
Parallel Computation of Ad-hoc
Multi-Dimensional Aggregates

Andreas Heinisch

supervised by

Prof. Johann Gamper

Abstract

The θ-constrained multidimensional aggregation operator (θ-MDA) is
an effective and flexible operator for the computation of ad-hoc complex
aggregation queries. θ-MDA separates the specification of groupings (base
table B) for which aggregates are reported from the specification of the
associated aggregation groups over which the aggregates are computed
(detail table R). In order to evaluate θ-MDA queries several algorithms
have been proposed, among them TCMDA and TCMDA+. For the eval-
uation, the base table B has to be updated for every entry of detail table
R. This leads to an immense number of incremental updates on the base
table B for range aggregates. TCMDA+ reduces the number of incre-
mental updates by reducing range aggregates to point aggregates followed
by a post-processing step. However, both algorithms do not take advan-
tage of the current evolution of modern computer architectures, where
the clocking frequency stays constant and the number of computing cores
increases.

In this thesis, we parallelize the TCMDA and the TCMDA+ algorithm
in order to take advantage of the evolution of multi-core architectures. In
order to distribute the workload, we propose a horizontal partitioning of
the base table B among the available processors. The incremental updates
on these partitions can be computed by the available processors in isola-
tion, where the horizontal partitioning strategy distributes the workload
effectively. In addition, the reduction of the detail table R using point
aggregates in TCMDA+ is pushed to the database management system
(DBMS). Both algorithms were implemented using the C programming
language on top of an Oracle database. The dataset used in order to
evaluate the performance of the algorithms was generated using the dbgen
tool of the TPC-H benchmark framework. The empirical evaluation shows
the effectiveness of the optimizations. The parallel algorithms using the
reduction of the detail table R to SQL outperform the current state of the
art algorithms in order of magnitudes in all tested data settings, where
the main part of the computation time resides at the DBMS to construct
the separate intermediate result tables using a GROUP BY statement.

i

To Sonja, Lara and Lea
Haec ornamenta sunt mea.

ii

Acknowledgements

I would like to thank my supervisor, Prof. Johann Gamper, for the
encouragement, patience and inputs during the thesis. He were al-
ways at disposal for discussions and responded to my thoughts and
questions instantly. Without his valuable suggestions, corrections
and tremendous knowledge in the field of multi-dimensional aggre-
gation, this thesis would not have been possible.

The completion of this work would have been more difficult with-
out the countless distractions in the rare leisure time by the fellow
students, who became good friends. I would like to thank Christian
Krüger, Philipp Hofer, Faizur Rahman Robin and Manfred Gerst-
grasser for the friendship and various point of views concerning the
parallelization. Philipp, we might find, once again, some frostburn
gauntlets and Manfred, some day you will become a better LOL
player than I am.

I would like to thank Christian Ammendola for the explanations
regarding the separate intermediate result tables. Moreover, I am
indebted to Anton Dignös for the help during the implementation
of the algorithms and the assistance to setup the development envi-
ronment.

Finally, I would like to thank my wife Sonja. All the things would
not have been possible without the sacrifices you have made. Words
cannot describe how thankful I am for this and it probably would
need another thesis to express my heartfelt love for you. Your deep
love, patience and encouragement helped me during the completion
of the thesis, especially in these moments where I was frustrated.
Thank you for raising smart toddlers, when I spend more time with
the computer than with you. Last but not least, I would like to
express my love to my daughters Lara and Lea for the tolerance
whenever I occupied the desk in their playroom.

Andreas

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Complex Aggregation Queries: Running Example 1
1.3 θ-Constrained Multi-Dimensional Aggregation 3
1.4 Contribution . 5
1.5 Organization of the Thesis . 6

2 Related Work 7
2.1 Multi-Dimensional Data Aggregation 7
2.2 Parallel Processing of Large Data 8

3 θ-Constrained Multi-Dimensional Aggregation 10
3.1 Definition . 10
3.2 Evaluation Strategies . 12
3.3 Reducing Range to Point Aggregates 12

4 Parallel Computation of θ-MDA Queries 17
4.1 Parallel BasicTCMDA/IndexedTCMDA 17

4.1.1 Partitioning Strategies . 17
4.2 Partitioning of the Base Table . 18
4.3 Parallel TCMDA+ . 20

4.3.1 Partitioning Strategies . 21
4.3.2 Horizontal Partitioning of the Intermediate Result Tables 21

5 Reducing the Intermediate Tables to SQL 26

6 Algorithms and Implementation 30
6.1 Parallel IndexedTCMDA Algorithm 30
6.2 Parallel TCMDA+ Algorithm . 31
6.3 Parallel TCMDA+ with SQL . 32
6.4 Implementation . 34

6.4.1 Parameters . 34
6.4.2 Execution in Parallel . 35
6.4.3 Indexes . 36

7 Experiments 37
7.1 Setup and Data . 37

7.1.1 Scaling |R| . 38
7.1.2 Scaling |B| . 39
7.1.3 Scaling |θ| . 39
7.1.4 Scaling |Θ| . 39
7.1.5 Scaling P . 40

7.1.6 Scaling
∣∣∣X̃∣∣∣ . 40

7.2 IndexedTCMDA vs. IndexedPTCMDA 41
7.2.1 Results Scaling |R| . 41
7.2.2 Results Scaling |B| . 42
7.2.3 Results Scaling |θ| . 42
7.2.4 Results Scaling |Θ| . 43

iv

7.2.5 Results Scaling P . 43
7.3 TCMDA+ vs. PTCMDA+ . 44

7.3.1 Results Scaling |R| . 45
7.3.2 Results Scaling |B| . 46
7.3.3 Results Scaling |θ| . 46
7.3.4 Results Scaling |Θ| . 47
7.3.5 Results Scaling P . 48

7.4 TCMDA+ vs. TCMDA+-SQL vs. PTCMDA+-SQL 48
7.4.1 Results Scaling |R| . 49
7.4.2 Results Scaling |X̃| . 50

7.5 Discussion and Summary . 51

8 Conclusions and Future Work 52

v

List of Tables

1 Instance of Orders Relation . 2
2 Result of Query 1 . 3
3 Illustration of Aggregation Groups 3

List of Figures

1 θ-MDA Operator Overview . 4
2 Step-wise Processing of Query 1 11
3 Processing Query 1 Using Reduction to Point Aggregates 14
4 Processing Query 1 with Separate Intermediate Result Tables . . 15
5 IndexedTCMDA: Parallel Computation of the θ-MDA Operator . 19
6 IndexedTCMDA: Parallel Computation of Query 1 20
7 TCMDA+: Parallel Computation of the θ-MDA Operator 23
8 TCMDA+: Parallel Computation of Query 1 25
9 Reducing Intermediate Result Tables to SQL 28
10 Reduction Group Tables to SQL on Query 1 29
11 IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |R| (|B| =

1k, |Θ| = |θ| = 1, P = 4) . 42
12 IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |B| (|R| =

10M, |Θ| = |θ| = 1, P = 4) . 43
13 IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |θ| (|R| =

10M, |B| = 1k, |Θ| = 1, P = 4) . 43
14 IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |Θ| (|R| =

10M, |B| = 1k, |θ| = 1, P = 4) . 44
15 IndexedTCMDA vs. IndexedPTCMDA: Results Scaling P (|R| =

100M, |B| = 10k, |Θ| = |θ| = 1) 45
16 TCMDA+ vs. PTCMDA+: Results Scaling |R| (|B| = 10k, |X̃| =

12030, |Θ| = 1, |θ| = 2, P = 4) . 46
17 TCMDA+ vs. PTCMDA+: Results Scaling |B| (|R| = 100M, |X̃| =

12030, |Θ| = 1, |θ| = 2, P = 4) . 47
18 TCMDA+ vs. PTCMDA+: Results Scaling |θ| (|R| = 100M, |X̃| =

12030, |B| = 10k, |Θ| = 1, P = 4) 47
19 TCMDA+ vs. PTCMDA+: Results Scaling |Θ| (|R| = 100M, |X̃| =

12030, |B| = 10k, |θ| = 1, P = 4) 48
20 TCMDA+ vs. PTCMDA+: Results Scaling P (|R| = 100M, |X̃| =

12030, |B| = 10k, |Θ| = |θ| = 1) 49
21 TCMDA+ vs. TCMDA+-SQL: Results Scaling |R| (|B| = 10k, |X̃| =

12030, |Θ| = 1, |θ| = 2) . 50

22 PTCMDA+ vs. PTCMDA+-SQL: Results Scaling
∣∣∣X̃∣∣∣ (|R| =

100M, |B| = 10k, |Θ| = 1, |θ| = 2, P = 4) 50

vi

1 Introduction

1.1 Motivation

The analysis of large amounts of data is an important task in different ar-
eas, such as business intelligence [19], health care [15] and scientific fields [10].
This requires enhanced techniques for a flexible formulation and efficient eval-
uation of complex multi-dimensional aggregation queries. On account of this,
the SQL:2003 standard [25] introduced window functions in order to overcome
the limitations of analytical processing in SQL. However, window functions still
lack a high-performance and broad support for complex analytical queries such
as cumulative aggregation over more than one dimension. To overcome the
limitations of SQL window queries, the θ-constrained multidimensional aggre-
gation operator (θ-MDA) [10] was introduced which supports a flexible formu-
lation and efficient evaluation of complex multi-dimensional aggregation queries
based on θ-conditions. For the evaluation of θ-MDA queries several approaches
have been proposed, among them the θ-Constrained Multi-Dimensional Aggre-
gation (TCMDA) [10] and the θ-Constrained Multi-Dimensional Aggregation
Plus (TCMDA+) [13].

TCMDA separates the specification of groupings (base table B) for which
aggregates are reported from the specification of the associated aggregation
groups over which the aggregates are computed (detail table R). This basically
results in a nested loop over the base table B and the detail table R, where for
every entry of detail table R the base table B has to be updated. For typical
θ-MDA with hundreds of millions of detail tuples this leads to an immense
number of incremental updates on the base table B for range aggregates, where
the operators ≤,≥ and 6= are used in the θ-conditions. TCMDA+ reduces these
incremental updates by reducing range aggregates to point aggregates (which
use only = in the θ-conditions) followed by a post-processing step.

Although, compared to the performance of SQL, the θ-MDA operator fea-
tures an acceptable performance, there is still space for improvements. Both
algorithms are designed to run on a single processor machine using exactly one
executing thread and do not take advantage of the current evolution of modern
computer architectures, where the clocking frequency stays constant and the
number of computing cores increases [55]. In addition, parts of the computa-
tion in the TCMDA+ algorithm can be transformed to SQL. In this thesis we
investigate these optimizations which increase the performance and allow the
execution of θ-MDA queries with almost no limitations on the size of the input
relations.

1.2 Complex Aggregation Queries: Running Example

An example for complex aggregation queries are moving and cumulative aggre-
gates over multiple dimensions. Before the introduction of window functions
in the SQL:2003 [25] standard, expressing such queries either resulted in unac-
ceptable running times or were difficult to express. The key concept of window
functions is to sort the input relation and to compute the aggregates during
the scan of the sorted relation. For each row in the result a moving window
determines a contiguous range of rows over which the aggregate value for that
specific row is computed. However, for cumulative aggregations over multiple

1

dimensions such an ordering does not exist, and the tuples that contribute to
an aggregation result are formed by non-contiguous rows [10].

Consider the Orders relation of the TPC-H1, which stores information about
sales orders. Each row in the relation represents an order with the following
information: the order key (OrdKey), the clerk key (ClerkKey), the total price
(TotPrice), the order priority (OrdPrior), the order date (OrdDate) and others.
Table 1 illustrates a simplified instance of the orders relation with eight orders
shipped at three consecutive days.

Orders
OrdKey ClerkKey TotPrice OrdPrior OrdDate

r1 O1 C1 220 3 2013-04-18
r2 O2 C2 440 2 2013-04-18
r3 O3 C1 100 1 2013-04-18
r4 O4 C3 240 1 2013-04-18
r5 O5 C1 260 3 2013-04-19
r6 O6 C3 640 2 2013-04-19
r7 O7 C2 450 2 2013-04-19
r8 O8 C2 300 1 2013-04-20

Table 1: Instance of Orders Relation

Consider the following query to analyze the number of orders in order to
measure the development of the orders with respect to the order date and pri-
ority of the shipment:

Query 1 : Compute the total number of orders per date and priority, the
cumulative number of orders per date, the negated number of orders per
priority, and the cumulative number of orders per date and priority.

The result of the query is shown in Table 2. The first two columns, i.e.,
OrdDate and OrdPrior, represent the different combinations of order dates and
priorities. These columns form the base table for which the various aggregate
functions are computed. To enhance reading, the base table and the aggregation
results are separated by a vertical line.

The first aggregate CntDP, which counts all the orders per day and priority,
can be expressed using the GROUP BY clause in SQL, because the aggregation
groups are defined by identical values on the grouping attributes. The second
aggregate, CumCntD, which reports the cumulative number of all orders per
date, can be expressed with SQL window functions and the UNBOUNDED
PRECEDING ordering clause. The third aggregate, NegCntP, which computes
the number of orders per priority except those of a specific priority, can be
constructed by using the GROUP BY clause and a self-join. The last aggregate,
CumCntDP, which summarizes the number of orders per day and priority, is a
two-dimensional cumulative aggregate where the window functions of SQL do
not provide an adequate support. SQL window functions rely on the principle
that the input relation can be ordered such that all tuples that contribute to an
aggregation result are formed by contiguous rows. However, for the aggregation
CumCntDP such an ordering does not exist.

Table 3 shows selected aggregate values of the result in Table 2 together with
the corresponding aggregation groups, i.e., the tuples over which the aggregation

1TPC-H benchmark framework: http://www.tpc.org/tpch/

2

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 2 4 5 2
x2 2013-04-18 2 1 4 5 3
x3 2013-04-18 3 1 4 6 4
x4 2013-04-19 2 2 7 5 5
x5 2013-04-19 3 1 7 6 7
x6 2013-04-20 1 1 8 5 3

Table 2: Result of Query 1

values are computed. In the case of CntDP and CumCntD the aggregate is
computed over contiguous groups of the result and hence can be computed using
window functions. However, for the two-dimensional aggregate CumCntDP such
a contiguous set of tuples does not exist and it is impossible to order the Orders
relation such that the aggregation groups consists of adjacent tuples without
introducing gaps in other aggregation groups of CumCntDP. In order to express
such multi-dimensional aggregation queries in SQL a complex formulation with
joins is required which for large inputs leads to unacceptable running times.

Aggregate value Aggregation group
x1.CntDP {r3, r4}
x3.CntDP {r1}
x1.CumCntD {r1, r2, r3, r4}
x4.CumCntD {r1, r2, r3, r4, r5, r6, r7}
x3.CumCntDP {r1, r2, r3, r4}
x6.CumCntDP {r3, r4, r8}

Table 3: Illustration of Aggregation Groups

1.3 θ-Constrained Multi-Dimensional Aggregation

The θ-constrained multi-dimensional aggregation (θ-MDA) operator introduced
in [10] allows a succinct, systematic, and intuitive formulation of complex OLAP
queries, where the grouping can be done along more than one dimension and the
aggregation groups are identified by a general θ-condition. The operator requires
four arguments which are illustrated in Figure 1. The parameters of the operator
are a base table B which includes aggregation groups for which the aggregates
are computed, a detail table R containing all tuples over which the aggregates
are computed, a list of aggregate functions

#»

l and a list of grouping conditions
#»

θ . The θ-MDA operator computes the result table X for each tuple in the
base table B by reporting the aggregation results according to the aggregation
functions in

#»

l where the grouping conditions
#»

θ determine the aggregation group
from the detail table R. Figure 1 illustrates, where the shaded areas represent
different aggregation groups over which the corresponding aggregate values are
reported.

The algorithm for the computation of θ-MDA works in the following four
steps. First, algebraic aggregates are replaced by their distributive sub-aggregates
(e.g., avg is replaced by sum and count). Secondly, the algorithm constructs
the result table X from the base table B and initializes the aggregation results.
Next, for every tuple in the detail table R the aggregates in the result table X
are updated. Finally, the algorithm applies the super-functions to the values of
the sub-aggregates (e.g., in order to get avg the sum is divided by the count).
Compared to SQL versions this evaluation strategy presented in [10] performs

3

︸ ︷︷ ︸
Base Table B

Aggregate Results︷ ︸︸ ︷

︸ ︷︷ ︸
Result Table X

Detail Table R︷ ︸︸ ︷

Figure 1: θ-MDA Operator Overview

efficiently. Practically, the algorithm evaluates a nested loop with O(|r| · |b|)
complexity. Since for typical OLAP applications the detail table R is very large
and exceeds in orders of magnitudes the size of the base table B, the runtime
of the algorithm highly depends on the size of the detail table R. In addition,
the algorithm is sensitive with respect to the type of the constraints used in
the theta conditions. Constraint operators such as ≤, ≥ or 6= (used in range
queries) exhibit unacceptable running times with respect to theta conditions
using only equality constraints (used in point queries). This can be explained
because range aggregates require a larger amount of updates in the base table
B for every tuple in the detail table R than point aggregates.

In order to overcome the larger amount of incremental updates for range
aggregates a new evaluation strategy for θ-MDA queries was introduced in [13].
The approach differs from the θ-MDA algorithm introduced in [10] by two main
aspects.

The first aspect takes advantage of the efficient computation of point aggre-
gates in θ-MDA queries. First, each grouping condition θi is transformed to θ̃i
such that each θ̃i contains an equality constraint r.A = b.A for each attribute
A ∈ R that is used in the corresponding θi. Next, the approach computes an
intermediate result table, X̃, using point aggregates where the base table is a
projection of R to the set of all attributes in R that are used in θi. This requires
significantly less updates in X̃ than range queries would cause. In the end, the
final result table, X, is derived from X̃ using the aggregates gi in combination
with the original conditions in θi. The functions gi to compute the aggregates
of the intermediate values are called super aggregates [33]. Even though each
tuple of X̃ may affect multiple tuples in X, the overall runtime is significantly
reduced since X̃ is typically much smaller than R.

However, even if the conditions in θ̃i contain only equality constraints, a
single tuple in R might still affect several tuples in X̃. This is the case if a θ̃i
involve only a subset of the grouping attributes in other θ̃is, i.e., Ri 6= Rj with
i 6= j, which produces duplicate groupings and hence redundant updates in X̃.
This leads to the second aspect of the new evaluation strategy in [13]. In order
to avoid duplicate groupings in X̃, separate intermediate result tables, X̃i, are
used for each θ̃i(fi) where every intermediate result table X̃i requires exactly
one update for each r ∈ R. However, the creation of separate intermediate
result tables X̃i introduces an overhead in the evaluation of θ-MDA queries

4

for conditions in θi containing only equality constraints in comparison to the
evaluation strategy in [10]. Since equality constraint conditions in θi are highly
selective, the set of affected tuples in X can be efficiently identified by using one
or more indexes corresponding to the theta conditions θi in the result table X.

