = z

�
r. Finally, we have that the expression that produces z

�
r is

identical to the definition of the temporal intersection, i.e., ∃r ∈ r∃s ∈ s(r[A] =
s[A] ∧ z[A] = r[A] ∧ z.T = r.T ∩ s.T ∧ z.T �= ∅))

Example 11. Figure 5.8 illustrates the computation of the temporal intersec-
tion using Theorem 6. As for the other set operations, the unification is required
in both directions. Then the non-temporal intersection between the two unified
relations determines the intended result of the temporal intersection.
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Figure 5.8: Temporal Intersection Reduced to Non-Temporal Intersection.
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5.5 Union

The temporal set union is a binary operator which retains the data of both input
relations. This operator, like all other set operations, is designed to produce sets,
i.e., duplicates are not retained in the result.

Definition 7. The temporal union between two temporal relation, r and s, is
defined as

r ∪T
s = {z | ∃r ∈ r(z[A] = r[A] ∧ z.T ⊆ r.T ∧

∀s ∈ s(s[A] = z[A] ⇒ s.T ∩ z.T = ∅) ∧
∀T ⊃ z.T∃s ∈ s(s[A] = z[A] ∧ s.T ∩ T �= ∅ ∨ T �⊆ r.T ))

∨
∃r ∈ r(z[A] = r[A] ∧

∃s ∈ s(r[A] = s[A] ∧ z.T = r.T ∩ s.T ))

∨
∃s ∈ s(z[A] = s[A] ∧ z.T ⊆ s.T ∧

∀r ∈ s(r[A] = z[A] ⇒ r.T ∩ z.T = ∅) ∧
∀T ⊃ z.T∃r ∈ r(r[A] = z[A] ∧ r.T ∩ T �= ∅ ∨ T �⊆ s.T ))}

The temporal union contains for each tuple r ∈ r and s ∈ s all those maximal
sub-intervals, which are not covered by a value-equivalent tuple in the other
relation. Furthermore, it contains for each tuple r ∈ r the sub-interval which
is completely covered by a value-equivalent tuple s ∈ s. This expression makes
sure that the result does not contain duplicates.

Example 12. Figure 5.9 illustrates the temporal union for our running exam-
ple. For instance, the result tuple (Sam,DB, [1, 3]) is produced from the tuple
r1 and the tuple (Sam,DB, [4, 5]) from the duplicate elimination of tuples r1

and s1 over that sub-interval.
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Figure 5.9: Temporal Union.

The following theorem shows how, by using binary temporal unification, the
temporal union operator can be reduced to the non-temporal union.
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Theorem 7. Let r and s be two temporal relations with non-temporal attributes

A and timestamp attribute T . The temporal union between r and s can be

reduced to non-temporal union as follows:

r ∪T
s ≡ (rΦr[A]=s[A]s) ∪ (sΦr[A]=s[A]r)

Proof. To proof this theorem, we apply the same procedure as for the previous
proofs. We show that the reduction rule r∪T

s ≡ (rΦr[A]=s[A]s)∪ (sΦr[A]=s[A]r)
is correct by showing that r ∪T

s = (z�r ∪ z
��
r ) ∪ (z�s ∪ z

��
s ). We know that z

��
r

is disjoint from all other involved sets, and therefore it will be retained in the
result of the non-temporal union. The same holds for the set z��s , which is also
retained in the result. Since z

�
r = z

�
s, the non-temporal union will retain only

one of them (e.g., z�r) in the result, and we get r∪T
s = z

��
r ∪z

�
r ∪z

��
s . Finally, by

substituting z
��
r , z

�
r, and z

�
r with the expression producing them in a disjunction,

the right-hand side becomes identical to the definition of temporal union.

Example 13. Figure 5.10 illustrates the computation of the temporal inter-
section using Theorem 7. After applying binary unification, the set union of
the two unification results produces the intended result. Note that the tuple
Sam,DB, [4, 6), which appears in both unification results, appears only once in
the final result (due to the set semantics of the non-temporal union).
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Figure 5.10: Temporal Union Reduced to Non-Temporal Union.

5.6 Inner Join

The temporal inner join is a binary operator that uses a boolean predicate, θ,
as a join-condition over the non-temporal attributes of the two input relations.
The result of the temporal join contains all pairs of tuples from the first and
the second argument relation that satisfy θ, ranging over the common temporal
sub-interval.

Definition 8. The temporal inner join between two temporal relation r and s
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using join-condition θ is defined as

r �T
θ s = {z | ∃r ∈ rs ∈ s(z[A] = r[A] ◦ s[A] ∧ θ(r, s) ∧

z.T = r.T ∩ s.T ∧ z.T �= ∅)}

The temporal join contains the concatenation of all r- and s-tuples that
satisfy the join predicate θ and which are temporally overlapping; the non-empty
intersection of the two timestamps determines the timestamp of the result tuple.

Example 14. Figure 5.11 illustrates the temporal inner join for our running
example, when θ is an equality predicate between the corresponding Dept at-
tributes.
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Figure 5.11: Temporal Inner Join.

The following theorem shows how, by using binary temporal unification, the
temporal union operator can be reduced to the non-temporal union.

Theorem 8. Let r and s be two temporal relations with non-temporal attributes

A and timestamp attribute T . The temporal join between r and s can be reduced

to the non-temporal join as follows:

r �T
θ s ≡ (rΦθs) �θ∧r.T=s.T (sΦθr)

Proof. To proof the reduction of the temporal join we apply the same strategy
as for the set operations. However, for the general θ-join we have that zr = rΦθs

and zs = sΦθr. As before, zr is partitioned into z�r and z��r on the expressions 1
and 2, respectively. Similarly, z�s and z��s are the partitions of zs. We then show
that r �T

θ s = (z�r∪z��r ) �θ∧r.T=s.T (z�s∪z��s ), where r.T is the timestamp attribute
of the set (z�r∪z

��
r ) and s.T is the timestamp attribute of the set (z�s∪z

��
s ). First,

we show that the sets z
��
r and z

��
s do not contain tuples that satisfy θ(z��r , z

��
s )

and have equal timestamp attributes. By considering the expression 2 in Def. 2,
which produces the two sets, we show that they are not satisfiable in conjunction:

