
A Tool for Converting Public Transport Schedules

Peterpaul Klammer

Supervisor: Prof. Johann Gamper
Free University of Bozen - Bolzano

October 11, 2011

1

Contents

1 Introduction and Problem Definition 4
1.1 Background . 4
1.2 Problem Definition and Contribution 5
1.3 Organization of Thesis . 7

2 Related Work 7

3 Converting SASA and SAD Schedules 8
3.1 Overview . 8
3.2 SASA Solution . 9

3.2.1 Importing the Data into the Database 10
3.2.2 Importing the Geometry 11
3.2.3 Generating the Calendars 11
3.2.4 Correcting the Representation of Time 12
3.2.5 The Stop Sequence . 13
3.2.6 Completing the Tables 13
3.2.7 The Export . 14

3.3 The SAD Solution . 14
3.3.1 Parsing . 15
3.3.2 Update Geometry . 16
3.3.3 Generate an Unique TripID 17
3.3.4 Generating the Stop Sequence 18
3.3.5 Generate Calendars 19

4 Implementation 21
4.1 Automatization and Web Application 22
4.2 Validating and Visualizing the Feed 23

5 Conclusion and Future Work 24

2

Abstract

South Tyrolean transport agencies (SASA[1], SAD[2]) provide their
data in proprietary non-standardized formats. This data describe the
schedules, trajectories, trips and routes of the different means of trans-
port (bus, train, cable car, funicular, etc.). In order to use this data
for public services (e.g. Google Bimodal Shortest-Path Queries or
Isochrones Queries) there is the need to convert it into a standard-
ized format. The Google Transit Feed Specification (GTFS)[3] defines
a common format for public transportation schedules and associated
geographic information.

The Google Transit Feed Specification allows to represent the data
graphically and to work with it. The main goal of this thesis is the
transformation of the given data input files into the Google Transit
Feed Specification. The solution is based on the import of the raw
data into a database. Once imported there, the data is transformed
and rearranged in order to be used for the specification. Therefore the
main goal of the thesis is to implement a solution that converts specific
formats of SASA and SAD to the Google Transit format. A second
important task of this thesis work is to test the integrity of the data
after the transformation to the Google Transit format. The goal is a
transformation with as much data as possible, but it is not possible to
transform all of the provided data. For example, not all of the provided
data of the SAD agency can be converted.

3

1 Introduction and Problem Definition

1.1 Background

Now a days in the field of Spatial Network Databases a lot of new applica-
tions are developed and used. Examples for applications of that type are
”shortest path with Google”, ”kNN queries” and ”Isochrone computations”.
In Figure 1 you can see a Google shortest path query using the feed of San
Francisco(USA) and an isochrone computation developed by the University
of Bozen - Bolzano.

Figure 1: Shortest path and Isochrone computation

All of these applications have a common problem, they need the schedules
of the public transport agencies if they should be considered for the com-
putations. That is the reason why for public transport agencies it is very
important to provide their schedules and their geographical data to their
customers and users. South Tyrolean transport agencies such as SASA and
SAD provide their data in a non-standardized format as many of the agen-
cies are doing. Therefore there is the big need to change the raw data into
a standardized format.

The goal is to develop a tool that converts different formats to a common
one. The tool should start with one single command and then convert the
given input data, so that the converted output called feed can be used. In
practice a web application takes a given input zip file and uploads it to the
server, where the data is converted to the Google Transit Feed Specification.
After the converting step the web application provides a link to the location
where the feed can be downloaded and in addition an email notification is
sent to the transport agency. A second important step was to verify that
the data after the converting is still consistent. The goal is to lose as less as
possible data sets from the given input raw data that was provided by the

4

transport agencies and the University. Google defines the Google Transit
Feed Specification, with which Google is able to visualize transit schedules.
With this specification Google is distributing the work of generating the
feed to the developers. Local developers then do the work, they implement
a solution for the local areas.

The Google Transit Feed is a zip file composed of text files containing
multiple comma separated fields. The structure of the feed is defined by the
specification. The most important text files that have to be in the zip feed
are the following ones:

• agency: contains agency id, agency name, agency url and timezone.