1.4 Contribution

Regardless of the optimizations of the θ-MDA evaluation strategies presented
in [10, 13] there is still space for improvements. Both of the evaluation strate-
gies do not take into consideration the current evolution of modern computer
architectures where machines are composed by processors with several cores.
Nowadays, even desktop computers consist of processors with more than one
core where the number of cores per processor constantly grows. In addition to
the multicore processors, programmable graphics processing units (GPUs) have
emerged where the GPU is a massively parallel processor including more than
hundred processors which support thousands of active threads. These GPUs
deliver high computational power in order to solve highly parallel problems.

Moreover, parts of the θ-MDA evaluation strategy given in [13] can be trans-
formed to SQL (e.g., the computation of the separate intermediate result tables
using point aggregates). These statements are optimized by the DBMS and
executed efficiently by utilizing the database facilities and optimization strate-
gies. After the execution of these SQL statements, the returned result is further
processed in order to elaborate the result of the requested θ-MDA query.

In this thesis we focus on the limitations of the presented approaches for
computing θ-MDA queries which does not exploit the potential of current com-
puter architectures and the DBMS facilities. The main contribution can be
summarized as follows:

• We develop a partitioning approach for the algorithms in [10, 13] in order
to distribute the workload among the processors and to allow the par-
allel execution of the algorithms. Since the algorithm presented in [13]
performs an additional step, i.e., the creation of the intermediate result
tables, for the computation of point aggregates, we additionally developed
a partitioning strategy in order to parallelize the approach in [10].

• For the approach illustrated in [13], we define a strategy in order reduce
the computation of the separate intermediate result tables to SQL. The
created SQL statements can be optimized and executed efficiently by the
DBMS and the returned result can be further processed to complete the
result of the θ-MDA query.

• We define the algorithms of the introduced partitioning and paralleliza-
tion strategies on top of the evaluating strategies given in [10, 13]. In
addition, we include the reduction of the computation of the separate in-
termediate result tables using SQL in the parallelized algorithm based on
the sequential evaluation strategy illustrated in [13].

• We implement the newly introduced algorithms as well as the algorithms
depicted in [10, 13] as C programs on top of an Oracle database and
present the results of an in-depth empirical evaluation using the TPC-H2

5

benchmark framework. The results show that the defined algorithms ex-
ecuted in parallel using the reduction of the separate intermediate result
tables using SQL outperform the existing algorithms in [10, 13] in order
of magnitudes in all tested data settings.

1.5 Organization of the Thesis

In Section 2 related work regarding to the topic of the thesis is presented.
Section 3 provides additional details about the θ-MDA operator and its

evaluation strategies together with a running example which is used throughout
the entire thesis.

Section 4 presents the parallel evaluation approach for θ-MDA queries on
top of the strategies in [10, 13]. Furthermore, the section introduces the trans-
formation of the computation of the separate intermediate result tables using
point aggregates presented in [13].

Section 5 introduces the reduction of θ-MDA queries to a GROUP BY state-
ment followed by a post-processing step.

Section 6 illustrates the evaluation of the parallelized algorithms including
the utilization of the database facilities.

In Section 6.4 details about the implementation of the newly introduced
θ-MDA algorithms is presented with information about the parameters and the
result format of the developed applications.

In Section 7, we present the results of the experiments showing that the
runtimes of θ-MDA queries highly depend on the transformed GROUP BY
statements, rather than on the number of processors, if the number of distinct
groups in the separate intermediate result tables are small. As a result, the
constraints operators in the theta conditions θi play a secondary role in the post-
processing step in the previously described scenario. If the number of distinct
groups in the separate intermediate result tables are large, the execution time of
the post-processing step increases where the constraints operators in the theta
conditions θi become dominant.

In conclusion, in Section 8 final remarks together with future work about
the operator is presented.

6

2 Related Work

In this section we give an overview of the investigations about multi-dimensional
data aggregation techniques and about the computation of large amount of data
in parallel.

2.1 Multi-Dimensional Data Aggregation

There exists a variety of work about multi-dimensional data aggregation to
enhance flexibility and/or to provide a better performance. The CUBE op-
erator [34] is part of the SQL and allows the N -dimensional generalization of
the SQL aggregate functions and the GROUP BY operator using equality con-
straint conditions over several attributes. For aggregation queries over a part
of the data cube, grouping sets [17, 18] can be used to define group attribute
combinations over which aggregates are computed. The UNPIVOT operator
introduced in [32] provides techniques to rotate columns of a relation into rows.
This allows alternative definitions of the groups, where the aggregations are
applied on the column values wanted in the final output. In [48] alternatives
for coupling data mining with database systems to accommodate complex data
analysis is proposed. All the introduced operators provide techniques to en-
hance the formulation of aggregation queries and/or to improve the efficiency
of their computation using specialized algorithms. However, research efforts
rarely consider the optimizations and implementations of more complex OLAP
expressions, such as cumulative aggregates.

A broader support for complex OLAP expressions was provided by SQL
with the introduction of the WINDOW construct in the SQL:2003 [25] stan-
dard. The key concept of window functions is to sort the input relation and
to compute the aggregates during the scan of the sorted relation. For each
row in the result a moving window determines a contiguous range of rows over
which the aggregate value for that specific row is computed. This allows the
formulation of moving and cumulative aggregates as well as rank aggregates.
In addition, a wide variety of new aggregate functions was introduced in the
SQL/OLAP amendment [14] improving the capabilities of SQL with respect to
complex OLAP. Nonetheless, the efficient evaluation of general complex OLAP
queries constitutes a problem. Moreover, window functions do not support the
computation of cumulative aggregates over multiple dimensions, because win-
dows functions rely on a sorted input relation, where tuples belonging to the
same group are formed by non-contiguous rows [10]. For input relations grouped
over more than one dimension there may exist no ordering so that the tuples of
all groups are arranged contiguously.

Another approach to improve the performance of aggregation queries is based
on the pre-computation of the aggregates together with incremental updates.
In [36] a query optimization technique using the pre-computing materialized
views is presented. The approach targets issues, where the materialization of all
views (cells) of the corresponding data cube is too expensive. The strategy uses
a lattice framework to express the dependencies among the views to determine
the set of views to be materialized. To avoid the re-computation of the materi-
alized views as soon as the source relations change, [43] introduces an approach
which allows to incrementally update pre-computed aggregates by considering
only the changes in the source relations. An improvement of this approach is

7

presented in [41] further reduces the computational effort of the strategy. Al-
though the pre-computation of data cubes works well for point aggregates, the
performance of range aggregates suffers, since the cells of the data cubes has
to be accessed repeatedly [13]. To overcome this problem, [38] presented an
approach for computing range queries in data cubes. The approach is based on
the pre-computation of the prefix sums of the data cube, which can be used to
answer ad-hoc aggregation queries. Subsequent work has studied techniques to
lower the comparable high update costs of the prefix sum cube [21, 29, 42].

To efficiently answer ad-hoc OLAP queries with a single scan of the detail
table, the multi-dimensional join (MDJ) [16] and later the generalized multi-
dimensional join (GMDJ) [9] have been introduced. The operator has been
used in complex OLAP settings to transform general sub-query expressions into
expressions that use GMDJ instead of joins, outer joins or set difference [13].
In [53] the GDMJ in combination with MapReduce to compute aggregation
queries over RDF data is used.

The θ constrained multi-dimensional aggregation (θ-MDA) operator [10] ex-
tends the MDJ and presents a detailed cost model together with algebraic trans-
formation rules. θ-MDA outperforms SQL for complex multi-dimensional ag-
gregation queries, such as range aggregates over multiple dimensions. This
approach has been improved further by reducing the range aggregates to point
aggregates in [13]. The optimizations presented in this thesis are based on the
θ-MDA operator and pushes the main computational effort of the optimizations
presented in [13] to the database, which significantly reduces the runtime of
θ-MDA queries.

2.2 Parallel Processing of Large Data

The trend towards massively parallel computers increased the investigations to
exploit multiple processors for complex OLAP. The work presented in [30] fo-
cuses on algorithms for the construction of data cubes on distributed-memory
parallel computers to provide efficient query processing for OLAP applications
using precomputed aggregates. In [31] the previous work is extended by us-
ing parallel processing for OLAP and data mining on a parallel and scalable
infrastructure. For the parallel evaluation of aggregates,[51] introduces various
strategies to split the aggregate computation between the sites and the coordina-
tor to optimize performance. However, the previously presented investigations
focus on the distributed infrastructure or consider only the case of simple SQL
aggregates. For the case of complex OLAP queries, [9] presents a framework
to decrease the communication costs in a distributed data warehouse setting.
The work presented in this thesis focuses on the computation of complex OLAP
queries on parallel computers, where the communication costs are assumed to
be very cheap.

There exist considerable research activities around the MapReduce [2]
paradigm. MapReduce is a programming model and an associated implementa-
tion for processing large datasets, where the user specifies the computation in
terms of a map and a reduce function [23]. The advantage of the MapReduce
paradigm is that the underlying system automatically parallelizes the computa-
tion, handles machine failures and schedules the inter-machine communication
to make efficient use of the network and disks [24]. The paradigm has been
adapted for machine learning on multicore [20] as well as for simplified relational

8

data processing on large clusters [57]. A popular open-source implementation of
the MapReduce paradigm is Apache Hadoop framework [56]. In addition, there
exist several implementations of MapReduce on various hardware platforms.
For instance, in [47] the current state of the art implementation of the MapRe-
duce paradigm for shared-memory systems (Phoenix) is introduced whereas [37]
presents the Mars framework for the computation of MapReduce on graphics
processors (GPUs). Mars hides the programming complexity of the GPU and
has been recently integrated into Hadoop [26].

The work in [44] conducts benchmarks, where the observed performance
of parallel SQL database management systems (DBMS) was strikingly better
compared to the Hadoop system once the process to load the data into the
system was finished. They conclude that MapReduce is more like an Extract-
Transform-Load system, because it loads the data without the indexing and
reorganization costs in an ad-hoc manner. They argue that the performance
advantage of the DBMSs results from a number of technologies developed over
the past, such as B-tree indexes, novel storage mechanisms and sophisticated
parallel algorithms for querying large amounts of relational data. The advan-
tages of the Hadoop MapReduce compared to the parallel DBMSs are the ease
of use and the fault tolerance, but MapReduce suffers in terms of computation
time. The same group of authors argue in [54] that the MapReduce paradigm
complements the DBMS technology and provide insights how the systems should
complement each other. The work has been extended in [8], where an architec-
tural hybrid of MapReduce and DBMS technologies for analytical workloads is
provided.

There exist application programming interfaces with respect to the MapRe-
duce paradigm for the parallelization of algorithms, e.g., OpenMP [22], and
MPI [52]. OpenMP is an API that supports multi-platform shared memory
multiprocessing programming in the C programming language which uses a
scalable model that gives programmers a simple and flexible interface to de-
velop parallel application. MPI is a standardized and portable message-passing
system designed to write portable message-passing programs in the C program-
ming language for both shared or distributed memory architectures. In addi-
tion to the pure OpenMP and pure MPI programming models, there exist sev-
eral investigations of the combination of both techniques (hybrid programming
model) [45, 39]. The work in [45] investigates cases, where the hybrid program-
ming model is the superior solution due to reduced communication needs and
memory consumption, or improved load balance. They state that the machine
topology has significant impact on performance of the parallelization strategies.
The investigations in [39] came to the same conclusions, i.e., the best program-
ming paradigm depends on the given problem, the hardware components of the
cluster and the network facilities.

The algorithms presented in this thesis were parallelized using OpenMP, be-
cause they are designed to run on symmetric multiprocessing (SMP) systems.
Since the main part of the computation resides at the DBMS, the computation
can be parallelized by specialized parallel SQL database managements systems
like DBMS-X or Vertica presented in [44]. However, we consider the implemen-
tation using the MapReduce paradigm in future investigations of the introduced
PTCMDA+-SQL algorithm.

9

3 θ-Constrained Multi-Dimensional Aggregation

In this section, we summarize the θ-MDA operator and various evaluation al-
gorithms that have been proposed in the past. First, the θ-MDA operator is
formally defined and illustrated using our running example. Next, the evalua-
tion algorithm in order to compute θ-MDA queries is described. Moreover, the
optimization strategies of the θ-MDA operator are defined, i.e., the reduction of
range to point aggregates and the usage of separate intermediate result tables.

3.1 Definition

θ-MDA takes as input four parameters which are the base table, the detail table,
a list of aggregate functions and a list of grouping conditions. In the following
the θ-MDA operator is formally defined assuming multi-set semantics, i.e., the
generalized algebraic operators (π, σ,∪, etc.) are consistent with SQL and op-
erate on and return multi-sets. Additionally, B and R are used to represent the
database schemas (B1, ..., Bk) and (R1, ..., Rp), respectively, and x.B refers to
(x.B1, ..., x.Bk). Finally, E → C renames E to C and attr(E) denotes the set
of attributes used in E.

Definition 1. (θ-MDA Operator [10]) Let B(B) and R(R) tables, θi be
conditions with attr(θi) ⊆ B ∪ R, and li = (fi1 → Ci1 , ..., fiki → Ciki) with
1 ≤ i ≤ m, be a list of aggregate functions over attributes Ai1 , Ai2 , . . . , Aiki in
R. The θ-MDA operator is defined as

X = Gθ(B,R, (l1, ..., lm), (θ1, ..., θm)),

where X = (B, C1, ..., C1k1
, ..., Cm1

, ..., Cmkm) is the schema of the result table
and each tuple b ∈ B produces a result tuple x ∈ X with

x.B = b.B,

x.Cij = fij ({r.Aij |r ∈ R ∧ θi(b, r)}),∀Cij ∈ X.

The base table is called B, the detail table R and the final result table of the
θ-MDA operator is denoted by X. For a base tuple, b ∈ B, the conditions θi
determine the sets of detail tuples, r ∈ R, over which the aggregates fij are
evaluated. The aggregation results are the values of attributes Cij in the result
relation.

Example 1. In the following example, we present the formulation of Query 1
from Section 1.2 using the θ-MDA operator. The query can be expressed as
Gθ(B,Orders→ r, (l1, l2, l3, l4), (θ1, θ2, θ3, θ4)) where

B : π[OrdDate,OrdPrior]Orders

l1 : (count(OrdDate)→ CntDP)

θ1 : r.OrdDate = b.OrdDate ∧ r.OrdPrior = b.OrdPrior

l2 : (count(OrdDate)→ CumCntD)

θ2 : r.OrdDate ≤ b.OrdDate
l3 : (count(OrdDate)→ NegCntP)

θ3 : r.OrdPrior 6= b.OrdPrior

l4 : (count(OrdDate)→ CumCntDP)

θ4 : r.OrdDate ≤ b.OrdDate ∧ r.OrdPrior ≤ b.OrdPrior

10

The step-wise computation of the result of Query 1 is illustrated in Figure 2.
At the beginning of the computation, all aggregate attributes of the result table
X are set to their corresponding initial values of the aggregate functions, i.e.,
0 for sum and count, NULL for max and min. After the initialization of the
aggregate attributes, each tuple of the Orders table is processed, where all ag-
gregate attributes of the affected tuples are updated in the result table X. In our
example, we begin with tuple r1 and update all affected aggregate attributes
of the result table by one. After the first tuple has been elaborated, the next
tuple r2 of the Orders table is loaded and processed as tuple r1. Finally, after
all tuples of the Orders table have been handled, the result table X is complete.

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 0 0 0 0
x2 2013-04-18 2 0 0 0 0
x3 2013-04-18 3 0 0 0 0
x4 2013-04-19 2 0 0 0 0
x5 2013-04-19 3 0 0 0 0
x6 2013-04-20 1 0 0 0 0

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 0 1 1 0
x2 2013-04-18 2 0 1 1 0
x3 2013-04-18 3 1 1 0 1
x4 2013-04-19 2 0 1 1 0
x5 2013-04-19 3 0 1 0 1
x6 2013-04-20 1 0 1 1 0

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 0 2 2 0
x2 2013-04-18 2 1 2 1 1
x3 2013-04-18 3 1 2 1 2
x4 2013-04-19 2 0 2 1 1
x5 2013-04-19 3 0 2 1 2
x6 2013-04-20 1 0 2 2 0

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 1 3 2 1
x2 2013-04-18 2 1 3 2 2
x3 2013-04-18 3 1 3 2 3
x4 2013-04-19 2 0 3 2 2
x5 2013-04-19 3 0 3 2 3
x6 2013-04-20 1 0 3 2 1

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 2 4 5 2
x2 2013-04-18 2 1 4 5 3
x3 2013-04-18 3 1 4 6 4
x4 2013-04-19 2 2 7 5 5
x5 2013-04-19 3 1 7 6 7
x6 2013-04-20 1 1 8 5 3

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

Figure 2: Step-wise Processing of Query 1

11

3.2 Evaluation Strategies

Two algorithms following the above approach for the evaluation of θ-MDA
queries are given in [10].

The first algorithm, BasicTCMDA, works in four steps. In the first step, the
algebraic aggregates are replaced by their distributive sub-aggregates, e.g., avg
is replaced by sum and count. In the second step, the algorithm constructs the
result table X from B and initializes the aggregation results. Step 3 scans the
detail table and computes the aggregates. Finally, the result is computed by
applying the super-aggregates to the values of the sub-aggregates, e.g., to get
avg the sum is divided by the count. BasicTCMDA becomes expensive if the
result table X grows, since for each tuple r ∈ R all rows in the result table X
are considered.

The second algorithm, IndexedTCMDA (see Algorithm 1), avoids the prob-
lem that for every tuple in the detail table all tuples of the result table have to
be scanned. The algorithm creates an index on the result table X. Therefore,
for a tuple r ∈ R and a condition θ the set of affected tuples in X can be
efficiently identified. The first and the last step, where the aggregates transfor-
mation occurs are the same as in BasicTCMDA. In the second step, in addition
to constructing the result table, one or more indexes on the result table with
respect to the theta conditions are created. In step 3 the relevant result tuples
are identified by using the created indexes which reduces the update operations
significantly for highly selective constraint operators such as =. In the case of
less selective constraint operators, such as ≤ and ≥, the performance gain of
IndexedTCMDA in comparison with BasicTCMDA is smaller. For constraint
operators where indexes cannot be consulted such as 6= the performance achieve-
ment of IndexedTCMDA is negligible compared to the BasicTCMDA algorithm.