θ(z��r , z
��
s ) ∧ z

��
r .T = z

��
s .T ∧

∃r ∈ r(z��r [A] = r[A] ∧ z
��
r .T ⊆ r.T ∧

�s ∈ S(θ(r, s) ∧ s.T ∩ z
��
r .T �= ∅)

∧
∃s ∈ s(z��s [A] = s[A] ∧ z

��
s .T ⊆ s.T ∧

�r ∈ r(θ(r, s) ∧ r.T ∩ z
��
s .T �= ∅)
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Second, we show that the sets z
�
r and z

��
s do not contain tuples that satisfy

θ(z�r, z
��
s ) and have equal timestamp attributes, as follows:

θ(z�r, z
��
s ) ∧ z

�
r.T = z

��
s .T ∧

∃r ∈ r∃s ∈ s(θ(r, s) ∧ z
�
r[A] = r[A] ∧

z
�
r.T = r.T ∩ s.T ∧ z

�
r.T �= ∅)

∧
∃s ∈ s(z��s [A] = s[A] ∧ z

��
s .T ⊆ s.T ∧

�r ∈ r(θ(r, s) ∧ r.T ∩ z
��
s .T �= ∅)

Similarly, we can show the same for z
��
r and z

�
s. The non-temporal θ-join will

therefore only match tuples from the sets z
�
r and z

�
s, and we get r �T

θ s =
z
�
r �θ∧r.T=s.T z

�
s. Next, we can insert the expressions from which z

�
r and z

�
s are

produced into the non-temporal join expression, and we get

r �T
θ s ≡ {z | z = z

�
r ◦ z�s ∧ z

�
r.T = z

�
s.T ∧

∃r ∈ r∃s ∈ s(θ(r, s) ∧ z
�
r[A] = r[A] ∧ z

�
s[A] = s[A] ∧

z
�
r.T = r.T ∩ s.T ∧ z

�
s.T = r.T ∩ s.T )}

Note that both expressions can be merged into a single exists clause, since
we do not add any restrictions to the variables of each expression. It is now
possible to see that the above expression coincides with the definition of the
temporal θ-join. To have exact correspondence although, the reduction using
binary temporal unification needs an additional projection in order to eliminate
the duplicate timestamp attributes caused by the concatenation of attributes,
if those are retained by the non-temporal join.

Example 15. Figure 5.12 illustrates the computation of the temporal inner
join using Theorem 8. Notice that the non-temporal join treats the timestamp
attributes as a non-temporal attribute and compares them using equality.
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Figure 5.12: Temporal Join Reduced to Non-Temporal Join.

The temporal Cartesian product can be produced using the same procedure
by using true as the θ condition.
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5.7 Outer Join

The temporal left outer join is a binary operator using a boolean predicate
θ, where θ is a join-condition over the non-temporal attributes of the input
relations. The result of the temporal join are all combinations of non-temporal
attributes of the first and second argument relation that satisfy θ, ranging over
the common time sub-interval. All maximal sub-intervals of tuples of the first
input relation that are not covered by any tuple in the second relation but
matching θ are retained in the result, with NULL values in place of the second
relation attribute values.

There exist two other forms of temporal outer joins, one is the right outer
join being the symmetric counterpart to the left join. The third form of outer
join is the full outer join, which is the combination of both.

Definition 9. The temporal left join between two temporal relation r and s

using join-condition θ is defined as

r
T
θ s = {z | ∃r ∈ r(∃s ∈ s(z[A] = r[A] ◦ s[A] ∧ θ(r, s) ∧ z.T = r.T ∩ s.T ∨

z[A] = r[A] ◦ (⊥, . . . ,⊥) ∧ z.T ⊆ r.T ∧
∀s ∈ s(¬θ(r, s) ∨ s.T ∩ z.T = ∅) ∧
∀T ⊃ z.T∃s ∈ s(θ(r, s) ∧ s.T ∩ T �= ∅ ∨ T �⊆ r.T ))}

The temporal left join contains each concatenation of r- and s-tuples that
satisfy the join predicate θ and which are temporally overlapping; the overlap-
ping part is the timestamp of the result tuple. For each maximal sub-interval T
of a tuple r ∈ r, which is not covered by a tuple s ∈ s that satisfies θ, the result
contains a combination of the form r[A] ◦ (⊥, . . . ,⊥) and T , where (⊥, . . . ,⊥)
are NULL values in place of the missing s[A].

Example 16. Figure 5.13 illustrates the temporal left outer join for our running
example when θ is an equality predicate over the Dept attributes.
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Figure 5.13: Temporal Left Outer Join.

The following theorem shows how, by using binary temporal unification, the
temporal union operator can be reduced to the non-temporal union.

Theorem 9. Let r and s be two temporal relations with non-temporal attributes

A and timestamp attribute T . The temporal left outer join between r and s can
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be reduced to non-temporal left outer join as follows:

r
T
θ s ≡ (rΦθs) θ∧r.T=s.T (sΦθr)

Proof. The proof for the correctness of reducing the temporal left join to the
non-temporal left join using binary unification is similar to the proof of Theo-
rem 8. The only difference is that the set z��r is retained by the non-temporal
left join, and since those tuples in r do not match any tuple in s, their join
is concatenated with NULL values. Then, we get the right hand side of the
theorem corresponding to the definition of the temporal left outer join.

Example 17. Figure 5.14 illustrates the computation of the temporal left outer
join using Theorem 9.
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Figure 5.14: Temporal Left Join Reduced to Non-Temporal Left Join.

The other temporal outer joins as right and full outer join can similarly be
reduced to their non-temporal corresponding outer join.s
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Chapter 6

Implementation

In this section we describe an implementation of the temporal algebra in the
PostgreSQL database management system. For the temporal unification two
new operators have been implemented for unary and binary unification. The in-
dividual temporal operators are then realized using the reduction rules discussed
in the previous chapter. Such a solution significantly increases the efficiency of
the temporal operators compared to middle-ware solutions, since middle-ware
solutions need to fetch the data from the database server over sockets. The
implementation was done using version 8.4.2 of PostgreSQL.

6.1 The PostgreSQL Query Flow Model

The PostgreSQL database system adopts a client-server architecture. The client
connects to the database server over a socket and communicates with the server
following a specific protocol. The result computed by the database server is then
send back to the client via a network socket. The actual work of the database
server is between these two points: a query is requested by the client and the
query result is returned to the client.