3.3 Reducing Range to Point Aggregates

In order to overcome the larger amount of incremental updates for range ag-
gregates an improved evaluation strategy for θ-MDA queries for less selective
constraint operators, such as ≤, ≥ and 6=, was provided in [13]. In the following
the optimizations of the θ-MDA operator are formally defined.

Definition 2. (Reduction to Point Aggregates [13]) Let B(B) and R(R)
tables, θi be conditions with attr(θi) ⊆ B ∪R, and li = (fi1 → Ci1 , ..., fiki →
Ciki) with 1 ≤ i ≤ m, be a list of aggregate functions over attributes Ai1 , ..., Aiki
in R, G = (gi1 , ..., giki) be the corresponding super aggregates [33]. Further-
more, let Ri = R ∩ attr(θi) denote the attributes in R that occur in θi. Then
Gθ(B,R, (l1, ..., lm), (θ1, ..., θm)) can be computed as follows:

1. construct Θ̃ = (θ̃1, ..., θ̃m):

θ̃i(r, b) =
∧
A∈Ri

r.A = b.A with r ∈ R, b ∈ B;

2. compute an intermediate result table:

X̃ = Gθ(πR1∪...∪Rm(R), R, li, Θ̃);

12

Algorithm 1: IndexedTCMDA(B,R, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Replace algebraic aggregates by distributive sub-aggregates

Let l′i = li, 1 ≤ i ≤ m;

foreach algebraic aggregate fij ∈ {l
′
i, ..., l

′
m} do

Replace fij with its distributive sub-aggregates f1
ij
, ..., f

pij
ij

;

// Step 2: Construct result table X
// Note: vj’s are the initial values of the aggregate functions (0 for sum and count,

NULL for max and min)

Let N = (v′11
, ..., v′m1

, ..., v′mkm
);

Let X = B ×N ;
Build indexes for X;

// Step 3: Compute the aggregates
foreach tuple r ∈ R do

foreach θi ∈ {θ1, ..., θm} do
Fetch the rows Xi = {x ∈ X|θi(x, r)} using the created index;
foreach x ∈ Xi do

Update the aggregates fi1 , ..., fiki
in x;

// Step 4: Apply the super-functions
if l1, ..., lm contains algebraic aggregates then

foreach row x ∈ X do
foreach algebraic aggregate fij in l1, ..., lm do

Let gij be the super function of fij ;

In x, replace f1
ij
, ..., f

pij
ij

by a single column fij and set

x.fij = gij (x.f1
ij
, ..., x.f

pij
ij

);

return X ;

3. compute the result table:

X = {b ◦ v|b ∈ B ∧ v = (gi1(X̃[b,θ̃1]), ..., giki (X̃[b,θ̃m]))},

where X̃[b,θ̃i]
= πRi,Cij

{x̃ ∈ X̃|θi(x̃, b)}.

Example 2. Following, we present the evaluation of Query 1 from Section 1.2
using reduction to point aggregates. First, the conditions are transformed to

θ̃1(r, b) ≡ (r.OrdDate = b.OrdDate ∧ r.OrdPrior = b.OrdPrior),

θ̃2(r, b) ≡ (r.OrdDate = b.OrdDate),

θ̃3(r, b) ≡ (r.OrdPrior = b.OrdPrior),

θ̃4(r, b) ≡ (r.OrdDate = b.OrdDate ∧ r.OrdPrior = b.OrdPrior).

Afterwards, using these conditions the initial result in the intermediate re-
sult table is computed as illustrated in Figure 3. First, all aggregate attributes
of the intermediate result table X̃ are set to their corresponding initial values of
the aggregate functions, i.e., 0 for sum and count, NULL for max and min. Af-
ter the initialization of the aggregate attributes, each tuple of the Orders table
is processed, where all aggregate attributes of the affected tuples are updated
in the result table X̃ using the previously created equality conditions θ̃i. Using
these equality conditions θ̃i significantly reduces the incremental updates in the
intermediate result table X̃. After all tuples of the Orders table have been pro-
cessed, the intermediate result table X̃ is complete. Finally, the final result table

13

X is derived from the intermediate result table X̃ using the super-aggregates
G = (gi1 , ..., giki) in combination with the original conditions (θ1, ..., θm).

B : π[OrdDate,OrdPrior]Orders
l1 : (count(OrdDate)→ CntDP)
θ1 : r.OrdDate = b.OrdDate ∧ r.OrdPrior = b.OrdPrior
l2 : (count(OrdDate)→ CumCntD)
θ2 : r.OrdDate ≤ b.OrdDate
l3 : (count(OrdDate)→ NegCntP)
θ3 : r.OrdPrior 6= b.OrdPrior
l4 : (count(OrdDate)→ CumCntDP)
θ4 : r.OrdDate ≤ b.OrdDate ∧ r.OrdPrior ≤ b.OrdPrior

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

Step 1: (θ̃1, ..., θ̃4)

X̃
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x̃1 2013-04-18 1 2 4 3 2
x̃2 2013-04-18 2 1 4 3 1
x̃3 2013-04-18 3 1 4 2 1
x̃4 2013-04-19 2 2 3 3 2
x̃5 2013-04-19 3 1 3 2 1
x̃6 2013-04-20 1 1 1 3 1

Step 2:

(θ1, ..., θ4)

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 2 4 5 2
x2 2013-04-18 2 1 4 5 3
x3 2013-04-18 3 1 4 6 4
x4 2013-04-19 2 2 7 5 5
x5 2013-04-19 3 1 7 6 7
x6 2013-04-20 1 1 8 5 3

Step 3:

Figure 3: Processing Query 1 Using Reduction to Point Aggregates

Even if the conditions in θ̃i contain only equality constraints, a single tuple
in R might still affect several tuples in X̃, for instance, if equality conditions in
θ̃i constrain only a subset of all grouping attributes in R, i.e., Ri ⊂ R1∪ ...∪Rm.
In our running example this concerns the conditions θ̃2 and θ̃3, which produce
redundant updates in X̃. In order to tackle these redundant updates separate
intermediate result tables were introduced in [13] where every intermediate re-
sult table X̃i requires exactly on update for each r ∈ R. Next, the strategy of
using separate intermediate result tables is formally defined.

Definition 3. (Separate Intermediate Result Tables [13]) Let B(B)
and R(R) tables, θi be conditions with attr(θi) ⊆ B ∪ R, and li = (fi1 →
Ci1 , ..., fiki → Ciki) with 1 ≤ i ≤ m, be a list of aggregate functions over at-
tributes Ai1 , Ai2 , ..., Aiki in R, G = (gi1 , ..., giki) be the corresponding super
aggregates [33]. Furthermore, let Ri = R ∩ attr(θi) denote the attributes in
R that occur in θi. Then Gθ(B,R, (l1, ..., lm), (θ1, ..., θm)) can be computed as
follows:

1. construct Θ̃ = (θ̃1, ..., θ̃m):

θ̃i(r, b) =
∧
A∈Ri

r.A = b.A with r ∈ R, b ∈ B;

2. compute m intermediate result tables:

X̃i = Gθ(πRi
(R), R, li, θ̃i) for i = 1, ...,m;

14

3. compute the result table:

X = {b ◦ f |b ∈ B ∧ f = (gi1(X̃1
[b,θ̃1]

), ..., giki (X̃
i
[b,θ̃m]

))},

where X̃i
[b,θ̃i]

= πRi,Cij
{x̃ ∈ X̃i|θi(x̃, b)}.

Example 3. In the next example, the evaluation of Query 1 is performed us-
ing reduction to point aggregates together with separate intermediate result
tables. Again, the conditions in θ are transformed to contain only equality
constraints as in Example 2. Next, the intermediate result tables are created
using the corresponding groupings from the conditions θ̃i. Figure 4 shows the
four intermediate result tables, X̃1, X̃2, X̃3 and X̃4, where X̃1 and X̃4 con-
tain two grouping attributes, OrdDate and OrdPrior, whereas X̃2 and X̃3 have
one grouping attribute, i.e., OrdDate and OrdPrior, respectively. Processing a
tuple from the detail table R now requires exactly one update in each of the
intermediate result tables. After the creation of the separate intermediate result
tables, the final result table X is built using the entries of the previously created
intermediate result tables by applying the original conditions θi.

B : π[OrdDate,OrdPrior]Orders
l1 : (count(OrdDate)→ CntDP)
θ1 : r.OrdDate = b.OrdDate ∧ r.OrdPrior = b.OrdPrior
l2 : (count(OrdDate)→ CumCntD)
θ2 : r.OrdDate ≤ b.OrdDate
l3 : (count(OrdDate)→ NegCntP)
θ3 : r.OrdPrior 6= b.OrdPrior
l4 : (count(OrdDate)→ CumCntDP)
θ4 : r.OrdDate ≤ b.OrdDate ∧ r.OrdPrior ≤ b.OrdPrior

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

Step 1: (θ̃1, ..., θ̃4)

X̃1

OrdDate OrdPrior CntDP
x̃1
1 2013-04-18 1 2
x̃1
2 2013-04-18 2 1
x̃1
3 2013-04-18 3 1
x̃1
4 2013-04-19 2 2
x̃1
5 2013-04-19 3 1
x̃1
6 2013-04-20 1 1

X̃4

OrdDate OrdPrior CumCntDP
x̃4
1 2013-04-18 1 2
x̃4
2 2013-04-18 2 1
x̃4
3 2013-04-18 3 1
x̃4
4 2013-04-19 2 2
x̃4
5 2013-04-19 3 1
x̃4
6 2013-04-20 1 1

X̃2

OrdDate CumCntD
x̃2
1 2013-04-18 4
x̃2
2 2013-04-19 3
x̃2
3 2013-04-20 1

X̃3

OrdPrior NegCntP
x̃3
1 1 3
x̃3
2 2 3
x̃3
3 3 2

(θ1, ..., θ4)

Step 2:

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

x1 2013-04-18 1 2 4 5 2
x2 2013-04-18 2 1 4 5 3
x3 2013-04-18 3 1 4 6 4
x4 2013-04-19 2 2 7 5 5
x5 2013-04-19 3 1 7 6 7
x6 2013-04-20 1 1 8 5 3

Step 3:

Figure 4: Processing Query 1 with Separate Intermediate Result Tables

In the following, the TCMDA+ (see page 16) algorithm combining reduction
to point aggregates and separate intermediate result tables is presented as given

15

in [13]. First, the algorithm creates the separate intermediate result tables for
each condition θ̃i. This might lead to intermediate result tables with identical
grouping attributes such as X̃1 and X̃4 in our running example. The algorithm
merges these intermediate result tables with identical groupings Ri to a sin-
gle intermediate result table containing a column for each aggregate function.
Next, indexes are created over the intermediate result tables together with the
equality constraint conditions θ̃i. Afterwards, the detail table is scanned and
for each tuple in the detail table r ∈ R the according intermediate result ta-
bles is updated. If a tuple x̃i exists in the according intermediate result table
X̃i, then the entry is incrementally updated. Otherwise, a new entry in the
intermediate result table X̃i is created and the aggregate value is initialized to
the functions evaluated over r. Last, the final result table X is built where
the aggregate attributes are initialized to their according neutral values vi by
combining the partial aggregates from the intermediate result tables x̃i using
the super-aggregates.

Algorithm 2: TCMDA+(B,R, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Initialize intermediate result tables
Let Ri ← R ∩ attr(θi) for i = 1, ...,m;
Let (Rj1 , Fj1), ..., (Rjk

, Fjk), k ≤ m, be a partitioning of the fi according to Ri;

foreach partition (Rj , Fj) do

X̃j ← empty table with schema (Rj , Cj1 , . . . , Cjkj
);

Create an index on X̃j over the attributes Rj ;

θ̃j(r, b) =
∧
A∈Rj

r.A = b.A;

// Step 2: Scan detail table R(R) and update intermediate result tables
foreach tuple r ∈ R(R) do

foreach partition (Rj , Fj) do

if ∃x̃ ∈ X̃j such that θ̃j(r, x̃) then
x̃.Cji ← gji (x̃.Cji , fji ({r})) for i = 1, ..., kj ;

else

X̃j ← X̃j ∪ {r.Rj ◦ (fj1 ({r}), ..., fjkj ({r}))};

// Step 3: Build final result table X
X = B(B)× {(υ1, ..., υm)};
foreach x ∈ X do

for i = 1 to m do

X̃[x,θi]
← {x̃ ∈ X̃j | Ri = Rj ∧ θi(x̃, x)};

x.Ci ← gi(X̃[x,θi]
);

return X;

16

4 Parallel Computation of θ-MDA Queries

In the previous section none of the presented algorithms take advantage of the
current evolution of modern computer architectures. The evaluation strategies
are executed by a single thread regardless of the number of supported threads of
the current machine where the algorithm is executed. This leads to a situation
where a single core of the computing machine performs the entire computation
of the θ-MDA query whereas the remaining cores are idle and a huge potential
computing power is wasted.

In this section we introduce the parallel computation of the IndexedTCMDA
and the TCMDA+ algorithm. We give a formal definition and illustrate both
strategies on a schematic overview together with the evaluation of both evalu-
ation strategies on the running example.

4.1 Parallel BasicTCMDA/IndexedTCMDA

In the following section we introduce the steps in order to parallelize the evalu-
ation algorithms BasicTCMDA and IndexedTCMDA.

4.1.1 Partitioning Strategies

The computation of BasicTCMDA/IndexedTCMDA can be parallelized using
several partitioning strategies.

Partitioning of the Detail Table. The evaluation of BasicTCMDA and
IndexedTCMDA can be parallelized using partitioning of the detail table R
in P partitions, i.e., R = R1 ∪ · · · ∪ RP , where P is the number of threads
or processor units. This partitioning strategy requires that every processor
receives the entire base table B, because every tuple in the detail table r ∈ R
may contribute to every tuple in the base table b ∈ B. As a consequence,
the main memory requirements of the algorithm increase. In addition, the
database facilities must be physically separated either on different disks or on
different servers. Otherwise, reading from the database in parallel has a negative
influence on the reading performance on a single machine but can be moderated
by a database cache controller [49]. Since the partitioning of the detail table R
introduces unknown circumstances outside of the actual algorithm, we do not
take this strategy into consideration.

Partitioning of the Aggregate Functions. The evaluation of the aggregate
functions fij to be computed could be partitioned among the processors where
each processor evaluates a single aggregate function fij in the corresponding
base table Bi. This requires that the workload to evaluate the specified function
is more or less similar. If the number of the aggregate functions fij to be
computed is smaller than the number of processors P , the workload is not
efficiently distributed because not all processors are used.

Partitioning of the Base Table. The evaluation of BasicTCMDA and In-
dexedTCMDA can be parallelized using partitioning of the base table B in P
partitions where P is the number of threads or processor units. The number
of processors P can either be specified by the user or is a physical boundary

17

of the current machine where the θ-MDA evaluation algorithms are executed.
The partitioning of B in P parts can be applied since B = B1 ∪ · · · ∪BP where
every processor can evaluate each partition in isolation [10]. This strategy does
not suffer from the drawbacks of the partitioning strategies introduced before,
because the workload of the computation can be distributed evenly among the
available processors.

4.2 Partitioning of the Base Table

In the following we give a formal definition for parallelizing the θ-MDA operator
by partitioning the base table B in P partitions.

Proposition 1. (Parallelized θ-MDA Operator (IndexedTCMDA)) Let
B(B) and R(R) tables, θi be conditions with attr(θi) ⊆ B ∪ R, and li =
(fi1 → Ci1 , ..., fiki → Ciki) with 1 ≤ i ≤ m, be a list of aggregate functions
over attributes Ai1 , Ai2 , ..., Aiki in R. Further, let B = B1 ∪ · · · ∪ BP with
B1 ∩ · · · ∩BP = ∅, where P denotes the number of processors with 1 ≤ p ≤ P .
Then X = Gθ(B,R, (l1, ..., lm), (θ1, ..., θm)) can be computed with the following
parallel evaluation strategy:

1. compute P θ-MDA queries with different base tables:

Xp = Gθ(Bp, R, (l1, ..., lm), (θ1, ..., θm)) with 1 ≤ p ≤ P,

where X = (B, C1, ..., C1k1
, ..., Cm1 , ..., Cmkm) is the schema of the result

table and each tuple b ∈ Bp produces a result tuple x ∈ Xp with

x.B = b.B,

x.Cij = fij ({r.Aij |r ∈ R ∧ θi(b, r)}),∀Cij ∈ X;

2. construct the final result table X:

X = X1 ∪ · · · ∪XP .

Figure 5 illustrates the detail table R together with the partitioning of the
base table B and the final result table X. Initially, the algorithm divides the base
table B into P partitions and constructs the partitions of the result table Xp

from the partitions of the base table Bp. Next, for every tuple in the detail table
r ∈ R the aggregates in the partitions of the final result table Xp are updated
by a single processor in isolation. Lastly, the final result table X is constructed
by combining the partitions of the final result tables Xp, i.e., X = X1∪· · ·∪XP .

Theorem 1. The evaluation strategy proposed in Proposition 1 correctly com-
putes θ-MDA.

Proof 1. First of all, the base table B is partitioned into P disjoint partitions,
i.e., B = B1 ∪ · · · ∪ BP with B1 ∩ · · · ∩ BP = ∅ where P denotes the number
of processors with 1 ≤ p ≤ P . Next, for every partition of the base table Bp
the θ-MDA operator Xp = Gθ(Bp, R, (l1, ..., lm), (θ1, ..., θm)) is applied which
computes the result tables Xp for the corresponding partition of the base table
Bp. Finally, the partitions of the result tables Xp are combined in order to

18

Detail Table R

Base Table B1

Result Table X1

Base Table BP

Result Table XP

Final Result Table X

Base Table B

Step 1 Step 2

Figure 5: IndexedTCMDA: Parallel Computation of the θ-MDA Operator

obtain the final result table, i.e., X = X1∪· · ·∪XP . Since for every partition of
the detail table Bp the entire detail table R is considered and the union of the
result tables X = X1 ∪ · · · ∪XP does not add spurious tuples in the final result
table X because of the disjoint partitioning, the evaluation strategy proposed
in Proposition 1 correctly computes θ-MDA.

Note that each partition Xp can be computed independently from other par-
titions and hence allows the distribution of the workload each partition requires.
We further assume that each partition of the base table Bp requires almost iden-
tical processing time, i.e., the workload of a single processor in order to create
the result partition Xp from the base table partition Bp can be compared. Over-
all, this leads to a nearly perfect distribution of the workload required in order
to complete each result partition Xp among the computing threads or proces-
sors. The number of tuples in each partition will differ by at most one since
the number of tuples in the final result table X divided by the number of pro-
cessors P determines the number of tuples of each partition |Xp| = b|X|/P c.
Afterwards, the remaining tuples of the final result table |X| − b|X|/P cP can
be equally distributed among the partitions Xp. Finally, each partition contains
|Xp| = b|X|/P c+ sgn(b(|X| − b|X|/P cP)/pc) number of tuples.

Example 4. In the following example, we illustrate the steps of the strategy in
order to evaluate Query 1 given in Proposition 1 in parallel. The partitioning
process and the step by step evaluation of Query 1 is shown in Figure 6. For
the sake of simplicity we assume two processing units P = 2. At the beginning
of the computation the base table B and the final result table X are split into
two partitions B = B1∪B2 and X = X1∪X2, respectively. In this example, the
two final result tables contain the same number of tuples to be processed, i.e.,
|X1| = |X2| = 3, where |X1| and |X2| denote the number of tuples in X1 and X2,
respectively. After the partitioning, all aggregate functions of each partition are
initialized with their corresponding initial values. Next, each tuple of the Orders

19

table is processed, where all the aggregate attributes of the affected tuples are
updated in the partitions of the result table Xp. In conclusion, the final result
table X is obtained by combining the partitions of the final result tables Xp,
i.e., X = X1 ∪ · · · ∪XP .

X1

OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP
x1 2013-04-18 1 0 0 0 0
x2 2013-04-18 2 0 0 0 0
x3 2013-04-18 3 0 0 0 0

X2

OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP
x4 2013-04-19 2 0 0 0 0
x5 2013-04-19 3 0 0 0 0
x6 2013-04-20 1 0 0 0 0

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X1

OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP
x1 2013-04-18 1 0 1 1 0
x2 2013-04-18 2 0 1 1 0
x3 2013-04-18 3 1 1 0 1

X2

OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP
x4 2013-04-19 2 0 1 1 0
x5 2013-04-19 3 0 1 0 1
x6 2013-04-20 1 0 1 1 0

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X
OrdDate OrdPrior CntDP CumCntD NegCntP CumCntDP

X1

x1 2013-04-18 1 2 4 5 2
x2 2013-04-18 2 1 4 5 3
x3 2013-04-18 3 1 4 6 4

X2

x4 2013-04-19 2 2 7 5 5
x5 2013-04-19 3 1 7 6 7
x6 2013-04-20 1 1 8 5 3

Orders
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

Figure 6: IndexedTCMDA: Parallel Computation of Query 1

In Example 1, the first tuple of the Orders table r1 requires 13 updates in
the final result table X. In this example, the number of updates are divided
almost equally among the partitions, where the first partition X1 requires 6 and
the second partition X2 needs 7 updates. Hence, the workload of the processors
computing the partitions is balanced. Nevertheless, the parallel execution of
the θ-MDA query introduces also costs. First, the partitioning process adds a
small overhead, i.e., the time needed to partition the final result X into the
partitions X1, . . . , XP . The overhead in order to combine the partitions X =
X1 ∪ · · · ∪ XP is negligible since each partition can be written in succession
to disc. Additionally, in the case of IndexedTCMDA for each partition Xp

a separate index has to be created and maintained. On the other hand, the
different indexes on the partitions Xp are smaller and hence can be scanned
more efficiently compared to the single index constructed on the final result
table X.

4.3 Parallel TCMDA+

In this section we illustrate the strategies to parallelize the optimized evaluation
algorithm TCMDA+.

20

4.3.1 Partitioning Strategies

The computation of TCMDA+ can be parallelized using several partitioning
strategies.

Vertical Partitioning of the Intermediate Result Tables. The construc-
tion of the separate intermediate result tables could be divided, where each pro-
cessor computes its single intermediate result table. This partitioning strategy
requires that the workload to complete the separate intermediate result tables
X̃i is balanced, i.e., the number of tuples and the number of aggregate functions
fij to be computed in the separate intermediate tables X̃i are comparable. Since

the size of an intermediate result table |X̃i| increases the maintenance cost of
the corresponding hash index, the individual construction time of the separate
intermediate result tables X̃i differs strongly. In addition, if the number of pro-
cessors P exceeds the number of intermediate result tables X̃i, the workload
is not effectively distributed since the supernumerous processors are running
idle. As a consequence, the composition of the final result table X has to be
postponed until all processors have completed their separate intermediate re-
sult table X̃i. Despite the increased number of tuples in the intermediate result
tables |X̃i|, the corresponding hash index can be accessed in constant time in
order to identify a tuple which has to be updated.

Partitioning of the Aggregate Functions. The evaluation of the aggre-
gate functions fij to be computed could be partitioned among the processors,
where each processor evaluates a single aggregate function fij in the according

intermediate result table X̃i. As in the first partition strategy, this requires
that the workload in order to evaluate the specified function is similar. This
partitioning strategy encounters the same drawback as the vertical partitioning
of the intermediate result tables presented before. If the number of the aggre-
gate functions fij to be computed fall below the number of processors P , the
workload is not efficiently distributed because the supernumerary processors are
not in operation.

Horizontal Partitioning of the Separate Intermediate Result Tables.
In order to distribute the workload among the processing units and in order to
balance the computational effort we propose a partitioning of the separate inter-
mediate result tables X̃i in P partitions. Again, P is the number of processors
and the partitioning of the separate intermediate result tables can be applied
since X̃i = X̃i

1 ∪ · · · ∪ X̃i
P . This partitioning strategy does not encounter the

drawbacks of the partitioning strategies presented before. The workload of the
computation can be distributed efficiently among the processors, because the
number of tuples in the separate intermediate result tables never fall below the
number of processors P .

4.3.2 Horizontal Partitioning of the Intermediate Result Tables

Proposition 2 introduces the parallelized θ-MDA Operator with separate inter-
mediate result tables using reduction to point aggregates.

21

Proposition 2. (Parallelized θ-MDA Operator (TCMDA+)) Let B(B)
and R(R) tables, θi be conditions with attr(θi) ⊆ B ∪ R, and li = (fi1 →
Ci1 , ..., fiki → Ciki) with 1 ≤ i ≤ m, be a list of aggregate functions over
attributes Ai1 , Ai2 , ..., Aiki in R, G = (gi1 , ..., giki) be the corresponding su-
per aggregates [33]. Let B = B1 ∪ · · · ∪ BP with B1 ∩ · · · ∩ BP = ∅ and
R = R1 ∪ · · · ∪ RP with R1 ∩ · · · ∩ RP = ∅ where P denotes the number of
processors. Furthermore, let Ri = R ∩ attr(θi) denote the attributes in R that
occur in θi. Then the parallelized Gθ(B,R, (l1, ..., lm), (θ1, ..., θm)) with separate
intermediate result tables using reduction to point aggregates can be computed
as follows:

1. construct Θ̃ = (θ̃1, ..., θ̃m):

θ̃i(r, b) =
∧
A∈Ri

r.A = b.A with r ∈ R, b ∈ B;

2. compute P ·m intermediate result tables:

X̃i
p = Gθ(πRi

(R), Rp, li, θ̃i) for i = 1, ...,m and p = 1, ..., P ;

3. compute P result tables:

Xp = {b ◦ f |b ∈ Bp ∧ f = (gi1(X̃1
p[b,θ̃1]

), ..., giki (X̃
i
p[b,θ̃m]

))},

where X̃i
p[b,θ̃i]

= πRi,Cij
{x̃ ∈ X̃i

p|θi(x̃, b)};

4. compute the final result table X

X = X1 ∪ · · · ∪XP .

Figure 7 depicts the partitioning of the detail table R together with the
partitioning of the separate intermediate result tables X̃i

p. First of all, the detail
table R is divided into P partitions, i.e., R1 ∪ · · · ∪RP with R1 ∩ · · · ∩RP = ∅.
Next, from a single partition of the detail table Rp the separate intermediate

result tables X̃i
p are constructed. Note the difference to the partitioning strategy

described in Section 4.1 where the tuples of the detail table r ∈ R contribute
to every partition of the final result table Xp. The partitioning of the detail
table R can be applied since the groups of the partitioned separate intermediate
result tables X̃i

p are produced by a projection πRi
where πRi1

∪ · · · ∪ πRiP
. In

the next stage, for every tuple in the partitions of the detail table r ∈ Rp the

aggregates in the partitions of the separate intermediate result tables X̃i
p are

updated by a single processor in isolation using the conditions containing only
equality constraints θ̃. After the completion of the partitions of the separate
intermediate result tables X̃i

p, the final result table X is constructed where

every partition of the separate intermediate result tables X̃i
p contribute to every

partition of the final result table Xp because of the initial partitioning of the
detail table R. Finally, the final result table is constructed by combining the
partitions of the result tables X = X1 ∪ · · · ∪XP .

Theorem 2. The evaluation strategy proposed in Proposition 2 correctly com-
putes θ-MDA.

22

D
et

ai
l

T
ab

le
R

R
1

R
P

π
R

1
(R

1
)

In
te

rm
ed

ia
te

T
ab

le
X̃

1 1

π
R

1
(R

P
)

In
te

rm
ed

ia
te

T
ab

le
X̃

1 P

π
R

m
(R

1
)

In
te

rm
ed

ia
te

T
ab

le
X̃
m 1

π
R

m
(R

P
)

In
te

rm
ed

ia
te

T
ab

le
X̃
m P

B
as

e
T

a
b
le
B

1

R
es

u
lt

T
ab

le
X

1

B
as

e
T

a
b
le
B
P

R
es

u
lt

T
ab

le
X
P

F
in

a
l

R
es

u
lt

T
a
b
le
X

B
a
se

T
a
b
le
B

S
te

p
1

S
te

p
2

S
te

p
3

S
te

p
4

Figure 7: TCMDA+: Parallel Computation of the θ-MDA Operator

23

Proof 2. The first step in Proposition 2 in order to create the equality con-
straint conditions θ̃i is the same as in the previous definition of TCMDA+. Next,
the detail table R is partitioned into P partitions, i.e., R = R1 ∪ · · · ∪RP with
R1 ∩ · · · ∩ RP = ∅ where P denotes the number of processors with 1 ≤ p ≤ P .
Then, the θ-MDA operator is applied to every partition of the detail table Rp
using the equality constraint conditions, i.e., X̃i

p = Gθ(πRi
(R), Rp, li, θ̃i) for i =

1, ...,m and p = 1, ..., P , in order to obtain the partitions of the separate inter-
mediate result tables X̃i

p. As a result, the equality constraint conditions θ̃i are
applied on the entire detail table R. In the next stage, the base table B is parti-
tioned into P disjoint partitions, i.e., B = B1 ∪ · · · ∪BP with B1 ∩ · · · ∩BP = ∅
with 1 ≤ p ≤ P . Now, the result tables Xp are constructed using the original
constraint conditions θi together with the partitions of the detail table Bp and

the partitions of the separate intermediate result tables X̃i
p. Finally, the final

result table is constructed by combining the previously created result tables
X = X1 ∪ · · · ∪XP . On account of the union does not add auxiliary tuples in
the final result table X because of the disjoint partitioning and seeing that the
entire detail table R and the entire partitions of the separate intermediate tables
X̃i
p are considered, the evaluation strategy proposed in Proposition 2 correctly

computes θ-MDA.

In contrast to the partitioning strategy described in Section 4.1 where the
tuples of the detail table r ∈ R contribute to every partition of the final result
table Xp, the tuples of the detail table r ∈ R in this strategy contribute to a

single intermediate result table X̃i. As a consequence, the detail table R can
be divided into P partitions, R = R1 ∪ · · · ∪RP with R1 ∩ · · · ∩RP = ∅, where
each processor computes the separate intermediate result table X̃i

p from the
corresponding partition of the detail table Rp. This does not imply that the

separate intermediate result tables X̃i
p are disjoint, i.e., X̃1

1 ∩ · · · ∩ X̃m
P 6= ∅.

In practice, the number of distinct grouping values included in the constraint
conditions Ri = Ri∩attr(θ̃i) are small and overlap with the different partitions
of the detail table Rp, i.e., πR1 ∩ · · · ∩ πRP

6= ∅, since the tuples of the detail
table R are distributed randomly. As a result, the number of tuples in the
separate intermediate result tables X̃i

p are equal containing the evaluation of
the different aggregate functions.

Example 5. In the next example, we present the different steps in order to
evaluate Query 1 given in Proposition 1 in parallel using reduction to equality
constraints together with separate intermediate result tables. For the sake of
convenience we assume two processors P = 2 and illustrate the computation on
the separate intermediate table X̃4 from Example 3. Figure 8 shows the pro-
cessing steps without the initial partitioning of the detail table R and the final
result table X. In order to enhance reading and to indicate their contribution to
the final result, the tuples r1, r6 and r7 from the partitions of the detail tables
R1 and R2 are written in bold and in different colors.

At the beginning, the detail table is split into two partitions R = R1 ∪ R2

with R1 ∩ R2 = ∅ where each partition contains the same number of tuples,
i.e., |R1| = |R2|. After the partitioning of the detail table R, two separate
intermediate result table partitions X̃4

1 and X̃4
2 are created in order to compute

the projection πR where Ri = R∩ attr(θi) denotes the attributes R that occur
in θi. For instance, the tuples r6 and r7 from detail table R2 are projected to

24

the single tuple x̃4
4 in the partition of the separate intermediate result table X̃4

4 .
After the completion of the partitions of the separate intermediate result tables
X̃4

1 and X̃4
2 the partitions of the final result tablesX1 andX2 are computed using

the original conditions θi. In the example, tuple X̃4
3 from the first partition of

the separate intermediate result table X̃4
1 contributes to tuples of both partitions

of the final result tables x3 ∈ X1 and x5 ∈ X2. In the end, the final result table
X is obtained by combining the partitions of the final result tables Xp, i.e.,
X = X1 ∪ · · · ∪XP .

As in Example 4, the required number of updates are divided almost equally
among the partitions of the separate intermediate result tables Xi

p and the final
result tables Xp. As a consequence, the workload of the processors generating
the different partitions is balanced in spite of the maintenance costs of the
partitions and the indexes of the separate intermediate result tables Xi

p and the
final result tables Xp.

R
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18

r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

R1

... OrdPrior OrdDate
r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18

R2

... OrdPrior OrdDate
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

X̃4
1

OrdDate OrdPrior CumCntDP
x̃4

1 2013-04-18 1 2
x̃4

2 2013-04-18 2 1
x̃4

3 2013-04-18 3 1

X̃4
2

OrdDate OrdPrior CumCntDP
x̃4

4 2013-04-19 2 2
x̃4

5 2013-04-19 3 1
x̃4

6 2013-04-20 1 1

θ̃4 θ̃4

X1

OrdDate OrdPrior CumCntDP
x1 2013-04-18 1 2
x2 2013-04-18 2 3
x3 2013-04-18 3 1 + 3

X2

OrdDate OrdPrior CumCntDP
x4 2013-04-19 2 2 + 3
x5 2013-04-19 3 1 + 2 + 4
x6 2013-04-20 1 3

θ4 θ4

X
OrdDate OrdPrior CumCntDP

x1 2013-04-18 1 2
x2 2013-04-18 2 3
x3 2013-04-18 3 4

x4 2013-04-19 2 5
x5 2013-04-19 3 7
x6 2013-04-20 1 3

Figure 8: TCMDA+: Parallel Computation of Query 1

25

5 Reducing the Intermediate Tables to SQL

The optimization approach of using separate intermediate result tables in order
to reduce redundant updates presented in [13] computes the entire intermediate
result tables in main memory using an index which is created on the fly. This
strategy requires that for each tuple r ∈ R the created index has to be consulted
in order to check whether the tuple is present or not. In addition, if the currently
scanned tuple is not present in the index, the currently updated intermediate
result table and the index have to be updated.

Since the conditions θ̃i contain only equality constraints the most efficient
index in order to identify already present tuples in the intermediate result tables
is a hash index [50] where the index needs to be reorganized or recreated in
order to avoid large overflow chains which decrease the performance of the hash
index [50]. The computation of the separate intermediate result tables is based
on a projection πRi

(R), where Ri = R∩attr(θi) denotes the attributes in R that
occur in θi using the generated equality constraints θ̃i. This can be transformed
to a SQL GROUP BY statement and handed over to the DBMS. These SQL
GROUP BY statements can be optimized and executed efficiently by highly
optimized database facilities. This avoids the creation and maintenance of the
separate intermediate result tables together with the hash index in the actual
algorithm. Basically, the algorithm retrieves the intermediate result tables X̃i

generated by the DBMS and continues with the generation of the final result
table X using the original conditions θi.

In the next sections we present the parallel computation of the TCMDA+

with separate intermediate result tables using reduction to SQL. First of all,
a formal definition together with a schematic overview in order to enhance
understanding is given. Next, the correctness of the newly introduced evaluation
strategy is shown. Finally, the presented approach is evaluated on the running
example.

In the following we introduce the reduction of the computation of the sepa-
rate intermediate result tables using equality constraint conditions to SQL.

Proposition 3. (Reducing Intermediate Result Tables to SQL (TCMDA+))
Let B(B) and R(R) tables, θi be conditions with attr(θi) ⊆ B ∪R, and li =
(fi1 → Ci1 , ..., fiki → Ciki) with 1 ≤ i ≤ m, be a list of aggregate functions over
attributes Ai1 , Ai2 , ..., Aiki in R, G = (gi1 , ..., giki) be the corresponding super
aggregates [33]. Let B = B1∪· · ·∪BP with B1∪· · ·∪BP = ∅ where P denotes the
number of processors. Furthermore, let Ri = R∩ attr(θi) denote the attributes
in R that occur in θi. Then the parallelized Gθ(B,R, (l1, ..., lm), (θ1, ..., θm))
with separate intermediate result tables using reduction to SQL can be com-
puted as follows:

1. compute m intermediate result tables using SQL:

X̃i = SELECT Ri,

fi1(R.Ai1) AS Ci1,

...,

fiki (R.Aiki
) AS Ciki

FROM R
GROUP BY Ri

with 1 ≤ i ≤ m;

26

2. compute P result tables:

Xp = {b ◦ f |b ∈ Bp ∧ f = (gi1(X̃1
[b,θ1]), ..., giki (X̃

i
[b,θm]))},

where X̃i
[b,θi]

= {x̃ ∈ X̃i|θi(x̃, b)} and 1 ≤ p ≤ P ;

3. construct the final result table X:

X = X1 ∪ · · · ∪XP .

Theorem 3. The evaluation strategy proposed in Proposition 3 correctly com-
putes θ-MDA.