To answer a SQL query requested by the client, the PostgreSQL server fol-
lows a well-defined flow of control from the point the query is issued to the point
when specific algorithms are executed to manipulate the stored data according
to the user query in order to generate the final query result. Figure 6.1 shows
the most important steps of this workflow. Each stage has a well defined input
and produces a well defined output. The output of the last stage is the answer
to the query request. In the following, these stages are described in more detail.

Figure 6.1: PostgreSQL Query Flow.

6.1.1 Parser

The first stage in query processing is to parse the input query. The query is
sent to the database server as a string, i.e., a sequence of characters, which
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need to be checked for syntactic correctness. This is done in the parsing phase.
The parser in PostgreSQL is implemented using LEX and YACC, where the
former is a lexical analyzer and the latter is a parser generator for context free
grammars.

The parser transforms the string sent by the client into a so-called Parse

Tree, which is stored in a specific C-struct, named ParseTree, and represents
the output of the parsing stage. The output of this stage is a tree, since SQL
allows nested queries, i.e., an item in the FROM clause can be a simple relation or a
sub-query. Such recursive structures can easily be represented in tree structures.
The ParseTree is then passed to the next stage.

6.1.2 Analyzer and Rewriter

The analyzer receives the parse tree from the Parser as input and performs
various checks on it. For instance, it must ensure that all specified items in the
query are actually present in the database system, i.e., all specified relations
exist and the user is allowed to access them. Furthermore, a check is performed
to verify that all columns referenced in the query exist and whether the operators
specified in the query can be applied to these columns.

The analyzer is implemented recursively. It starts at the bottom of the parse
tree, and in a bottom up approach it incrementally constructs a query tree. The
query tree is stored in a C-struct, named QueryTree, and has the same structure
as the parse tree, but it contains additional information which is needed for
further analysis in the following stages. The main difference between the parse
tree and the query tree is that in the query tree all columns of the involved
relations are explicitly specified, e.g., a � in the SELECT clause is expanded to
the actual column names, including additional information such as data types.

The rewriter in this combined phase performs modifications on the query
tree by adding further information, most importantly by replacing SQL views
with their definition in order for the next steps to be view independent. The
structure of the tree is not changed.

6.1.3 Planner

The task of the planner is to find an optimal plan for the query execution. It
takes as input the query tree from the previous stage and tries to find the most
efficient way to execute the given query. Similar to the analyzer, the planner
operates recursively, starting at the bottom of the query tree and generating
paths which are suitable to execute. In a path the algebraic operators are
replaced by specific algorithms together with the required parameters and the
estimated execution cost. For instance, a join can be replaced by a nested loop
join or a merge join, where the latter might require an additional sorting step.
When more paths are available, the planner chooses the one with the lowest
estimated cost.

The PostgreSQL query planner especially focuses on ordered outputs. Some
algorithms, such as merge join or aggregation/grouping, produce sorted results,
which might be helpful for the choice of the algorithm that manipulates the
data next.

The planner returns a plan tree, which is stored in a C-struct, named
PlanTree. In the plan tree all operators are replaced by specific algorithms
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together with relevant parameters and an the expected cost. A part of the in-
formation stored in the plan tree can be retrieved by issuing the SQL Explain

command.

6.1.4 Executor

The executor stage takes as input the plan tree struct from the previous step and
makes it ready for execution. Each node in the plan tree specifies an algorithm,
where each algorithm is realized by three functions, which we describe next;
Algo is a placeholder for the actual name of an algorithm.

ExecInitAlgo. This function is called before the actual algorithm is executed.
It takes as input a node of the plan tree. The function performs all initializations
for an algorithm as well as for all relevant sub-nodes. The return value of
this function is a C-struct, named AlgoState, where the algorithm stores state
information during its execution; this struct is passed to all remaining functions.

ExecAlgo. This function implements the execution of an algorithm. Its takes
as input the current state information AlgoState returned by the initialization
function. The output of this function is either a single result tuple or NULL,
which indicates the termination of the algorithm. The struct AlgoState can
be used to retrieve tuples from the sub-nodes of the current algorithm and to
store context information, which will be available the next time this function is
called.

ExecEndAlgo. This function performs clean-up tasks such as releasing the
memory that was allocated during the initialization and execution stage. The
ExecEndAlgo functions are recursively called for all sub-nodes of the current
node.

6.2 Unary Unification

6.2.1 Overview

The implementation of the unary unification operator in PostgreSQL require to
go through all steps of the previously described query flow, from the definition
of a grammar in the parsing step to the final execution of the specific algorithm.
Thereby, we tried to reuse existing code as much as possible.

The most critical point for the implementation of unary unification is to
avoid the nested loop in the algorithm in Figure 4.3, which finds for each tuple
r in the argument relation all other tuples which have identical values for the
attributes B and whose either start or end timestamp falls into the interval of
r. This can be achieved by re-using an (non-temporal) internal join provided
by the DBMS. Then the result of this join is scanned and all time points are
processed. The drawback of such a solution would be that all time points need
to be stored in memory, since they have to be processed in chronological order.
This although is not feasible, as to much main memory could be required.

Since we are only interested in the time points and not in the intervals of
each matching tuple s, we could alternatively first perform the union of all start
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and end points, including the attributes B, and then join the relation r with
the result. Afterwards, we have to sort according to all attributes from the
left part of the join and the time point of the right part, which allows us to
process the time points in chronological order. Thus, the query to realize the
unification operation ΦB(r) is as follows: r θ(πB,TS (r)∪πB,TE (r)), where θ is
an equality predicate over the attributes B of the left and right join expression
and the containment of the right time point in the left time interval. Following
this join, we apply a projection to remove one instance of the attributes B, due
to the join they are duplicated in the schema.

Following the above strategy, the implementation of the unary unification
algorithm has been divided into three steps:

1. perform a non-temporal Left Join to produce z
�;

2. sort z�;

3. produce the result of unary unification while scanning z
�.