Proof 3. The computation of the separate intermediate tables X̃i is based on
the θ-MDA operator using equality constraint conditions θ̃ and a projection of
the detail table πRi

where Ri = R∩attr(θi). The projection of the detail table
πRi

is a relational operator and can be transformed to SQL where the entire
detail table R is considered. On account of Proposition 2 applies the θ-MDA
operator using equality constraint conditions θ̃ on the projection of the detail
table πRi , the evaluation of the θ-MDA operator can be computed by a single
GROUP BY [10]. Hence, the reduction of the computation of the separate
intermediate result tables X̃i in Proposition 3 is correct.

After the computation of the separate intermediate result tables X̃i, the base
table B is partitioned into P disjoint partitions, i.e., B = B1 ∪ · · · ∪ BP with
B1 ∩ · · · ∩ BP = ∅ with 1 ≤ p ≤ P . Next, the result tables Xp are constructed
using the original constraint conditions θi together with the partitions of the
detail table Bp and the separate intermediate result tables X̃i. In the end, the
final result table is constructed by combining the previously created result tables
X = X1 ∪ · · · ∪XP . On account of the union does not add auxiliary tuples in
the final result table X because of the disjoint partitioning and seeing that the
entire detail table R and the entire partitions of the separate intermediate tables
X̃i are considered, the evaluation strategy proposed in Proposition 3 correctly
computes θ-MDA.

Figure 9 illustrates the evaluation strategy using the reduction of the in-
termediate result tables to SQL. At the beginning, the separate intermediate
result tables X̃i are constructed using SQL statements on the entire detail table
R. Note that the generated SQL statements are executed by the DBMS and
therefore the evaluation strategy does not exert any influence on their execu-
tion, for instance, whether the DBMS executes the SQL statement on the same
machine using a single thread or distributes the query over a database cluster.
Since reading from the database in parallel has no or a negative influence on the
reading performance on a single machine [49], the algorithm executes each SQL
statement by a single processor. In addition, the computation of the separate
intermediate result tables X̃i using SQL in the DBMS avoids the partition-
ing of the separate intermediate result tables X̃i

p = X̃i
1 ∪ · · · ∪ X̃i

P due to the
computation of the SQL statement is done over the entire detail table R.

In contrast to the evaluation strategy in Proposition 2 where the interme-
diate result tables X̃i together with the hash index are maintained in main
memory, the separate intermediate result tables X̃i in Proposition 3 are re-
duced to SQL and its computation is outsourced to the DBMS. The generated

27

Detail Table R

πR1(R)

Intermediate Table X̃1

πRm(R)

Intermediate Table X̃m

Base Table B1

Result Table X1

Base Table BP

Result Table XP

Final Result Table X

Base Table B

Step 1 Step 2 Step 3

Figure 9: Reducing Intermediate Result Tables to SQL

SQL statement to compute the separate intermediate result tables X̃i can be
optimized and executed efficiently by highly optimized database facilities. This
eliminates the maintenance and update costs of the indexes on the separate
intermediate result tables X̃i. In addition, the theta conditions θ̃i for the eval-
uation of the equality constraints on the separate intermediate result tables are
not needed. The algorithm continues as in Proposition 2 with the computation
of the partitions of the final result tables Xp from the base table partition Bp.
Every partition Xp can be computed independently from other partitions and
hence the workload required for each partition Xp is distributed among the pro-
cessors. As in Proposition 2 we assume that each partition of the base table
Bp requires almost identical processing time, i.e., nearly the same number of
updates. In the end, the result tables Xp are combined to the final result table
X = X1 ∪ · · · ∪XP .

Example 6. In this example we present the evaluation of Query 1 using re-
duction of group tables to SQL illustrated in Proposition 3. For the sake of
convenience we assume two processors P = 2 and illustrate the computation
on the separate intermediate table X̃4 from Example 3. At the beginning the
separate intermediate result tables X̃i are created using the following SQL state-
ments.

X̃1 ≡ SELECT r.OrdDate, r.OrdPrior, COUNT(r.OrdDate, r.OrdPrior) CntDP

FROM Orders r GROUP BY r.OrdDate, r.OrdPrior

X̃2 ≡ SELECT r.OrdDate, COUNT(r.OrdDate) CumCntD

FROM Orders r GROUP BY r.OrdDate

X̃3 ≡ SELECT r.OrdPrior, COUNT(r.OrdPrior) NegCntP

FROM Orders r GROUP BY r.OrdPrior

X̃4 ≡ SELECT r.OrdDate, r.OrdPrior, COUNT(r.OrdDate, r.OrdPrior) CumCntDP

FROM Orders r GROUP BY r.OrdDate, r.OrdPrior

After the creation of the separate intermediate result tables X̃1, . . . , X̃4 by
the DBMS, the partitions of the final result tables X = X1∪X2 are constructed

28

and initialized. After the partitioning, each tuple of the separate intermediate
result tables X̃1, . . . , X̃4 is processed, where all the aggregate attributes of the
affected tuples are updated in the partitions of the result table X1 and X2.
Figure 10 illustrates the processing steps without the partitioning of the final
result table X. To enhance reading and to indicate their contribution to the
final result, the tuples r1, r6 and r7 of the detail tables R are written in bold
and in different colors. In the example, the tuples r6 and r7 from detail table R
are projected to the single tuple x̃4

4 in the separate intermediate result table X̃4

and tuple X̃4
3 contributes to tuples of both partitions of the final result tables

x3 ∈ X1 and x5 ∈ X2. At the end, the final result table X is obtained by
combining the partitions of the final result tables Xp, i.e., X = X1 ∪ · · · ∪X2.

The computation of the separate intermediate result tables X̃i from the de-
tail table R is outsourced to the DBMS, where it can processed and transformed
efficiently. This is the most time consuming operation in the algorithm, since
the detail table R is typically large. The remaining number of updates required
are divided almost equally among the partitions of the result tables Xp and
as a result the workload of the processors generating the different partitions is
balanced in spite of the maintenance costs of the partitions and the indexes of
the result tables Xp.

R
... OrdPrior OrdDate

r1 ... 3 2013-04-18
r2 ... 2 2013-04-18
r3 ... 1 2013-04-18
r4 ... 1 2013-04-18
r5 ... 3 2013-04-19
r6 ... 2 2013-04-19
r7 ... 2 2013-04-19
r8 ... 1 2013-04-20

SELECT r.OrdDate, r.OrdPrior, COUNT(r.OrdDate, r.OrdPrior) CumCntDP

FROM Orders r GROUP BY r.OrdDate, r.OrdPrior

X̃4

OrdDate OrdPrior CumCntDP
x̃4

1 2013-04-18 1 2
x̃4

2 2013-04-18 2 1
x̃4

3 2013-04-18 3 1
x̃4

4 2013-04-19 2 2
x̃4

5 2013-04-19 3 1
x̃4

6 2013-04-20 1 1

X1

OrdDate OrdPrior CumCntDP
x1 2013-04-18 1 2
x2 2013-04-18 2 3
x3 2013-04-18 3 1 + 3

X2

OrdDate OrdPrior CumCntDP
x4 2013-04-19 2 2 + 3
x5 2013-04-19 3 1 + 2 + 4
x6 2013-04-20 1 3

X
OrdDate OrdPrior CumCntDP

x1 2013-04-18 1 2
x2 2013-04-18 2 3
x3 2013-04-18 3 4

x4 2013-04-19 2 5
x5 2013-04-19 3 7
x6 2013-04-20 1 3

Figure 10: Reduction Group Tables to SQL on Query 1

29

6 Algorithms and Implementation

In this section we define the algorithms in order to compute θ-MDA queries
in parallel based on the previously presented approaches in Section 4.1 for In-
dexedTCMDA and in Section 4.3 for TCMDA+. Further, we present the algo-
rithm in order to compute θ-MDA queries using the reduction of the separate
intermediate result tables to SQL illustrated in Section 5. Basically, the intro-
duced algorithms are modifications of the algorithms presented in Section 3 and
their main structure is preserved. In Section 6.1 we provide additional details
about the parallel IndexedTCMDA algorithm. In Section 6.2 we illustrate the
parallel TCMDA+ algorithm and in Section 6.3 we depict further details about
the computation of the of the separate intermediate result tables using SQL.
Finally, in 6.4 we present some details about the implementation of the θ-MDA
algorithms.

6.1 Parallel IndexedTCMDA Algorithm

In this section we present the algorithm in order to compute θ-MDA queries in
parallel based on the previously presented approach in Section 4.1. The intro-
duced algorithm is called IndexedPTCMDA which stands for Indexed Parallel
θ-Constrained Multi-Dimensional Aggregation. The algorithm requests an ad-
ditional parameter P which indicates the number of partitions of the base table
B. If the number of processors is equal one, i.e., P = 1, the algorithms In-
dexedTCMDA and IndexedPTCMDA are the same, since a single partition of
the final result table X = X1 is constructed. Note that IndexedPTCMDA does
not natively distribute the workload of the partitions among the processors, i.e.,
the implementation is responsible to distribute the computation of the parti-
tions of the final result table Xp, where every partition of the final result table
Xp can be evaluated separately by a processor in isolation.

The first step of the algorithm is the same as in the original IndexedTCMDA
algorithm defined on page 13 to compute the algebraic aggregates correctly. Step
2 to 4 of the proposed algorithm differ from the basic algorithm IndexedTCMDA
in order to follow the proposed parallel execution strategy. These modifications
are explained in more detail in the proceeding.

First, the algorithm splits the base table B into disjoint partitions B =
B1 ∪ · · · ∪ BP with B1 ∩ · · · ∩ BP = ∅, constructs the partitions of the final
result table Xp from the partitions of the detail tables Bp and initializes the
aggregation results. In addition, for each of the partitions of the final result table
Xp an index is created in order to improve the retrieval time of the tuples during
the computation of the aggregation results. Step 3 scans the detail table R and
computes the aggregates for every partition of the final result table Xp using the
created index over the conditions θ from step 2. Step 4 is a minor modification
of the same step of the original algorithm IndexedTCMDA. In this step the
aggregation results are computed by applying the super-aggregates to the values
of the sub-aggregates. Instead of applying the super-aggregates to the entire
final result table X as in the IndexedTCMDA algorithm, the IndexedPTCMDA
algorithm executes the super-aggregates to every partition of the final result
table Xp. In conclusion in order to complete the computation of the final result
table X, the previously created partitions Xp can be combined according to
step 2 of Proposition 1, i.e., X = X1 ∪ · · · ∪XP .

30

Algorithm 3: IndexedPTCMDA(B,R, P, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Replace algebraic aggregates by distributive sub-aggregates
(Same as step 1 in IndexedTCMDA)

// Step 2: Construct partitions of base table B and result table X
// Note: vj’s are the initial values of the aggregate functions (0 for sum and count,

NULL for max and min)

Let N = (v′11
, ..., v′m1

, ..., v′mkm
);

Partition B such that B = B1 ∪ · · · ∪ BP and B1 ∩ · · · ∩ BP = ∅;
for p = 1 to P do

Let Xp = Bp ×N ;
Build indexes for Xp;

// Step 3: Compute the aggregates
foreach tuple r ∈ R do

for p = 1 to P do
foreach θi ∈ {θ1, ..., θm} do

Fetch the rows Xpi = {x ∈ Xp|θi(x, r)} using the created index;

foreach x ∈ Xpi do
Update the aggregates fi1 , ..., fiki

in x;

// Step 4: Apply the super-functions
(Same as step 4 in IndexedTCMDA applied on every partition of result table X)

// Step 5: Combine previously created partitions of result table X
X = X1 ∪ · · · ∪XP ;

return X ;

6.2 Parallel TCMDA+ Algorithm

In the following section we present the algorithm to compute θ-MDA queries
in parallel based on the previously presented approach in Section 4.3. The pre-
sented algorithm is called PTCMDA+ which stands for Parallel θ-Constrained
Multi-Dimensional Aggregation Plus. The algorithm requests an additional pa-
rameter P which indicates the number of partitions of the detail table R as well
as the number of partitions of the base table B. As discussed in Section 6.1,
TCMDA+ and PTCMDA+ execute the same steps, if the number of partitions
is equal one, i.e., P = 1, and therefore, the entire workload of the computation
is performed by a single processor. Since the algorithm provides only the parti-
tioning strategy of the workload, the implementation is responsible to distribute
the evaluation of the partitions of the detail table Rp and the final result table
Xp among the available processors.

All the steps of the algorithm are basically the same as in the TCMDA+

algorithm defined on page 16. The main difference between the TCMDA+ and
the PTCMDA+ algorithm is that in every step of PTCMDA+ algorithm the
according operations are applied on every partition of the separate intermediate
result tables X̃i

p or on every partition of the result tables Xp, respectively.
In the first step, the algorithm creates the schema Ri of the separate inter-

mediate result tables X̃i for each condition θ̃i. This might lead to intermediate
result tables X̃i with identical grouping attributes. These are merged by the
algorithm to a single intermediate result table containing a column for each
aggregate function. Next, P empty separate intermediate result tables X̃i

p to-
gether with the indexes on the empty separate intermediate result tables are
constructed using the previously created schemas in order to allow the parti-
tioning of the detail table R in the second step. The first step is completed
after the creation of the equality constraint conditions θ̃i for the partitions of

31

the separate intermediate result tables X̃i
p.

In the second step, the detail table R is partitioned into P partitions R =
R1∪· · ·∪RP with R1∩· · ·∩RP = ∅ in order to allow the division of the workload
among the processors. Next, the partitions of the detail table Rp are scanned
and for each tuple in the partitions of the detail table r ∈ Rp the according

partition of the separate intermediate result table X̃p is updated. If a tuple x̃i
exists in the according partition of the intermediate result table X̃i

p, then the
entry is incrementally updated. Otherwise, a new entry in the partition of the
intermediate result table X̃i

p is created and the aggregate value is initialized to
the functions evaluated over the tuple of the according partition of the detail
table r ∈ Rp.

In the third step, the algorithm splits the base table B into disjoint partitions
B = B1 ∪ · · · ∪BP with B1 ∩ · · · ∩BP = ∅, constructs the partitions of the final
result table Xp from the partitions of the detail table Bp, creates an index for
each of the partitions of the final result table Xp and initializes the aggregation
results. The index is created in order to improve the retrieval time of the tuples
during the computation of the aggregation results. Further, the partitions of
the final result table Xp are built, where the aggregate attributes are initialized
to their according neutral values vi by combining the partial aggregates from
the partitions of the intermediate result tables X̃i

p using the super-aggregates.
The final step in order to complete the computation of the final result table

X consists of the combination of the previously created partitions Xp according
to step 4 of Proposition 2, i.e., X = X1 ∪ · · · ∪XP .

6.3 Parallel TCMDA+ with SQL

In the next section we present the PTCMDA+ algorithm using the reduction
of the intermediate result tables to SQL based on the approach illustrated in
Section 5. The introduced algorithm is called PTCMDA+-SQL which stands
for Parallel θ-Constrained Multi-Dimensional Aggregation Plus - SQL. The al-
gorithm computes the intermediate result tables X̃i using SQL and the DBMS.
As a consequence, the partitioning of the detail table R as in the PTCMDA+

algorithm is not needed and the additional parameter P indicates only the num-
ber of partitions of the base table B. If the number of partitions is equal one,
i.e., P = 1, the third step of the algorithm is the same as in the PTCMDA+

algorithm. The developed algorithm PTCMDA+-SQL combines the advantages
of constructing the separate intermediate result tables X̃i using SQL and the
partitioning of the workload of the final result table Xp in order to compute the
partitions in parallel. Given that the DBMS is located outside the algorithm,
the DBMS has to be prepared for the execution of parallel SQL statements,
for instance, PARALLEL hint on tables in Oracle databases [7]. In addition,
the implementation is responsible of the distribution of the workload in the
third step of the algorithm in order to compute the partitions of the final re-
sult tables Xp among available processors, since the algorithm provides only the
partitioning strategy.

The algorithm PTCMDA+-SQL begins with the initialization of the schemas
of the separate intermediate result tables like the PTCMDA+ algorithm. Next,
the intermediate result tables X̃i with identical grouping attributes are merged
to a single intermediate result table containing a column for each aggregate func-
tion. Then the separate intermediate result tables X̃i are computed using SQL.

32

Algorithm 4: PTCMDA+(B,R, P, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Initialize intermediate result tables
Let Ri ← R ∩ attr(θi) for i = 1, ...,m;
Let (Rj1

, Fj1), ..., (Rjk
, Fjk), k ≤ m, be a partitioning of the fi according to Ri;

foreach partition (Rj , Fj) do
for p = 1 to P do

X̃jp ← empty table with schema (Rj , Cj1 , . . . , Cjkj
);

Create an index on X̃jp over the attributes Rj ;

θ̃j(r, b) =
∧
A∈Rj

r.A = b.A;

// Step 2: Scan partition of detail table R(R) and update intermediate result tables
Partition R such that R = R1 ∪ · · · ∪ RP ;
foreach tuple r ∈ Rp(R) do

foreach partition (Rj , Fj) do

if ∃x̃ ∈ X̃jp such that θ̃j(r, x̃) then
x̃.Cji ← gji (x̃.Cji , fji ({r})) for i = 1, ..., kj ;

else

X̃jp ← X̃jp ∪ {r.Rj ◦ (fj1 ({r}), ..., fjkj ({r}))};

// Step 3: Build final result table X
Partition B such that B = B1 ∪ · · · ∪ BP and B1 ∩ · · · ∩ BP = ∅;
for p = 1 to P do

Xp = Bp(B)× {(υ1, ..., υm)};
Build indexes for Xp;

foreach x ∈ Xp do
for i = 1 to m do

for p = 1 to P do

X̃[x,θi]
← {x̃ ∈ X̃jp | Ri = Rj ∧ θi(x̃, x)};

x.Ci ← gi(X̃[x,θi]
);

// Step 4: Combine previously created partitions of result table X
X = X1 ∪ · · · ∪XP ;

return X;

After the separate intermediate result tables X̃i have been built, the base table
B is divided into disjoint partitions B = B1 ∪ · · · ∪BP with B1 ∩ · · · ∩BP = ∅.
Next, the partitions of the final result table Xp are created from the partitions
of the detail table Bp together with an index on the partitions of the final result
table Xp in order to improve the retrieval time of the tuples during the compu-
tation of the aggregation results. In the next stage, the partitions of the final
result table Xp are computed where the aggregate attributes are initialized to
their according neutral values vi by combining the partial aggregates from the
partitions of the intermediate result tables X̃i using the super-aggregates. Fi-
nally, the evaluation of the θ-MDA query using the PTCMDA+-SQL algorithm
is completed by combining the created partitions of the final result table Xp

according to step 3 of Proposition 3, i.e., X = X1 ∪ · · · ∪XP .

33

Algorithm 5: PTCMDA+-SQL(B,R, P, (l1, ..., lm), (θ1, ..., θm))

// Step 1: Initialize intermediate result tables
Let Ri ← R ∩ attr(θi) for i = 1, ...,m;
Let (Rj1

, Fj1), ..., (Rjk
, Fjk), k ≤ m, be a partitioning of the fi according to Ri;

// Step 2: Create intermediate result tables
foreach partition (Rj , Fj) do

X̃j ← SELECT Rj , fj1 (R.Aj1) Cj1 , . . . , fjki
(R.Ajkj

) Cjkj
FROM R GROUP BY Rj ;

// Step 3: Build final result table X
Partition B such that B = B1 ∪ · · · ∪ BP and B1 ∩ · · · ∩ BP = ∅;
for p = 1 to P do

Xp = Bp(B)× {(υ1, ..., υm)};
Build indexes for Xp;

foreach x ∈ Xp do
for i = 1 to m do

X̃[x,θi]
← {x̃ ∈ X̃j | Ri = Rj ∧ θi(x̃, x)};

x.Ci ← gi(X̃[x,θi]
);

// Step 4: Combine previously created partitions of result table X
X = X1 ∪ · · · ∪XP ;

return X;

6.4 Implementation

We developed four programs for the evaluation of the algorithms presented be-
fore, where the first program evaluates the current algorithm IndexedTCMDA
given in [10]. The second program computes the TCMDA+ algorithm from Sec-
tion 2 illustrated in [13]. This allows the comparison of the performance results
of the original algorithms with the performance achievements of the newly intro-
duced algorithms. The remaining two programs execute the presented strategies
to evaluate the algorithms in parallel including the reduction of the separate in-
termediate result tables to SQL. All the programs were implemented using the
C programming language 3 on top of an Oracle4 database using the Oracle Call
Interface (OCI) 5 and are designed as command line tools.

6.4.1 Parameters

The program expects several parameters to compute the θ-MDA. First, the
program requires a parameter s which specifies the semantics of the algorithm,
i.e., TCMDA for the IndexedTCMDA or TCMDAP for the TCMDA+ algorithm.
The program requests the detail table R and the base table B encoded as SQL
queries. The program option -r indicates the SQL statement for the detail table
R whereas the program option -b delivers the SQL statement for the base table
B. The program expects the conditions θi and the list of aggregate functions fij
which are handed over using the -c and -f program option, respectively. These
options have to be repeated for each group of requested aggregate functions.

In order to execute the algorithms in parallel, the command line tool expects
the parameter -t. For the reduction of the separate intermediate result tables to
SQL, the program requires the -d parameter option. In the following, we show
how Query 1 can be encoded using the parameters to invoke the application:

3http://en.wikipedia.org/wiki/C_(programming_language)
4http://www.oracle.com/us/products/database/index.html
5http://www.oracle.com/technetwork/database/features/oci/index.html

34

-s”tcmda” or -s”tcmdap”
-r”SELECT OrdDate, OrdPrior FROM Orders”
-b”SELECT OrdDate, OrdPrior FROM OrdersBase”

-c”r.OrdDate=b.OrdDate&r.OrdPrior=b.OrdPrior”
-f”"COUNT(OrdPrior) AS CntDP”
-c”r.OrdDate<=b.OrdDate”
-f”"COUNT(OrdDate) AS CumCntDP”
-c”r.OrdPrior<>b.OrdPrior”
-f”"COUNT(OrdPrior) AS NegCntP”
-c”r.OrdDate<=b.OrdDate&r.OrdPrior<=b.OrdPrior”
-f”"COUNT(OrdDate) AS CumCntDP”

After the program has been started with the previously introduced parame-
ters, it loads the base table B into main memory, reads every tuple of the detail
table r ∈ R and builds the final result table X using either the strategy provided
by the IndexedTCMDA or the TCMDA+ algorithm, respectively. The output of
the program is provided on the command line using the comma separated value
format. The output of Query 1 on the command line looks like the following:

OrdDate, OrdPrior, CntDP, CumCntDP, NegCntP, CumCntDP
2013-04-18, 1, 2, 4, 5, 2
2013-04-18, 2, 1, 4, 5, 3
2013-04-18, 3, 1, 4, 6, 4
2013-04-19, 2, 2, 7, 5, 5
2013-04-19, 3, 1, 7, 6, 7
2013-04-20, 1, 1, 8, 5, 3

6.4.2 Execution in Parallel

The implementation is responsible to distribute the computation of the parti-
tions of the IndexedPTCMDA, PTCMDA+ or the PTCMDA+-SQL algorithm.
At the moment, there exist several strategies to parallelize an algorithm in the
C programming language. In the following we introduce the different possibili-
ties and our thought process behind the decisions in favor of an implementation
approach.

POSIX Threads In shared memory multiprocessor architectures (SMPs),
threads can be used to implement parallelism [6]. POSIX threads, usually
Pthreads, is a POSIX standard for threads, where the standard defines an API
in order to create and manipulate threads [5]. Implementations are available for
the most Unix-like POSIX-conformant operating systems [5].

Pthreads provide a low-level parallelism, i.e., low-level locking and fine-
grained synchronization techniques. As a result, the developer has to ensure
threading synchronization for the data structures as well as for the procedures
of the algorithms. In addition, the developer must preset the number of threads
at the compile time. This leads to non-scalable applications, if the program
runs on a platform where more processors are available. Overall, Pthreads al-
low fine-grained control in order to parallelize an algorithm. Since our strategies
are based on high-level partitioning techniques, we decided to focus on the fol-
lowing implementation techniques.

35

MPI Message Passing Interface (MPI) is a standardized and portable message-
passing system designed in order to write portable message-passing programs
in the C programming language [52]. MPI was designed to provide high per-
formance applications on both massively parallel machines and on workstation
clusters [3]. The advantage of MPI is that it operates on both shared or dis-
tributed memory architectures, but typically the performance is limited by the
communication network between the nodes [3]. Our partitioning strategies to
parallelize the introduced algorithms are designed to run on symmetric multi-
processing (SMP) systems. Since the communication overhead of applications
parallelized using MPI on SMP systems is larger compared to the other imple-
mentation techniques, we decided to implement our algorithms using the next
parallelization approach.

OpenMP Open Multi-Processing (OpenMP) is an API that supports multi-
platform shared memory multiprocessing programming in the C programming
language [22]. OpenMP uses a scalable model that gives programmers a simple
and flexible interface to develop parallel applications ranging from the standard
desktop computer to the supercomputer [4].

We decided to parallelize our algorithms using the OpenMP API because of
the advantages over the previously introduced programming techniques. First,
OpenMP provides several features to write scalable solutions. For instance,
OpenMP allocates the same number of threads as number of cores available
on the machine where the algorithm runs. It provides an automatic handling
of the data layout and unifies the code for both the serial and the parallel
applications [4].

To write scalable applications the hybrid model of parallel programming
is used with a combination of both OpenMP and MPI. The algorithms im-
plemented in the hybrid model use MPI between the distributed cluster nodes
whereas OpenMP is used on the individual nodes. As already discussed, OpenMP
offers better performance on symmetric multiprocessing (SMP) systems com-
pared to Pthreads and MPI, we developed the parallelization strategies using
the OpenMP API.

6.4.3 Indexes

The hash index to retrieve the tuples identified by the θ-conditions in the base
table B and in the separate intermediate result tables X̃ was implemented using
the hcreate r hash table functions 6. These functions require a null-terminated
string as a search key. However, hashing variable-length strings is inefficient,
if every character is processed separately [27]. This is the case in the hseach r
searching function. As a result, the performance of the hash index could be
improved by converting the variable-length strings to numeric values using a
cyclic redundancy check (CRC) to avoid hash collisions [46]. This is the main
reason why the hash index within the application is inferior to the hash index
in the Oracle database.

6http://linux.die.net/man/3/hcreate_r

36

7 Experiments

In this section we present the experiments to evaluate the performance of the
introduced algorithms IndexedPTCMDA, PTCMDA+ and PTCMDA+-SQL in
comparison with the performance of the algorithms presented in [10, 13], i.e.,
IndexedTCMDA and TCMDA+. The five algorithms were tested using a large
amount of data, i.e., up to 100M tuples contained in the detail table R and up
to 375k tuples included in the base table B. Section 7.1 gives further details
about the setup of the experiments including information about the generated
data. In conclusion, the results and details about the experiments are presented
with final remarks about the acquired insights.

7.1 Setup and Data

The machine to run the experiments contains 16GB of main memory and has
two AMD Opteron processors including two cores with one thread per core.
Both processors operate at a clock rate of 2.6GHz. The machine used for
running the experiments scaling the number of processors P contains 24GB
of main memory and has two Intel Xeon processors including six cores with
two threads per core. The processors of the second machine operate at a clock
frequency of 2.67GHz. The operating system installed on both machines is
Ubuntu 10.04 and the database is Oracle 11g.

Since the performance of the proposed θ-MDA algorithms depend on differ-
ent variables, the experiments scale one variable at a time while keeping the
other variables fixed. In the following the variables influencing the performance
of the proposed algorithms considered in our experiments are introduced:

• |R|: The number of tuples in the detail table R.

• |B|: The number of distinct tuples in the base table B.

• |θ|: The number of conditions within one single θ-condition.

• |Θ|: The number of θ-conditions in the θ-MDA query.

•
∣∣∣X̃∣∣∣: The number of distinct tuples in the intermediate result table X̃.

• P : The number of processors computing the θ-MDA query.

• ⊕: The constraint operators used in the θ-conditions, i.e., =,≤, 6=

As dataset, we used the Orders relation of the TPC-H benchmark frame-
work 7. In the running example the Orders relation contains several attributes
such as o orderdate, o clerk and o orderpriority.

For the experiments to compare the IndexedTCMDA algorithm with the In-
dexedPTCMDA algorithm, we generated an Orders table including 10M tuples
using the command line tool dbgen of the TPC-H benchmark framework. For
the remaining algorithms, i.e., TCMDA+, PTCMDA+ and PTCMDA+-SQL,
the Orders table contains about 100M tuples. Out of the generated Orders ta-
bles, we built several materialized views changing either the number of tuples in
the detail tables or varying the number of distinct values for specific attributes

7TPC-H benchmark framework:http://www.tpc.org/tpch/

37

in the base tables. Further, we declared various queries to test the different
influence factors of the algorithms separately. The main structure of the query
used for the experiments is the following:

R : Orders XM → r

B : Orders Y k → b

l1 : count(o orderdate)

θ1 : r.o orderdate⊕ b.o orderdate

θ2 : r.o orderdate⊕ b.o orderdate∧
∧ r.o orderpriority ⊕ b.o orderpriority

The query was executed by replacing Orders XM for the detail table R and
Orders Yk for the base table B with the according materialized views spec-
ified in the settings of the experiments. For the IndexedTCMDA versus the
IndexedPTCMDA algorithm, the θ-condition contains solely the o orderdate at-
tribute, i.e., θ1, whereas the θ-condition of the TCMDA+ variants involves the
combination of the o orderdate and the o orderpriority attributes, i.e., θ2.

To evaluate the performance of the introduced parallel algorithms, we cre-
ated different graphs, where the y-axis shows the elapsed runtime in seconds
needed by the algorithms to compute the result in form of the final result ta-
ble, unless stated otherwise. For the performance evaluation of the parallelized
algorithms, we follow the approach presented in [28], where execution times are
normalized by introducing the relative efficiency and the relative speed-up. The
relative efficiency is defined as the fraction of the execution time on one proces-
sor T1 divided by the time TP on P processors times the number of processors,
i.e. Erelative = T1

TPP
. The related quantity, the relative speed-up is computed

using the relative efficiency Erelative times the number of processors P , i.e.,
Srelative = PErelative.

7.1.1 Scaling |R|

The experiments with scaling the number of tuples in the detail table |R| are
designed to evaluate the effect of the size of the detail table R on the performance
of the θ-MDA algorithms.

IndexedTCMDA vs. IndexedPTCMDA For the experiments of the In-
dexedTCMDA algorithm versus the IndexedPTCMDA algorithm, we created five
materialized views out of the main Orders table, i.e., Orders 2M, Orders 4M,
..., Orders 10M containing 2M, 4M, ..., 10M tuples. These materialized views
represent the different detail tables. For the base table B, we created the mate-
rialized view Orders 1k, which contains 1k distinct values for the o orderdate at-
tribute. The distinct values of the o orderdate attribute were randomly selected
from the main Orders table, where the o orderdate attribute has a cardinality
of 2406.

TCMDA+ vs. PTCMDA+/TCMDA+ vs. TCMDA+-SQL For the
experiments of the TCMDA+ versus the PTCMDA+ and of the TCMDA+

algorithm versus the TCMDA+-SQL algorithm, we created five materialized

38

views out of the main Orders table, i.e., Orders 20M, Orders 40M, ..., Or-
ders 100M table containing 20M, 40M, ..., 100M number of tuples. These
materialized views represent the different detail tables. For the base table B,
we created the materialized view Orders 10k, which contains 10k distinct values
for the combination of the o orderdate and the o orderpriority attribute, i.e.,
(o orderdate, o orderpriority). The distinct values of the attribute combination
(o orderdate, o orderpriority) were randomly selected from the main Orders ta-
ble, where the cardinality of o orderdate attribute is 2406 and the cardinality
of the o orderpriority attribute is 5. As a consequence, the size of the sep-
arate intermediate result table |X̃| accumulates to 2406 ∗ 5 = 12030 distinct
tuples. Since the o orderdate attribute contains less than 10k distinct values,
we used the previously described combination to retain the data distribution of
the TPC-H benchmark framework.

7.1.2 Scaling |B|

The experiments with scaling the number of distinct tuples in the base table
|B| are designed to evaluate the effect of the size of the base table B on the
performance of the θ-MDA algorithms.

For the experiments, we created five materialized views out of the main
Orders table, i.e., Orders 1k, Orders 2k, ..., Orders 5k containing 1k, 2k, ...,
5k distinct tuples. These materialized views represent the different base tables.
Since the main Orders table does not contain up to 5k distinct values for the
o orderdate attribute, we generated random dates within the minimum and
maximum range of the o orderdate attribute.

7.1.3 Scaling |θ|

The experiments with scaling the number of θ-conditions |θ| are designed to
evaluate the effect of the number of the constraint conditions within one single
θ-condition on the performance of the θ-MDA algorithms. For the experiments,
we modified the number of constraint conditions within on single θ-condition in
the main structure of the query to the following:

θ1 :

|θ|∧
i=1

r.o orderdate⊕ b.o orderdate

θ2 :

|θ|∧
i=1

(r.o orderdate⊕ b.o orderdate∧

∧ r.o orderpriority ⊕ b.o orderpriority)

7.1.4 Scaling |Θ|

In this section we present the experiments with scaling |Θ|. These experiments
are designed to test the performance of the θ-MDA algorithms using several θ-
conditions within a θ-MDA query. For the experiments, we changed the number
of θ-conditions within a θ-MDA query in the main structure of the query to the

39

following:

l1 : count(o orderdate)

θ1 : r.o orderdate⊕ b.o orderdate

. . .

l|Θ| : count(o orderdate)

θ|Θ| : r.o orderdate⊕ b.o orderdate

As in the experiment with scaling |θ|, the o orderpriority attribute was added
for the variants of the TCMDA+ algorithms to each of the above θ-conditions.

7.1.5 Scaling P

In this section we present the experiments with scaling the number of processors
P . These experiments are designed to test the efficiency of the partitioning
strategies to parallelize the θ-MDA algorithms.

For all the experiments, we used the main Orders table with 100M tuples as
the detail table R and the materialized view Orders 10k including 10k distinct
tuples as the base table B. The query was executed using the created materi-
alized views and a variable number of processors P , where P differs from 1 to
24.

7.1.6 Scaling
∣∣∣X̃∣∣∣

In this section we present the experiments with scaling the number of distinct
tuples of the separate intermediate result tables |X̃|. These experiments are
designed to test the efficiency of the θ-MDA algorithms using large separate
intermediate result tables X̃, since the size of the separate intermediate result
tables |X̃| strongly influences the performance of the TCMDA+ algorithms [13].

The experiments utilize the same materialized views as the experiments with
scaling the number of processors P , namely the main Orders table with 100M
tuples as detail table R and the Orders 10k table including 10k distinct tuples
as the base table B. In order to have large intermediate result tables X̃, we
used the combination of the o clerk attribute and the o orderpriority attribute.
The o clerk attribute has a cardinality of 75k whereas the o orderpriority at-
tribute exhibits a cardinality of 5. The query used to evaluate the algorithms is
expressed as

R : σo orderpriority=X(Orders 100M)→ r

B : Orders 10k → b

l1 : count(o clerk)

θ1 : r.o clerk ⊕ b.o clerk∧
∧ r.o orderpriority ⊕ b.o orderpriority

The above query was executed using the created materialized views by replacing
the σo orderpriority=X condition with the appropriate values of the o orderpriority
attribute, i.e., 1-URGENT, 2-HIGH, 3-MEDIUM, 4-NOT SPECIFIED and 5-
LOW. This ensures that the size of the separate intermediate result tables |X̃|
scale from 75k, 150k, . . . , 375k distinct tuples.

40

7.2 IndexedTCMDA vs. IndexedPTCMDA

In this section we present the results of the experiments in order to evaluate the
performance improvements of the IndexedPTCMDA algorithm compared with
its non-parallel counterpart, the IndexedTCMDA algorithm. In all the tested
settings, the parallel algorithm IndexedPTCMDA operates using four processors,
i.e., P = 4. Since the IndexedTCMDA does not scale with large detail tables and
large base tables, we decided to evaluate these algorithms using smaller data sets
as for the experiments of the TCMDA+, the PTCMDA+ and PTCMDA+-SQL
algorithms.

7.2.1 Results Scaling |R|

Figure 11 shows the result of the experiment described in Section 7.1.1. On the
x-axis of the graphs the size of the detail table |R| is displayed. The experiments
provide the following insights.

If the θ-MDA query requests a point aggregate, i.e., the constraint operator
⊕ is =, the algorithms deliver the best performance. This can be explained
due to the fact, that for each tuple in the detail table r ∈ R and for each θ-
condition only one update in the base table B has to be done. In addition, the
according tuples in the base table B are identified using the hash index. The
parallelization of the IndexedTCMDA algorithm using the constraint operator
⊕ is =, does not significantly decrease the runtime of the algorithm. Given that
the partitioning strategy divides the base table B into P partitions, only the
incremental updates in the base table B and the retrieval of the tuple using the
hash index is divided among the processors. Considering that these operations
are not time consuming for the point aggregate (⊕ is =), the achieved speed-up
is marginal. In fact, the average speed-up of the IndexedPTCMDA algorithm is
1.25 with an efficiency of 30%.