Figure 6.2 illustrates step 3 with three tuples, z�1, z
�
2, and z�3. Each tuple is in

the result of the join, where everything except the last attribute comes from the
left relation of the join, denoted as rx. The last attribute of the join result is a
time point, denoted as tx. The relation is sorted according to all attributes. Now
we start to produce result tuples of the unary unification. When reading the
first tuple, z�1, a tuple from the start point of r1 till the time point t1 is produced
(since we know that the time points are sorted chronologically). Next, we store
tuple z�1 and read z�2. Since both tuples have the same left part (r1), we produce
a new tuple from time point t1 to time point t2. The tuple z�1 is replaced by
z�2. Then, z

�
3 is scanned. Since z�3 has a different left part (r2), we can finish the

previous tuple by producing a new tuple from t2 to the end time of r1. Then
we proceed with z�3 as we did for z�1.

r1

r1

r2

z�1 = r1 ◦ t1

z�2 = r1 ◦ t2

z�3 = r2 ◦ t1

t1

t2

t1

Figure 6.2: Unary Unification from Left Join.

Example 18. Consider the unary unification ΦDept(r) using our running
example. First, we build the join expression r/rl θ(πDept,TS/P (r) ∪
πDept,TE/P (r))/rr, where / is the rename operator and θ is and equality predi-
cate over the left and right Dept attributes and the containment of the right time
point in the left time interval, i.e., θ ≡ rl.Dept = rr.Dept∧rr.P > rl.TS∧rr.P <

rl.TE . Then we project the result according to rl.Dept , rl.T, rr.P , to remove
the duplicated Dept attribute resulting from rl. The result of this expression is
shown in Table 6.1.

The next step is to sort the result according to all attributes. This guarantees
that joins for each original left tuple (rl) are consecutive and the time points
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rl rr

Emp Dept T P

j1 Ann AI [9, 15) ⊥
j2 Ann DB [3, 8) 6
j3 Joe DB [14, 19) ⊥
j4 Sam DB [1, 6) 3

Table 6.1: Join Result to compute Unary Unification.

P of the original right tuple (rr) are sorted in chronological order. We can see
that the result tuple j1 has a NULL value for attribute P . That is, there is no
joining tuple and therefore the tuple corresponding to rl can be added to the
result, which is shown as tuple u1 in Table 6.2. The tuple j2 has a value for P ,
so we produce the tuple u2. Since no more joins for this rl exist (j3 has different
attribute values for rl), we add u3 as a second result tuple.

Emp Dept T

u1 Ann AI [9, 15)
u2 Ann DB [3, 6)
u3 Ann DB [5, 8)
u4 Joe DB [14, 19)
u5 Sam DB [1, 3)
u6 Sam DB [3, 6)

Table 6.2: Result of Φr(Dept).

In the following we describe in detail the individual steps of the implemen-
tation of the unary unification algorithm.

6.2.2 Parser

To integrate the unary unification operator into the SQL language we introduce
a new keyword UNIFY, which requires a relation and a list of attributes as input.
The required modifications in PostgreSQL’s grammar file gram.y are as follows:

table_ref:

UNIFY table_ref USING ’(’ name_list ’)’

{ ... };

| UNIFY table_ref USING ’(’ ’)’

{ ... };

Two new roles for the operator are introduced, where at the end the operator
reduces to a table_ref, which is an item of SQL’s FROM clause. Thus, the
operator can be used as a conventional relation in the language. The operator
starts by specifying the keyword UNIFY, followed by a relation or sub-query, then
the keyword USING and a list of comma-separated attributes in parentheses.
Since a list of attributes defined in PostgreSQL cannot be empty, a second rule
covers the case when the operator gets the empty set of attributes to unify. As
an example of the new grammar, the SQL statement for the expression ΦDept(r)
is as follows:
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Select emp, dept, ts, te

From Unify r

Using (dept);

When the parser reduces to the unary unification rules, a new C-struct is
created, called UUnifyExr, which represents a new node in a parse tree. The
C-struct UUnifyExr is implemented as follows:

struct UUnifyExpr

{

NodeTag type; /* type of this struct */

Node *arg; /* argument subtree */

List *using; /* list of attributes to unify, if any */

}

The first variable is a type tag and is required for PostgreSQL’s pseudo object
orientation in order to recognize the type of a node (i.e., the type of the struct).
The type variable is initialized to T UUnifyExpr. The second variable can store a
general node, which in this case represents the argument relation, e.g., a relation
name or a sub-statement. As a third variable the list of attributes to unify is
stored; this variable can be NIL, which indicates that no attribute is passed to
the operator.

6.2.3 Analyzer and Rewriter

The analysis phase gets the parse tree as input and transforms it into a query
tree. The newly created UUnifyExr of the parse tree has to be analyzed and
transformed to a node of the query tree structure.

As first step, the underlying join sub-statement is generated from the given
information, which is then inserted as the new argument of the unification state-
ment. By creating this sub-statement, the analysis can be done by the join subn-
ode, since it performs checks if the argument relation exists and if all attributes
are present and accessible by the user. So no more work for the analysis stage
has to be performed. This is also true for the rewriting stage. The argument
passed to the unification operator is directly passed to the join sub-node, which
takes care that views are correctly rewritten.

6.2.4 Planner

In this stage, the unary unification statement has to be replaced by a plan-
ning node, which represents the unary unification algorithm. As before, our
statement now has only one argument relation, which is the join sub-statement
generated before. The planner operates recursively. When planning the unifi-
cation node, the information from the sub-statement is already available, i.e.,
information about the assumed number of rows returned by the sub-statement,
the estimated cost, and whether the data is sorted according to some attributes.
For the unary unification operator, we have to approximate the same informa-
tion an deliver it to the planner.

To approximate the number of rows produce by the unary unification algo-
rithm, we use a simple formula, which calculates the maximum number of rows
the algorithm can produce. By scanning the input from the sub node, for each
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Figure 6.3: Example Explain Unary Unify.

tuple of the input at most two tuples can be produced, so we can use the infor-
mation from the sub-node about the approximated number of rows produced
by it and multiply it by a factor of 2. This information is stored in the planning
node.

For the cost approximation we use also a simple formula, which calculates
the cost of comparing each tuple with the next. Therefore, the cost of the
algorithm is approximated as cost = cpu operator cost ∗numRows ∗numCols,
where cpu operator cost is the cost unit of one cpu operation, numRows is the
approximated number of returned rows, and numCols the number of columns
of a tuple. Note that this formula needs not to consider the cost of sorting, since
this is done by the sorting node itself, which is inserted if not already done.

Since the unary unification operator produces a sorted result according to
all tuple attributes, this information is delivered to the planner. Using this
information, the planner can optimize the operators that follow the unary uni-
fication.