For the θ-MDA queries applying the range aggregate using the ≤ constraint
operator, the average speed-up increases to 3.175 with an efficiency of 79.375%.
For the range aggregate using the range aggregate (⊕ is 6=), the average speed-
up increases to 3.345 and an efficiency of 83.625. As described above, only the
incremental updates and the retrieval of the according tuples in the base table
B are distributed among the processors. For the range aggregate (⊕ is ≤), these
incremental updates and the retrievals of the according tuples in the base table
B are expensive. This workload is divided among the processors leading to the
results presented above. For the range aggregate (⊕ is 6=), no index is appropri-
ate in order to retrieve the according tuples in the base table B and therefore
the entire base table B has to be traversed. As a result, the speed-up and ef-
ficiency increases further for the 6= constraint operator, because the processors
are working longer at full capacity. This decreases the overhead of factors such
as data communications, synchronizations and software overhead [40].

All the experiments have in common that a considerable high amount of
computation time resides in the DBMS, i.e., 65% for =, 20% for ≤ and 5% for
the 6= constraint operator. This reduces the calculated speed-up and efficiency
of the parallelized algorithms, because the processors do not read in parallel.
Since the IndexedTCMDA algorithm reads each tuple individually whereas the
IndexedPTCMDA reads large fractions of the detail table R before processing
the tuples, the two graphs are moving apart as the size of the detail table R

41

increases.

 0

 20

 40

 60

 80

 100

 120

2M 4M 6M 8M 10M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

IdxTCMDA
IdxPTCMDA

(a) ⊕ is =

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2M 4M 6M 8M 10M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

IdxTCMDA
IdxPTCMDA

(b) ⊕ is ≤

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

2M 4M 6M 8M 10M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

IdxTCMDA
IdxPTCMDA

(c) ⊕ is 6=

Figure 11: IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |R|
(|B| = 1k, |Θ| = |θ| = 1, P = 4)

7.2.2 Results Scaling |B|

Figure 12 shows the result of the experiment described in Section 7.1.2. On the
x-axis of the graphs the size of the base table |B| is displayed.

As in the previous experiments with scaling |R|, both algorithms exhibit the
best performance, if the constraint operator ⊕ is =. In this case, the runtime of
the algorithms is not affected by the increasing size of the base table |B| as for
the same reasons explained in Section 7.2.1. For the range aggregate operators
≤ and 6=, the runtime for the IndexedTCMDA increases dramatically whereas
the evaluation time of the IndexedPTCMDA increases only slightly. This can
be explained due to the fact, that the partitioning of the base table B creates
smaller base tables for every processor. For instance, with four processors P = 4
and a base table B containing about 1k distinct values, each processor has to
compute its own base table with 1k/4 = 250 tuples. As a consequence, the index
of the processor’s base table is smaller and can be accessed faster for the ≤ and
6= constraint operators. In addition, the number of incremental updates for each
processor decreases. The division of the workload among the processors has the
same effect as executing the θ-MDA query using a smaller base table using a
single processor. This effect can be observed in the graphs, where the runtime
of th IndexedTCMDA algorithm with a base table containing 1k tuples is the
same as the runtime of the IndexedPTCMDA algorithm using four processors
and a base table with 4k tuples.

For the experiments with scaling the base table B, we achieve super linear
speed-up [11]. The effect can be explained, because each processor has to search
a smaller index and performs less incremental updates for its base table. More-
over, the IndexedTCMDA algorithm reads each tuple individually whereas the
IndexedPTCMDA reads large fractions of the detail table R before processing
the tuples.

7.2.3 Results Scaling |θ|

In Figure 13 the result of the experiment described in Section 7.1.3 is pre-
sented. On the x-axis of the graphs the number of conditions within one single
θ-condition is shown.

42

 0

 20

 40

 60

 80

 100

 120

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

IdxTCMDA
IdxPTCMDA

(a) ⊕ is =

 0

 1000

 2000

 3000

 4000

 5000

 6000

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

IdxTCMDA
IdxPTCMDA

(b) ⊕ is ≤

 0

 5000

 10000

 15000

 20000

 25000

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

IdxTCMDA
IdxPTCMDA

(c) ⊕ is 6=

Figure 12: IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |B|
(|R| = 10M, |Θ| = |θ| = 1, P = 4)

The runtime of both algorithms increases as the number of the conditions
within one single θ-condition growths. This increase can be explained due to the
fact, that the evaluation of the single θ-conditions is more expensive, since the θ-
conditions contain more constraint operators. For the runtimes of the different
constraint operators ⊕, the algorithms feature the same behavior as for the
experiments with scaling the detail table R or the base table B, specifically
the impact of the size of the index on the base table B and the number of
incremental updates in the base table B.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

IdxTCMDA
IdxPTCMDA

(a) ⊕ is =

 0

 500

 1000

 1500

 2000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

IdxTCMDA
IdxPTCMDA

(b) ⊕ is ≤

 0

 500

 1000

 1500

 2000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

IdxTCMDA
IdxPTCMDA

(c) ⊕ is 6=

Figure 13: IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |θ|
(|R| = 10M, |B| = 1k, |Θ| = 1, P = 4)

7.2.4 Results Scaling |Θ|

In Figure 14 the result of the experiment described in Section 7.1.4 is shown.
On the x-axis of the graphs the number of θ-conditions |θ| in Θ is reported.

The runtime of both algorithms increases as the number of θ-conditions |θ| in
Θ growths. This increase can be explained due to a larger number of θ-conditions
in Θ results in more incremental aggregates to be computed in the base table
B. Again, the algorithms exhibit the same behavior for the runtimes as in the
experiments with scaling |θ|, i.e., smaller base tables and as consequence less
incremental updates for every tuple in the detail table R.

7.2.5 Results Scaling P

In Figure 15 the result of the experiment described in Section 7.1.5 is presented.
On the x-axis of the graphs the number of processors P is shown. In the first

43

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

IdxTCMDA
IdxPTCMDA

(a) ⊕ is =

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

IdxTCMDA
IdxPTCMDA

(b) ⊕ is ≤

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

IdxTCMDA
IdxPTCMDA

(c) ⊕ is 6=

Figure 14: IndexedTCMDA vs. IndexedPTCMDA: Results Scaling |Θ|
(|R| = 10M, |B| = 1k, |θ| = 1, P = 4)

graph 15a the y-axis reflects the achieved speed-up. For the remaining graphs,
the elapsed time in seconds to compute the θ-MDA query is reported.

In the first experiment 15a the theoretical speed-up of the entire computation
of the θ-MDA together with the achieved speed-up for the different constraint
operators ⊕ is shown. The achieved speed-up for the = constraint operator
is very poor, since only the incremental updates are distributed among the
processors. These incremental updates for the = constraint operator are very
cheap, because at most one tuple identified by the hash index has to be updated
in the base table B. For the other constraint operators, namely ≤ and 6=,
the achieved speed-up is close to the linear speed-up until using 12 processors.
Afterwards, the achieved speed-up decreases and the curve becomes flatter.

The other three experiments show the theoretical linear runtimes together
with the achieved runtimes of the IndexedPTCMDA algorithm. To calculate the
theoretical linear runtimes, we executed the algorithm using a single thread,
subtracted the database access time and divided the runtime by the number
of processors. The subtraction of the database access times ensures that the
calculated runtimes are correct due to the fact, that database access was not
parallelized. As the graphs show, the achieved runtimes are close to the theoret-
ical linear runtimes in all the tested settings. In addition, the more processors
are added to the computation of the algorithm, the more the theoretical linear
runtime drifts apart from the achieved runtime. This can be explained, because
the maintenance, synchronization and data sharing costs increase as the number
of processors growths. Finally, the runtimes of the algorithm lean towards the
database times, i.e., reading the tuples from the detail table R and the base
table B. As a result, even with an infinite number of processors P , the compu-
tation of the θ-MDA query is limited to the database access time, if the reading
operation from the database is not parallelized.

7.3 TCMDA+ vs. PTCMDA+

In this section we present the results of the experiments in order to evaluate
the performance of the TCMDA+ algorithm compared with the parallelized
PTCMDA+ algorithm. Again, in all the tested settings the parallel algorithm
PTCMDA+ operates using four processors, i.e., P = 4. For the following experi-
ments, we implicitly limit the size of the separate intermediate result tables |X̃|.
The size of the separate intermediate result tables |X̃| is specified indirectly by
the cardinality of the according attribute in the θ-MDA query. In our examples,

44

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 6 8 12 16 24

S
p
e
e
d
-u

p

P

Linear
IdxPTCMDA =
IdxPTCMDA ≠
IdxPTCMDA ≤

(a) IdxPTCMDA Speed-up

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

IdxPTCMDA Linear
IdxPTCMDA

(b) ⊕ is =

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

IdxPTCMDA Linear
IdxPTCMDA

(c) ⊕ is ≤

 0

 20000

 40000

 60000

 80000

 100000

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

IdxPTCMDA Linear
IdxPTCMDA

(d) ⊕ is 6=

Figure 15: IndexedTCMDA vs. IndexedPTCMDA: Results Scaling P
(|R| = 100M, |B| = 10k, |Θ| = |θ| = 1)

the cardinality is |o orderdate| × | o orderpriority | = 12030.

7.3.1 Results Scaling |R|

Figure 16 shows the result of the experiment described in Section 7.1.1. On the
x-axis of the graphs the size of the detail table |R| is displayed. The experiments
allow the following insights.

The first insight is, that the runtime of the algorithms are independent from
the constraint operator ⊕. This can be explained due to the fact, that both
algorithms construct the separate intermediate result tables X̃ using the equality
constraint conditions before the evaluation of the original θ-conditions. After
the construction the former contains about 12030 distinct values. These tuples
are used as the new detail table to construct the final result table X.

For the parallelized algorithm, the average speed-up is 1.88 with an average
efficiency of 47%. These measurements can be explained due to the paralleliza-
tion is used during the construction of the intermediate result tables X̃ using
the equality constraint operator. As the previously described experiments have
shown, the obtained parallelism is marginal in these circumstances. In the next
stage of the algorithm, where the final result table X is constructed using the
separate intermediate result table X̃ with the original θ-conditions, the paral-
lelization shows the same characteristics as in the IndexedPTCMDA algorithm
presented in Section 7.2. Basically, the same steps are executed in the last stage

45

of the TCMDA+ algorithm as in the IndexedTCMDA algorithm with the differ-
ence, that the TCMDA+ operators on the compressed detail table R, i.e., the
separate intermediate result table X̃.

The last insight is, that in all experiments the two graphs are moving apart
as the size of the detail table R increases. This behavior can be explained due
to the fact, that the TCMDA+ algorithm reads each tuple individually whereas
the PTCMDA+ reads large fractions of the detail table R before processing
the tuples. This effect is intensified, because a considerable high amount of
computation time resides in the DBMS, i.e., about 40%.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 PTCMDA
+

(a) ⊕ is =

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 PTCMDA
+

(b) ⊕ is ≤

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 PTCMDA
+

(c) ⊕ is 6=

Figure 16: TCMDA+ vs. PTCMDA+: Results Scaling |R|
(|B| = 10k, |X̃| = 12030, |Θ| = 1, |θ| = 2, P = 4)

7.3.2 Results Scaling |B|

Figure 17 shows the result of the experiment described in Section 7.1.2. On the
x-axis of the graphs the size of the detail table |B| is displayed.

From Figure 17 it is possible to recognize, that both algorithms are affected
neither by the size of the base table B nor by the type of the constraint operator
⊕. As described above, the construction of the separate intermediate result
tables X̃ requires always the same number of iterations, i.e., |R| · |Θ| · 1 =
100M · 1 · 1 = 100M , where the resulting intermediate result table X̃ contains
in the worst case 12030 distinct tuples, i.e., the cardinality of the o orderdate
times the o orderpriority attribute. This construction is independent from the
size of the base table B. In these tests, the size of the base table B is to small
with respect to the size of the detail table R in order to have an effect on the
runtime of the algorithms.

For the parallelized algorithm PTCMDA+, the Figure 17 shows speed-up
which remains constant on 1.9 with an efficiency of 47.5%. This can be ex-
plained due to the same circumstances described previously and Section 7.3.1
with scaling the number of tuples in the detail table R, namely that TCMDA+

algorithm is not affected by the size of the base table B and that the parallelism
is marginal using the equality constraint condition.

7.3.3 Results Scaling |θ|

In Figure 18 the result of the experiment described in Section 7.1.3 is shown. On
the x-axis of the graphs the number of conditions within one single θ-condition
is reported.

46

 0

 1000

 2000

 3000

 4000

 5000

 6000

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

 TCMDA
+

 PTCMDA
+

(a) ⊕ is =

 0

 1000

 2000

 3000

 4000

 5000

 6000

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

 TCMDA
+

 PTCMDA
+

(b) ⊕ is ≤

 0

 1000

 2000

 3000

 4000

 5000

 6000

1k 2k 3k 4k 5k

R
u
n
ti
m

e
 [
s
e
c
]

|B|

 TCMDA
+

 PTCMDA
+

(c) ⊕ is 6=

Figure 17: TCMDA+ vs. PTCMDA+: Results Scaling |B|
(|R| = 100M, |X̃| = 12030, |Θ| = 1, |θ| = 2, P = 4)

From Figure 18 it is possible to observe, that the runtimes of the algorithms
are not affected by the number of conditions within one single θ-condition. The
reason for this situation is the same as described above with scaling the number
of tuples in the detail table B, where the size of the base table B is to small with
respect to the size of the detail table R to affect the runtime of the algorithms.
As a consequence, the computation costs of additional conditions within one
θ-condition in the base table B are negligible.

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

 TCMDA
+

 PTCMDA
+

(a) ⊕ is =

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

 TCMDA
+

 PTCMDA
+

(b) ⊕ is ≤

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 4 6 8 10

R
u
n
ti
m

e
 [
s
e
c
]

|θ|

 TCMDA
+

 PTCMDA
+

(c) ⊕ is 6=

Figure 18: TCMDA+ vs. PTCMDA+: Results Scaling |θ|
(|R| = 100M, |X̃| = 12030, |B| = 10k, |Θ| = 1, P = 4)

7.3.4 Results Scaling |Θ|

In Figure 19 the result of the experiment described in Section 7.1.4 is shown.
On the x-axis of the graphs the number of θ-conditions |θ| in Θ is reported.

The runtime of both algorithms increases as the number of θ-conditions |θ| in
Θ growths. This increase can be explained due to the fact, that a larger number
of θ-conditions in Θ causes additional separate intermediate result tables X̃ to
be computed. This is because the TCMDA+ and the PTCMDA+ algorithm
construct for every θ-condition in Θ a completely new separate intermediate
result tables X̃ from scratch. In addition, a higher number of θ-conditions in Θ
results in more incremental aggregates to be computed in the base table B.

The constructions of the separate intermediate result tables X̃ and these
incremental updates are partially absorbed by the PTMCDA+ algorithm. The
partitioning strategies of the detail table R and the base table B result in
smaller construction costs of the separate intermediate result tables X̃ and in
smaller base tables. As a result, less updates for every tuple in the separate

47

intermediate result tables X̃ and less incremental updates in the final result
table are needed. These circumstances cause an average speed-up of 2.84 with
an average efficiency of 70%.

Another observation on the graphs in Figure 19 is, that the impact of the
number of θ-conditions in Θ on the TCMDA+ algorithm is larger than the im-
pact on the parallelized algorithm PTCMDA+. In fact, the graph representing
the runtime of the PTCMDA+ is much steeper than the line of non-parallelized
algorithm TCMDA+. Furthermore, as the number of θ-conditions in Θ in-
creases, the runtimes of the TCMDA+ and the PTCMDA+ algorithms drift
apart. This phenomenon can be explained, because the utilization of the pro-
cessors increases, since the computation done in parallel growths.

 0

 5000

 10000

 15000

 20000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

 TCMDA
+

 PTCMDA
+

(a) ⊕ is =

 0

 5000

 10000

 15000

 20000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

 TCMDA
+

 PTCMDA
+

(b) ⊕ is ≤

 0

 5000

 10000

 15000

 20000

1 2 3 4 5

R
u
n
ti
m

e
 [
s
e
c
]

|Θ|

 TCMDA
+

 PTCMDA
+

(c) ⊕ is 6=

Figure 19: TCMDA+ vs. PTCMDA+: Results Scaling |Θ|
(|R| = 100M, |X̃| = 12030, |B| = 10k, |θ| = 1, P = 4)

7.3.5 Results Scaling P

In Figure 20 the result of the experiment described in Section 7.1.5 is presented.
On the x-axis of the graphs the number of processors P is shown. In the first
graph 15a the y-axis reflects the achieved speed-up. For the remaining graphs,
the elapsed time in seconds to compute the θ-MDA query is reported.

The first experiment 15a shows the achieved speed-up of the parallelized
TCMDA+ algorithm. For every constraint operator ⊕ the achieved speed-up is
poor. The average speed-up is about 1.35 with an average efficiency of 33.75%.
This behavior can be explained due to almost the entire runtime of the algo-
rithm elapses in the database. This includes operations, such as reading and
constructing the tuples from the detail table R. As the experiments comparing
the different constraint operators show, the achieved runtimes closely tend to
the theoretical linear runtimes of the PTCMDA+ algorithm. Since the reading
from the database was not parallelized, the achieved and theoretical linear run-
times of the experiments lean towards the runtime of the database access. In
fact about 80% of the runtime of the PTCMDA+ resides in the database.

7.4 TCMDA+ vs. TCMDA+-SQL vs. PTCMDA+-SQL

In this section we present the results of the experiments to evaluate the perfor-
mance of the TCMDA+ algorithm compared with the TCMDA+-SQL and the
PTCMDA+-SQL algorithm. The TCMDA+-SQL in contrast to the TCMDA+

algorithm reduces the construction of the separate intermediate table X̃ to SQL.
Since the attribute combination used in the experiments have a cardinality of

48

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 6 8 12 16 24

S
p
e
e
d
-u

p

P

Linear
 PTCMDA

+
 =

 PTCMDA
+
 ≠

 PTCMDA
+
 ≤

(a) PTCMDA+ Speed-up

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

 PTCMDA
+
 Linear

 PTCMDA
+

(b) ⊕ is =

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

 PTCMDA
+
 Linear

 PTCMDA
+

(c) ⊕ is ≤

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 6 8 12 16 24

R
u
n
ti
m

e
 [
s
e
c
]

P

 PTCMDA
+
 Linear

 PTCMDA
+

(d) ⊕ is 6=

Figure 20: TCMDA+ vs. PTCMDA+: Results Scaling P
(|R| = 100M, |X̃| = 12030, |B| = 10k, |Θ| = |θ| = 1)

|o orderdate| × | o orderpriority | = 12030, the completion time of the final re-
sult table is negligible. As a consequence, the main part of the runtime of the
TCMDA+-SQL algorithm resides in the database and the parallelization of the
final step is not apparent in the runtimes of the TCMDA+-SQL compared to
the PTCMDA+-SQL algorithm.