In the planning stage, the unary unification statement is transformed into a
planning node which is represented by the following C-struct:

struct UUnify

{

Plan plan;

int numCols; /* number of columns in total */

Oid *uniqOperators; /* equality operators to compare with */

};

The first variable is of type plan struct, in which the information for the planner
is stored, such as number of returned rows and cost; this variable allows the
planner to process this UUnify struct like all other planning nodes. The second
variable stores the number of columns of the input, which is needed during the
execution to derive how to process the input. The last variable is an array of
equality operators in order to be able to compare tuples.

Example 19. Figure 6.3 shows the graphical execution plan of the unary uni-
fication operator in our running example, using Dept as unification attribute.
The UNION statement is executed by appending one relation to the other and
then performing duplicate elimination using hash aggregation. Then the result
is joined with the original relation using a hash left join, the result is sorted,
and finally unary unification is applied.
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6.2.5 Executor

ExecInitUUnify. The initialization function of the algorithm uUNIFY re-
ceives the PlanNode from the planner and creates a context information struct
UUnifyState, which is initialized with the information from the planner. Then
the join sub-node is initialized and stored in the variable subnode in the state
information. Next, memory to store two input tuples, tup and next, is allocated,
and a buffer, buff , to store two result tuples is initialized.

ExecUUnify. Function 6.4 shows the pseudo code of the ExecUUnify function,
which differentiates between three types (or phases) in the tuple generation:
start, intermediate, and end. Recall the scenario shown in Figure 6.2. The start
tuple is produced over the interval from the start timestamp of r1 to t1. The
intermediate tuple is from t1 to t2 (since z�1 and z�2 are produced by the same left
tuple of the join). Finally, the end tuple is from t2 till the end of r1 (since the
next tuple was produced from a different left tuple). If a tuple has no right part
in the join, i.e., t is NULL, the start tuple stretches over the entire timestamp.

The function ExecUUnify gets as input the state information UUnifyState

and returns either a single output tuple or NULL, which indicates the termination
of the operation. If the function is called for the first time, it fetches two tuples
from its subnode using ExecProcNode. If the subnode was not empty, the start
tuple from the first argument tuple is generated and added to the buffer.

Next, if the buffer does not contain tuples created in this or in the previous
call, the algorithm checks whether the current tuple n.tup is NULL; if so, the
algorithm terminates and returns NULL. Otherwise, if n.tup and n.next where
produced by the same tuple on the left of the join, an intermediate tuple is
produced and added to the buffer; a new tuple is fetched from the subnode. If
n.tup and n.next do not share the same left tuple from the join, the end tuple
of the current tuple is produced, provided that the time point from the join is
not NULL. Then, a new tuple is fetched from the subnode. Finally, if the buffer
contains some tuples, the first one is retrieved and returned.

ExecEndUUnify. In the clean-up function of the unary unification algorithm
the ExecEnd function of the subnode is called recursively and the memory allo-
cated in the initialization step is released.

6.3 Binary Unification

6.3.1 Overview

The implementation of the binary unification operator in the PostgreSQL
database server follows the same strategy as the implementation of unary unifi-
cation. The binary unification algorithm (see Figure 4.6) contains also a nested
loop which can be transformed into a join expression, which allows to take advan-
tage of existing optimization rules and evaluation algorithms. More specifically,
the binary unification algorithm is divided into the following three step:

1. perform a non-temporal Left Join to produce z
�;

2. sort z�;
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Algorithm: ExecUUnify

Input: State information n.
Output: A single output tuple or NULL.
if function is called for the first time then

n.tup ← ExecProcNode(n.subnode);
n.next ← ExecProcNode(n.subnode);
produce start of n.tup if n.tup �= NULL (store in n.buff );

while n.buff is empty do

if n.tup is NULL then

return NULL ;

if n.tup[A] = n.next[A] ∧ n.tup.T = n.next.T then

produce intermediate of n.tup and n.next (store in n.buff );
n.tup ← next;
n.next ← ExecProcNode(n.subnode);

else

produce end of n.tup if n.tup.t �= NULL (store in n.buff );
n.tup ← next;
n.next ← ExecProcNode(n.subnode);
produce start of n.tup if n.tup �= NULL (store in n.buff );

new ← first tuple in n.buff ;
remove new from n.buff ;
return new;

Figure 6.4: Pseudo Code of ExecUUnify.

3. produce the result of binary unify while scanning z
�.

In step 1 a left join expression, rΦθs is, r θ∧r.T∩s.T �=∅s, is created to produce
the nested loop. Then a projection is added to remove all non-temporal at-
tributes of s, preserving only its timestamp attributes. Step 2 sorts the result of
step 1 according to the attributes that derive from relation r to ensure that all
tuples that are derived from the same r tuple are consecutive. Additionally, we
also sort according to the start timestamp derived from relation s, which corre-
sponds to the chronological order in the inner loop of the algorithm. In step 3
the result of step 2 is scanned and the result tuples of the binary unification
operator can be produced.

Figure 6.5 illustrates the binary unification using a left join. Three result
tuples of step 2 are shown, where rx and sx correspond to the part of the join
derived from the r and s relations, respectively. First, we read tuple z�1, r1 has
no overlapping starting part with s1, so we produce its starting not covered part.
Then, we produce the intersection of r1 and s1 and add it to the result; we need
to store how far the r1 tuple was processed, i.e., till the end of s1. Second, we
read the second tuple z�2. Since the tuple r1 was not processed to the start of
s2, we need to produce this part now. Additionally, we produce the intersection
part of r1 and s2, and store again the point up to which r1 was processed; z�2
becomes the previous tuple. When the third tuple z�3 is read, we recognize that
the rx part of z�3 is different from the rx part of z�2, since we always store the
previous tuple to make this comparison. Therefore, the remaining part of the
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previous rx tuple can be produced, i.e., the part from the end of s2 till the end
of r1.

r1
s1

r1
s2

r2
s1

z�1 = r1 ◦ s1

z�2 = r1 ◦ s2

z�3 = r2 ◦ s1

Figure 6.5: Binary Unification from Left Join.

Example 20. Consider the binary unification rΦθs on the running example,
where θ ≡ r.Emp = s.Emp ∧ r.Dept = s.Dept , which is translated into the
execution of the join r θ∧r.T∩s.T �=∅s, followed by a projection and sorting
according to the attributes r.Emp, r.Dept , r.T, s.T . The result of the join is
shown in Table 6.3.

Emp Dept Tr Ts

j1 Ann AI [9, 15) ⊥
j2 Ann DB [3, 8) ⊥
j3 Joe DB [14, 19) [12, 21)
j4 Sam DB [1, 6) [4, 11)

Table 6.3: Join Result to Compute Binary Unification.

The binary unification algorithm processes the output of the join statement
tuple by tuple. The first tuple, j1, has a NULL value for the timestamp attribute,
which means that the tuple has no matching tuple in s, hence the result tuple
u1 in Table 6.4 is produced. The same holds for tuple j2, which produces
u2. Next, the tuple j3 is processed. The timestamp Tr is completely covered
by the timestamp Ts. Thus, the operator produces just the tuple u3 (as its
intersection). When j4 is processed, we produce the result tuple u4 as the start
part of j4, and we know that no other tuple has common points since the relation
is sorted. Then we can process the intersection of j4 and produce tuple u5. Since
the complete tuple (Sam,DB,[1, 6)) was processed and no more tuple exist, the
algorithm terminates.

u1 Ann AI [9, 15)
u2 Ann DB [3, 8)
u3 Joe DB [14, 19)
u4 Sam DB [1, 4)
u5 Sam DB [4, 6)

Table 6.4: Result of rΦθs.

In the following we describe the individual steps of the implementation in
more detail.
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6.3.2 Parser

To integrate the binary unification operator into the SQL language the keyword
UNIFY is re-used. The syntax for the operator follows the syntax of the join,
which is very similar, since both have two input relations and a condition. The
required modification to the grammar of PostgreSQL’s SQL is as follows:

unify_table:

table_ref UNIFY table_ref join_qual

{ ... };

table_ref:

...

| ’(’ unify_table ’)’ alias_clause

{ ... };

Two new rules are introduced into PostgreSQL’s grammar file gram.y. The
first rule specifies the operator itself. The first table_ref is the argument
relation followed by the UNIFY keyword and the second table_ref, which is
the reference relation. Finally, we have join_qual as join condition. The sec-
ond rule integrates the new operator into the grammar by declaring it as a
table_ref, which means the new statement can be used as an SQL FROM item.
As an example of the new grammar, the SQL statement for the expression
rΦr.Emp=s.Emp∧r.Dept=s.Depts is as follows:

Select emp, dept, ts, te

From ( r Unify s

On r.emp=s.emp And r.dept=s.dept

) r;

When the parser reduces to the unification rules, a new C-struct is created,
called BUnifyExr, which is a new node in the parse tree of a query. The C-struct
BUnifyExr is implemented as follows:

struct BUnifyExpr

{

NodeTag type; /* type of this struct */

Node *larg; /* argument subtree */

Node *rarg; /* reference subtree */

Node *quals; /* theta condition */

...

}

The first variable contains the type required by the PostgreSQL implementation
to identify the type of this struct after casting. The other variables store the
argument relation, the reference relation, and the θ condition.

6.3.3 Analyzer and Rewriter

The analysis phase gets the parse tree as input and transforms it to a query
tree, i.e., the newly created BUnifyExr of the parse tree has to be analyzed and
transformed to a node of the query tree structure.

As a first step the left join statement is created. That is, for the operator
rΦθs a new query node r θ∧r.T∩s.T �=∅s followed by a projection is created
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as a subnode for the new unification statement. Then the binary unification
algorithm can use the result of this statement as input. By creating this new
node, the analysis for the unification (e.g., check that the relations exist, the
columns are available, and the operators in the θ-condition exists) is done by
the join statement. The same holds for the rewriter, since the binary unification
node does not directly deal with relations, but always with its created join sub-
node.

6.3.4 Planner

The planning phase for the binary unification is similar as for the unary uni-
fication; if the data is not sorted, an additional sorting step is required. The
approximate number of output tuples for the binary unification is computed as
3 times the number of input tuples, since an input tuple can produce at most
three output tuples. The cost of performing binary unification is approximated
as cost = cpu operator cost ∗ numRows ∗ numCols, similar as for unary unifi-
cation. Also, the binary unification operator produces a sorted result, which is
communicated to the planner.

To store all pieces of information in a plan node, the same structure as for
the unary unification plan can be used, however, since we need to differentiate
its type, a new C-struct is created:

struct BUnify

{

Plan plan;

int numCols; /* number of columns in total */

Oid *uniqOperators; /* equality operators to compare with */

};

Example 21. Figure 6.6 shows a graphical representation of the execution
plan of the binary unification operator for our running example. The left-join
statement is executed using a hash-join, and the result is sorted. Then it is
processed by the binary unification algorithm.

Figure 6.6: Example Explain Binary Unify.

6.3.5 Executor

In this stage the actual binary unification algorithm is implemented, which
takes as input the algorithm performing the join-sub node. As described for the
execution phase, 3 main functions have to be implemented in order to perform
the operator. In the following the implementation of these 3 function will be
described:
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ExecInitBunify. In this initialization function, the subnode is recursively ini-
tialized, then the memory to store 2 input tuples and a buffer to store 3 output
tuples is allocated. The references to the allocated memory is kept in the context
information BUnifyState, which is returned by this function.

ExecBUnify. Figure 6.7 shows the pseudo code of the ExecBUnify function,
which distinguishes between four types of tuple generation: start, intersect,
intermediate, and end. Referring to Figure 6.5, the start tuple is produced as
the interval from the start timestamp of r1 to the start timestamp of s1, which
might be empty and then no tuple would be produced. The intersect tuple is
produced as the intersection of the timestamps of r1 and s1. The intermediate
tuple is produced from the end-timestamp of s1 to the start-timestamp of s2,
since z�1 and z�2 are derived from the same left-side tuple. No tuple is produced if
this interval is empty. Finally, the end tuple is created from the end timestamp
of s2 till the end of r1, since the next tuple z�3 is derived from a different outer
tuple. The end tuple is not produced when an inner tuple sx ends after the
outer rx. If the inner (right) part of the join is empty, the entire tuple counts
to the start and all others will not be produced.