7.4.1 Results Scaling |R|

In this section we introduce the result of the experiment described in Sec-
tion 7.1.1. This experiment shows the main characteristics of the TCMDA+-
SQL algorithm, where the runtime remains almost constant. Hence, we forego
additional experiments using different parameters except with scaling the size
of the separate intermediate result table X̃. On the x-axis of the graphs the size
of the detail table |R| is displayed. The results of the experiment are shown in
Figure 21 and allows the following insights.

The first insight is, that the TCMDA+-SQL algorithm clearly outperforms
the TCMDA+ algorithm up to two orders of magnitude. As the size of the detail
table R increases, the more the runtime of the TCMDA+ algorithm is affected.
This phenomenon can be explained by fact, that the hash table management for
the construction of the separate intermediate result table X̃ in the application
is less efficient as in the DBMS as described in Section 6.4.3.

Another insight is, that almost the entire runtime of the TCMDA+-SQL

49

algorithm is elapsed in the database during the construction of the separate
intermediate result table X̃. In fact, in the worst case the construction of
the final result table takes about 5s for the ≤ constraint operator for all the
experiments scaling the different parameters.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 TCMDA
+
-SQL

(a) ⊕ is =

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 TCMDA
+
-SQL

(b) ⊕ is ≤

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

20M 40M 60M 80M 100M

R
u
n
ti
m

e
 [
s
e
c
]

|R|

 TCMDA
+

 TCMDA
+
-SQL

(c) ⊕ is 6=

Figure 21: TCMDA+ vs. TCMDA+-SQL: Results Scaling |R|
(|B| = 10k, |X̃| = 12030, |Θ| = 1, |θ| = 2)

7.4.2 Results Scaling |X̃|

In this section, we present the experiments as described in Section 7.1.6. On
the x-axis of the graphs the number of distinct tuples contained in the separate
intermediate result table X̃ is shown.

As discussed before, the runtime of TCMDA+-SQL algorithm is mainly af-
fected by the size of the separate intermediate result table X̃. Hence, using
additional processors does not decrease the runtime significantly. However, as
the size of the separate intermediate result table X̃ increases, the computation
time of the final result tables growths. As a result, the computation done in
parallel leads to smaller base tables, which reduces the number of incremental
updates for every tuple in the separate intermediate result table X̃. This re-
duces the computation time significantly, because the main part of the runtime
shifts from the database access towards the computation of the final result table.
Figure 22 shows the performance gain, where the average speed-up is about 2.72
with an average efficiency of 68%, where the former increases as the size of the
separate intermediate result table X̃ growths.

 0

 200

 400

 600

 800

 1000

 1200

 1400

75k 150k 225k 300k 375k

R
u
n
ti
m

e
 [
s
e
c
]

|X
~

|

 TCMDA
+
-SQL

 PTCMDA
+
-SQL

(a) ⊕ is =

 0

 500

 1000

 1500

 2000

75k 150k 225k 300k 375k

R
u
n
ti
m

e
 [
s
e
c
]

|X
~

|

 TCMDA
+
-SQL

 PTCMDA
+
-SQL

(b) ⊕ is ≤

 0

 500

 1000

 1500

 2000

 2500

75k 150k 225k 300k 375k

R
u
n
ti
m

e
 [
s
e
c
]

|X
~

|

 TCMDA
+
-SQL

 PTCMDA
+
-SQL

(c) ⊕ is 6=

Figure 22: PTCMDA+ vs. PTCMDA+-SQL: Results Scaling
∣∣∣X̃∣∣∣

(|R| = 100M, |B| = 10k, |Θ| = 1, |θ| = 2, P = 4)

50

7.5 Discussion and Summary

In this section, we present a general overview of the different experimental results
together with a discussion of the performance outcomes. In addition, we take a
closer look at the achieved speed-up with the according efficiency.

As discussed above, the IndexedTCMDA and the parallel IndexedTCMDA
algorithm do not scale using large base and detail tables whereas the TCMDA+

and the parallel TCMDA+ can be executed using very large detail tables. Com-
pared to the IndexedTCMDA algorithm, the TCMDA+ algorithm executes an
additional step for the equality constraint condition. As a consequence, the
IndexedPTCMDA algorithm reaches almost the same runtime for small detail
tables as the PTCMDA+ algorithm.

The TCMDA+-SQL algorithm outperforms all the former algorithms up to
two orders of magnitude in every tested setting, since the main part of incurred
workload resides in the database, if the number of distinct tuples in the separate
intermediate result tables are small. This is also the reason, why the algorithm is
almost not affected by any parameter involved in the computation. In the case,
where the distinct tuples in the separate intermediate result tables increases,
the parallelized version of the algorithm PTCMDA+-SQL partially absorbs the
increased workload to compute the final result table, since the computational
effort shifts from the database to the processing step of the algorithm.

For the experiments comparing the IndexedTCMDA with the In-
dexedPTCMDA, we achieved super linear speed-up [11], since we only evaluated
the original with the newly implemented algorithm. Hence, we unknowingly in-
troduced performance improvements, such as reading several tuples from the
detail table at once. These improvements could also be implemented in the
original algorithm. As a consequence, the super linear speed-up most probably
will disappear.

As the experiments show, we did not reach the theoretical speed-up using
four processors, because of the reasons stated in Amdahl’s law [12, 1]. The law
specifies the maximum expected speed-up of an algorithm when only parts can
be parallelized, since every algorithm has a sequential component. In our case,
this component is the database access on a single machine. Therefore, even
with an infinite number of processors, the execution times of the algorithms
will not decrease beyond the database computation times. However, Amdahl’s
law describes a limit on the speed-up given a fixed data size. Here, Gustafson’s
law [35] provides a counterpoint. The law states, that computations involving
arbitrarly large data sets can be efficiently parallelized, since the sequential
portion of the algorithm remains fixed or grows very slowly with the input size.
Hence, additional processors can solve queries without any limit.

This is the case in our parallelized algorithms, where the theoretical size of
the detail table using the reduction of the separate intermediate result tables to
SQL is unlimited. In the experiments we are not interested in solving a fixed
problem in the shortest possible time, but rather in solving the largest possible
problem in a reasonable amount of time. Hence, various refinements could be
introduced in the applications of the operator, e.g., an enhanced fully coupled
oceanographic fact table [10] with large amount of data gathered at hundreds
of survey stations.

51

8 Conclusions and Future Work

The analysis of large amounts of data is an important task in different applica-
tions areas. This requires enhanced techniques for the flexible formulation and
efficient evaluation of complex multi-dimensional aggregation queries. On ac-
count of this, the θ-constrained multidimensional aggregation operator (θ-MDA)
was introduced in [10]. θ-MDA separates the specification of groupings (base
table B) for which aggregates are reported from the specification of the associ-
ated aggregation groups over which the aggregates are computed (detail table
R). For the evaluation of such queries several approaches have been introduced,
namely the TCMDA [10] and the TCMDA+ [13] algorithm.

For the evaluation, the base table B has to be updated for every entry of
detail table R. This leads to an immense number of incremental updates on
the base table B for range aggregates. The TCMDA+ algorithm enhances this
approach by compressing the associated detail table R using equality constraint
conditions which reduces the number of incremental updates in the base table
B. However, both algorithms do not take advantage of the current evolution
of modern computer architectures, where the clocking frequency stays constant
and the number of computing cores increases [55].

In this thesis, we develop a partitioning strategy to distribute the workload
of the incremental updates in the base table B among the available processors.
Further, we define a reduction of the computation of the separate intermediate
result tables to SQL. These SQL statements can be optimized and executed
efficiently by the DBMS and the result can be further processed to complete the
θ-MDA query. We implement the parallelized algorithms using the C program-
ming language on top of the Oracle database. In the experiments we compare
the performance of the parallel algorithms with their sequential counterparts
and the impact of using the reduction to SQL to compress the detail table R.

The results show that the developed PTCMDA+-SQL algorithm executed
in parallel outperforms the state of the art approaches by up to two orders of
magnitude. This allows the usage of large base tables together with indefinitely
large detail tables, where the parallelization absorbs any influences of the differ-
ent parameters involved in the computation of the θ-MDA query. On account
of the optimizations, the algorithm utilizes the available resources of the com-
puting machine and almost reduces the evaluation of θ-MDA conditions to the
computation time of the groups using the DBMS, providing that the number of
distinct groups in the detail table R are small.

Future work can be driven into various directions. First, the intermediate
result tables with θ-conditions including the same groups but different constraint
conditions could be shared. Second, we will identify real world applications with
very large intermediate result tables for which additional optimization strategies
are required, e.g., implementations relocated to massively parallel processors,
i.e., GPUs. Another optimization concerns the implementation of the operator,
namely leveraging MapReduce techniques for distributed query processing or
the hybrid parallel programming model using MPI combined with OpenMP
on clustered multi-core machines. Other future research could be focus on the
integration of the θ-MDA operator as an algebraic operator into the kernel of
PostgreSQL 8 together with optimizations for the query optimizer.

8http://www.postgresql.org

52

References

[1] Amdahl’s law. http://en.wikipedia.org/wiki/Amdahl’s_law. Ac-
cessed: 2013-07-01.

[2] Mapreduce programming model. http://en.wikipedia.org/wiki/

MapReduce. Accessed: 2013-07-08.

[3] The message passing interface (mpi) standard. http://www.mcs.anl.gov/
research/projects/mpi/. Accessed: 2013-06-17.

[4] Open multi-processing (openmp). http://en.wikipedia.org/wiki/

OpenMP. Accessed: 2013-06-17.

[5] Posix threads. http://en.wikipedia.org/wiki/POSIX_Threads. Ac-
cessed: 2013-06-17.

[6] Posix threads programming. https://computing.llnl.gov/tutorials/

pthreads. Accessed: 2013-06-17.

[7] Using parallel execution in oracle. http://docs.oracle.com/cd/E11882_
01/server.112/e25523/parallel.htm#VLDBG010. Accessed: 2013-06-10.

[8] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz,
and Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce
and dbms technologies for analytical workloads. Proceedings of the VLDB
Endowment, 2(1):922–933, 2009.

[9] Michael O Akinde and Michael H Bohlen. Efficient computation of sub-
queries in complex olap. In Data Engineering, 2003. Proceedings. 19th
International Conference on, pages 163–174. IEEE, 2003.

[10] Michael O. Akinde, Michael H. Böhlen, Damianos Chatziantoniou, and
Johann Gamper. theta-constrained multi-dimensional aggregation. Inf.
Syst., 36(2):341–358, 2011.

[11] Selim G. Akl. Superlinear performance in real-time parallel computation.
Journal of Supercomputing, 29:89–111, 2001.

[12] Gene M Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483–485. ACM, 1967.

[13] Christian Ammendola, Michael H. Böhlen, and Johann Gamper. Efficient
evaluation of ad-hoc range aggregates. In 15th International Conference on
Data Warehousing and Knowledge Discovery (DaWaK-13), Prague, Czech
Republic, August 26 - 29 2013. 14 pages.

[14] Coming Attractions. Sql standardization: the next steps. SIGMOD Record,
29(1):63, 2000.

[15] Ranjit Bose. Knowledge management-enabled health care management
systems: capabilities, infrastructure, and decision-support. Expert Systems
with Applications, 24(1):59–71, 2003.

[16] Damianos Chatziantoniou, Theodore Johnson, Michael Akinde, and Samuel
Kim. The md-join: An operator for complex olap. In Data Engineering,
2001. Proceedings. 17th International Conference on, pages 524–533. IEEE,
2001.

[17] Damianos Chatziantoniou and Kenneth A Ross. Querying multiple features
of groups in relational databases. In VLDB, volume 96, pages 295–306,
1996.

[18] Damianos Chatziantoniou and Kenneth A Ross. Groupwise processing of
relational queries. In VLDB, volume 97, pages 476–485. Citeseer, 1997.

[19] Qiming Chen, Umeshwar Dayal, and Meichun Hsu. Olap-based data min-
ing for business intelligence applications in telecommunications and e-
commerce. In Subhash Bhalla, editor, DNIS, volume 1966 of Lecture Notes
in Computer Science, pages 1–19. Springer, 2000.

[20] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y Ng, and Kunle Olukotun. Map-reduce for machine learning
on multicore. Advances in neural information processing systems, 19:281,
2007.

[21] Seok-Ju Chun, Chin-Wan Chung, Ju-Hong Lee, and Seok-Lyong Lee. Dy-
namic update cube for range-sum queries. In VLDB, pages 521–530, 2001.

[22] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api
for shared-memory programming. Computational Science & Engineering,
IEEE, 5(1):46–55, 1998.

[23] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[24] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing
tool. Communications of the ACM, 53(1):72–77, 2010.

[25] Andrew Eisenberg, Jim Melton, Krishna G. Kulkarni, Jan-Eike Michels,
and Fred Zemke. Sql: 2003 has been published. SIGMOD Record,
33(1):119–126, 2004.

[26] Wenbin Fang, Bingsheng He, Qiong Luo, and Naga K Govindaraju. Mars:
Accelerating mapreduce with graphics processors. Parallel and Distributed
Systems, IEEE Transactions on, 22(4):608–620, 2011.

[27] Martin Farach and S. Muthukrishnan. Perfect hashing for strings: For-
malization and algorithms. In In Proc 7th CPM, pages 130–140. Springer,
1996.

[28] Ian Foster. Designing and building parallel programs, Chapter 3: Develop-
ing Models, volume 95. Addison-Wesley Reading, 1995.

[29] Steven Geffner, Divyakant Agrawal, Amr El Abbadi, and Terry Smith. Rel-
ative prefix sums: An efficient approach for querying dynamic olap data
cubes. In Data Engineering, 1999. Proceedings., 15th International Con-
ference on, pages 328–335. IEEE, 1999.

[30] Sanjay Goil and Alok Choudhary. High performance olap and data mining
on parallel computers. Data Mining and Knowledge Discovery, 1(4):391–
417, 1997.

[31] Sanjay Goil and Alok Choudhary. A parallel scalable infrastructure for
olap and data mining. In Database Engineering and Applications, 1999.
IDEAS’99. International Symposium Proceedings, pages 178–186. IEEE,
1999.

[32] Goetz Graefe, Usama M Fayyad, Surajit Chaudhuri, et al. On the efficient
gathering of sufficient statistics for classification from large sql databases.
In KDD, pages 204–208, 1998.

[33] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-
ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-
totals. Data Min. Knowl. Discov., 1(1):29–53, January 1997.

[34] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-
ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-
totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[35] John L Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[36] Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. Implement-
ing data cubes efficiently. In ACM SIGMOD Record, volume 25, pages
205–216. ACM, 1996.

[37] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and Tuy-
ong Wang. Mars: a mapreduce framework on graphics processors. In
Proceedings of the 17th international conference on Parallel architectures
and compilation techniques, pages 260–269. ACM, 2008.

[38] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan
Srikant. Range queries in OLAP data cubes, volume 26. 1997.

[39] Gabriele Jost, Haoqiang Jin, Dieter an Mey, and Ferhat F Hatay. Com-
paring the openmp, mpi, and hybrid programming paradigms on an smp
cluster. In Proceedings of EWOMP, volume 3, page 2003, 2003.

[40] Vipin Kumar. Introduction to Parallel Computing. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[41] Ki Yong Lee and Myoung Ho Kim. Efficient incremental maintenance of
data cubes. In Proceedings of the 32nd international conference on Very
large data bases, pages 823–833. VLDB Endowment, 2006.

[42] Weifa Liang, Hui Wang, and Maria E Orlowska. Range queries in dynamic
olap data cubes. Data & Knowledge Engineering, 34(1):21–38, 2000.

[43] Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick.
Maintenance of data cubes and summary tables in a warehouse. In ACM
SIGMOD Record, volume 26, pages 100–111. ACM, 1997.

[44] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. A comparison of ap-
proaches to large-scale data analysis. In SIGMOD ’09: Proceedings of
the 35th SIGMOD international conference on Management of data, pages
165–178, New York, NY, USA, 2009. ACM.

[45] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid mpi/openmp
parallel programming on clusters of multi-core smp nodes. In Parallel, Dis-
tributed and Network-based Processing, 2009 17th Euromicro International
Conference on, pages 427–436. IEEE, 2009.

[46] M.V. Ramakrishna and Justin Zobel. Performance in practice of string
hashing functions. In Proc. Int. Conf. on Database Systems for Advanced
Applications, pages 215–223, 1997.

[47] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and
Christos Kozyrakis. Evaluating mapreduce for multi-core and multiproces-
sor systems. In High Performance Computer Architecture, 2007. HPCA
2007. IEEE 13th International Symposium on, pages 13–24. IEEE, 2007.

[48] Sunita Sarawagi, Shiby Thomas, and Rakesh Agrawal. Integrating associa-
tion rule mining with relational database systems: Alternatives and impli-
cations, volume 27. ACM, 1998.

[49] Dennis Shasha. Database tuning: Principles, experiments, and guidance,
chapter 2: Tuning the guts. In SBBD, pages 15–62, 2003.

[50] Dennis Shasha. Database tuning: Principles, experiments, and guidance,
chapter 3: Index tuning. In SBBD, pages 63–93, 2003.

[51] Ambuj Shatdal and Jeffrey F Naughton. Adaptive parallel aggregation
algorithms. In ACM SIGMOD Record, volume 24, pages 104–114. ACM,
1995.

[52] Marc Snir, Steve W Otto, David W Walker, Jack Dongarra, and Steven
Huss-Lederman. MPI: the complete reference. MIT press, 1995.

[53] Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. Rapid:
Enabling scalable ad-hoc analytics on the semantic web. In The Semantic
Web-ISWC 2009, pages 715–730. Springer, 2009.

[54] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel
dbmss: Friends or foes? Communications of the ACM, 53(1):64–71, 2010.

[55] Herb Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s Journal, 30(3), March 2005.

[56] Tom White. Hadoop: the definitive guide. O’Reilly, 2012.

[57] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. Map-
reduce-merge: simplified relational data processing on large clusters. In
Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pages 1029–1040. ACM, 2007.