ExecBUnify gets as input the state information BUnifyState and returns
either a single output tuple or NULL, which indicates the termination of the
operation. First, the function checks if it is called for the first time. If so, it
fetches two tuples from its subnode using ExecProcNode. If the subnode was
not empty, the start and intersect tuples (if any) of the first tuple are generated
and added to the buffer. If the buffer does not contain tuples created in the
previous execution, the function checks if the current tuple n.tup is NULL; if so,
it terminates and returns NULL. If this is not the case, the function proceeds
and checks whether the current and next tuple are produced by the same outer
tuple in the join; if so, the intermediate tuple (if any) is added to n.buff . Then
the intersect tuple of the next tuple is generated and added to the buffer, and
the next tuple is fetched from the subnode. If the current and next tuples where
not generated by the same outer tuple, the end tuple of n.tup (if any) is added
to the output buffer. The next tuple is then fetched and, if the current tuple is
not NULL, its start and intersect tuples (if any) are produced. Should the buffer
contain output tuples, the first one is retrieved and returned as result.

ExecEndBunify. In this function the memory allocated by the
ExecInitBunify is released and the corresponding end function for the
join sub-node is called recursively to release the execution memory.
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Algorithm: ExecBUnify

Input: State information n.
Output: A single output tuple or NULL.
if function is called for the first time then

n.tup ← ExecProcNode(n.subnode);
n.next ← ExecProcNode(n.subnode);
if n.tup �= NULL then

produce start of n.tup (store in n.buff );
produce intersect of n.tup if any (store in n.buff );

while n.buff is empty do

if n.tup is NULL then

return NULL ;

if n.tup[A] = n.next[A] ∧ n.tup.T = n.next.T then

produce intermediate of n.tup and n.next if any (store in n.buff );
produce intersect of n.next (store in n.buff );
n.tup ← next;
n.next ← ExecProcNode(n.subnode);

else

produce end of n.tup if n.tup.T �= NULL (store in n.buff );
n.tup ← next;
n.next ← ExecProcNode(n.subnode);
if n.tup �= NULL then

produce start of n.tup if any (store in n.buff );
produce intersect of n.tup if any (store in n.buff );

new ← first tuple in n.buff ;
remove new from n.buff ;
return new;

Figure 6.7: Pseudo Code of ExecBUnify.
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Chapter 7

Evaluation

In this section we analyze the performance and scalability of our solution. First,
we analyze the scalability of the unary and binary unification operator. Second,
we compare our solution of reducing temporal operations to non-temporal ones
using unification with the unfold mechanism that normalizes timestamps.

7.1 Setup and Data Sets

For the experiments both client and database server run on the same computer,
a Mac Book Pro 2.2 GHz Core 2 Duo with 3 GB of Ram. The database server
consists of a PostgreSQL server version 8.4.2, which is extended with temporal
unification and the unfold mechanism. To make fair comparisons, all implemen-
tations are done directly inside the database server; no external or user-defined
functions are used and no indexes on the relations are created.

For the evaluation, the real-word data set Incumben of the UIS database
of the University of Arizona is used. The relation has 83,857 entries, where
each entry keeps track of a job assigned to an employee over a specific time
interval. The data ranges over 16 years, storing the information of 49,195 dif-
ferent employees on a granularity of days. The minimum and maximum length
of the time intervals is 1 and 573 days, respectively, and the average is approx.
180 days. To perform worst case complexity analyses, synthetic data sets were
created. The properties of these data sets are described in the experiments.

7.2 Scalability of Unary and Binary Unification

7.2.1 uUNIFY

Figure 7.1 shows the complexity of computing unary unification on the
Incumben data set, using two different unification attributes (ssn and pcn).
The graphs on the left show the runtime by varying the number of input tuples.
The graphs on the right measure the number of output tuples depending on the
number of input tuples.

On this real-world data set the operator shows a linear times logarithmic
runtime complexity. This complexity can be explained by the underlying im-
plementation of the operator, where the splitting points of each tuple are re-
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Figure 7.1: Unary Unification (Incumben Data Set).

trieved using an outer join, which is the dominating factor of the algorithm.
The database management system in the planning phase chooses a merge join,
resulting in a linear times logarithmic complexity for this data-set.

We note a difference in the computation time and output, when different
attributes are used for the unification. The unification using the ssn attribute
is more efficient and generates less result tuples as for the pcn attribute. The
reason for this is that the data contains less distinct values for pcn as for ssn.
This results in a less efficient computation of the underlying merge join and
more result tuples, due to a higher number of join matches.

To show the implications of Theorem 1 (that is, the worst case scenario
for the unary unification operator), a synthetic data set Triangle is created
following the pattern of Figure 4.2, that is, all tuples overlap with each other.
For this experiment, we vary the number of input tuples, and we do not use any
unification attribute, hence each tuple matches with each other. The result of
this experiment is shown in Figure 7.2. Note the quadratic runtime complexity
and the quadratic number of output tuples for this worst case data set, which
validates Theorem 1.
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Figure 7.2: Unary Unification (Triangle Data Set).
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7.2.2 bUNIFY

Figure 7.3 analyses the complexity of the binary unification on the real-world
data set, using two different θ conditions. For the experiment, both the ar-
gument and the reference relation are random subsets of the same size of the
Incumben relation. The two different θ conditions are an equality predicate
over the ssn attribute (displayed as ssn) and an equality predicate over the pcn
attribute (displayed as pcn), respectively.
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Figure 7.3: Binary Unification (Incumben Data Set).

The binary unification operator with an equality predicate as θ shows a
linear times logarithmic runtime behaviour. As for the unary unification, this
behaviour is due to the underlying outer join in the implementation, which is
performed by the database management system using a merge join. The same
reasoning as for the unary unification holds for the difference between the two θ

conditions. The ssn attribute, due to the higher number of distinct values, has
a lower selectivity and is therefore more efficient for the join. The θ condition as
an equality predicate over the pcn attribute produces more tuples, since more
tuples satisfy the condition and overlap as it is the case for the ssn.

To show the worst case of the binary unification operator and to validate
Theorem 2, a synthetic data set Block is created following the pattern in Fig-
ure 4.5. The cardinality of the reference relation s is kept constantly to 100,
whereas the cardinality of the argument relation varies from 1,000 to 10,000
tuples, all ranging over the same time interval. In the operator expression the
θ condition is set to the boolean predicate true, which means all tuple of the
argument relation r match all tuples of the reference relation s.

The result of this experiment is shown in Figure 7.4. The right plot shows
that the cardinality of the result is a function of the cardinalities of both relations
as stated in Theorem 2; the graph shows a linear behaviour since the cardinality
of the reference relation is fixed. The same holds for the runtime; the cardinality
of the reference relation is fixed to 100, resulting in a linear curve. Notice that
the logarithmic part contributed by the sorting step is not visible, since the data
sets are relatively small and the sorting is mostly done in memory.
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Figure 7.4: Binary Unification (Block Data Set).

7.3 Temporal Operators

In this section we compare our solution of reducing temporal operators to non-
temporal operators by using temporal unification with a similar reduction using
the unfold mechanism for timestamp normalization proposed in IXSQL [9, 14].
For this the unfold operator has been implemented in PostgreSQL in order
to transform a relation from an interval based temporal relation into a point
based temporal relation, where a single tuple stores exactly one time point.
The evaluation of the reduction is done for three temporal operators, namely
aggregation, difference, and join.

7.3.1 Aggregation

Figure 7.5(a) compares the runtime of computing the temporal aggregation

ssnϑ
T
Count(∗)(Incumben) for the two different ways of reduction. The reduc-

tion using unary unification clearly outperforms the computation of temporal
aggregation using the unfold operator. Both show a linear times logarithmic
complexity due to the required sorting: for the unary unification the sorting is
required for the outer join for which a merge join is used; in the case of the
unfold the non-temporal aggregation is done by sorting.
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Figure 7.5: Aggregation (Incumben Data Set).

The explanation for this huge difference in the runtime is shown in Fig-
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ure 7.5(b), which compares the output of the unfold operator to the output
of unary unification. The non-temporal aggregation is actually applied to this
intermediate result to produce the final result. With a granularity of days, at
which the Incumben data set is stored, the unfold operator produces on average
180 tuples for each input tuple, which corresponds to the average length of the
time-intervals. The unary unification operator instead produces far less output
tuples, giving a much smaller intermediate result as input for the non-temporal
aggregation operator. The plot shows two more unfold operations, using a gran-
ularity of weeks and months, respectively. A larger granularity reduces the cost
of aggregation, however, they are not applicable for this data set without loss
of information.

7.3.2 Difference

The runtime behaviour of the temporal difference is shown in Figure 7.6. The
computation of the temporal difference using binary unification is orders of
magnitudes faster than using the unfold operator. The large intermediate result
of the unfold operator compared to binary unification has a notable effect on
the runtime of the non-temporal difference.
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Figure 7.6: Difference (Incumben Data Set).

For both solutions the runtime shows a linear times logarithmic behaviour:
for the unary unification due to the outer join that is executed as a merge join,
and for the case of unfold due to the sorting step done by the database manage-
ment system to produce the non-temporal difference. Also for the difference a
larger granularity would be favorable for the unfold, whereas our solution with
unification is granularity independent.

7.3.3 Join

The runtime behaviour of a temporal equi-join over the ssn attribute of the
Incumben data set is shown in Figure 7.7. As it was the case for temporal
difference, also in this case the reduction using binary unification performs or-
ders of magnitudes better as the computation of the temporal join using unfold.
Although both operations have linear times logarithmic running time behaviour
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Figure 7.7: Join (Incumben Data Set).

due to the sorting, the running time of the non-temporal join suffers from the
large intermediate result produced by the unfold operator, whereas the inter-
mediate result of binary unification is much smaller, leading to a more efficient
join execution.

7.3.4 Summary of the Evaluation

The empirical evaluation shows that temporal unification provides a scalable
solution for the reduction of temporal operations to non-temporal operations.
For all cases, temporal unification clearly outperform the unfold operator by
orders of magnitudes. The main reason for this is the smaller intermediate
result that is generated by unification compared to unfold, which allows a more
efficient execution of the subsequent non-temporal operators.

The main factors affecting the performance of the unary unification operator
are the choice of the unification attributes, and the frequency of overlapping
intervals in the data. When many tuples in the data share the same values for
the unification attributes, the operator tends towards quadratic time complexity,
due to the underlying join. A high frequency of overlapping timestamps in the
data is only an issue if it occurs in combination with the first factor, i.e., a
high number of equal unification attribute values. In this case the operator
approaches is worst case and it tends to produce quadratic output. However,
such data shall be very rare in real-world applications.

Also in the case of reducing binary operations, binary unification scales much
better as the unfold operator. Like for unary unification, binary unification
produces less tuples than unfold, which makes the non-temporal operators more
efficient. The factors affecting the performance of binary unification are the θ-
condition and the number of overlapping input tuples. The θ-condition affects
the run-time behaviour of the underlying join, whereas the number of matching
and overlapping tuples affects its output complexity.
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Chapter 8

Conclusion and Future

Work

In this thesis we provide a novel solution to provide support for managing tem-
poral data in relational database systems in a principled way. Our solution is
based on two new operators, termed unary and binary temporal unification,
which allow to reduce a temporal relational algebra to the non-temporal rela-
tional algebra. Using these unification operators, we provide reduction rules for
the most important temporal operators. Our solution preserves lineage infor-
mation and takes advantage of existing database technologies for non-temporal
data.

For the computation of the unary and binary unification operators, two al-
gorithms are provided. The operators are implemented in the core of the Post-
greSQL database system, by first extending the SQL language, then modifying
the parser and analyzer of PostgreSQL, and finally integrating the provided
algorithms into the execution core of the database management system. The
implementation ensures to minimize the overhead for input and output com-
pared to traditional middle-ware solutions.

In extensive experiments we analyze the scalability of our solution and com-
pare its performance to an approach that is based on timestamp normalization
as proposed in IXSQL. The experiments show that the unification operators
clearly outperform the unfold approach by orders of magnitudes. For operations
such as aggregation, difference, and equi-join, the operators show a linear times
logarithmic runtime behaviour. By using synthetic datasets, we have shown the
worst case scenario with a quadratic runtime complexity, though such data-sets
are very rare in real-world applications.

Future work includes the following aspects. First, we will investigate how to
improve the outer joins in the implementation of the unification operators by
using some advanced indexing technique (for the case that no conventional join
technique can be evaluated efficiently). Second, we will study more accurate
cost estimations in order to improve the optimizer. Third, we will extend the
temporal unification operators to support also temporal bags.
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