• stops: contains stop id, stop name, stop desc, stop lat and stop lon.

• routes: contains route id, route short name , route long name and
route type.

• trips: contains route id, service id and trip id.

• stoptimes contains: trip id, arrival time, departure time, stop id and
stop sequence.

• calendar contains: service id, monday, tuesday, wednesday, thursday,
friday, saturday, sunday, start date and end date.

• calendar dates contains: service id, date, exception type

The transformed zipped feed can be shared to other developers or can be
used for own purposes to work with the data. In this paper I will show how
the transformation of the raw data to the finished working feed is done with
the implemented utility step by step. Furthermore the used technologies are
shown and explained.

1.2 Problem Definition and Contribution

The problem is that local transport agencies are providing their data in a
non-standardized proprietary formats, so that only they can work with the
data. Local transport agencies made a request to the University of Bozen
- Bolzano to develop a tool to convert their raw data, so that they can
change their format and system. The raw data of SASA differs from the one
of the SAD, so that two different tools are needed to convert all the data.
Therefore the main task is to provide a single tool, that converts data in an
efficient way such that as less as possible data is lost. Second, the obtained
new data should be consistent with the old data, the new data in the Google
Transit Feed should be exactly the same.

The SASA input files are composed of three CSV files, which are the
following ones:

5

• orariPassaggio.csv this file contains all the information about the stops
and stop times. For example:
TripID optionalLineID StopID Stop sequence Departure time

1 643 5108 1 06:43:00
1 643 5110 1 06:44:00

• lineeCorse.csv this file contains all the information about the trips.
For example:
TripID RouteN Location Desc. Ita Desc. De Direction Date Calendar

1 1 BZ Fago 1 Fagen Str. 1 A 01.04.11 0001...
2 1 BZ S.Gen Jenesien. A 03.04.11 1101..

• linee.csv this file contains all the information about the routes. For
example:
RouteID Short Name Long Name Desc Opt.RouteName Opt.Location

1 BZ-ME Bolzano-Merano L. 201 Merano B-M Merano
2 City LA City LA CityB-Lana C-L Merano

• sasa ge busdata.kml this file contains the geometry entries for the
stops. For example:

<Placemark >

<name >553: Parcines - Partschins </name >

<Point >

<coordinates >

11.0749697222222 ,46.6832566666667 ,0

</coordinates >

</Point >

<description ><![CDATA [13 ME /]]>

</description >

</Placemark >

The SAD input file is more complex. The data provided by the SAD is in
a special format that the SAD defined by their own, it is named SNTSEL.
The data is contained in files that need to be parsed in a precise way in
order to get the right information. The first lines of the file are containing
information about the version of the file and how long it is valid. Then
at some point a tabulator with some number indicates how many lines of
entries are following. Each line contains a certain number of entries that are
separated by spaces. The following example shows that the tabulator with
the number 785 indicates that 785 lines of various entries are following and
need to be parsed.

Revision: 9.0

20110310 20110301 20110618

785

10 34 1 Bolzano Bozen 021027 1 20110301 20110618

11 35 1 Resia Reschen 021027 1 20110301 20110618

12 55 1 Curon Graun 021027 1 20110301 20110618

The contribution of this thesis is the development and implementation
of a conversion tool. With this tool the provided non-standardized data can
be converted to a common format that is Google Transit Feed as already
mentioned before in the introduction. Local transport agencies and the

6

University of Bozen - Bolzano can use this tool to convert the data and to
work with the gained output data.

1.3 Organization of Thesis

In Section 2, related work is discussed, in particular repeated schedules are
discussed. In Section 3 the solutions for the raw data provided by the local
transport agencies SASA and SAD are shown. The most important steps
are shown in chronological order. Section 4 shows how to use the tool and
how to set up the property file. The use of the command line interface is
explained and also the web interface. Finally Section 5 conclude the thesis.
In this Section also some future work is discussed.

2 Related Work

The movement in public transport is organized according to schedules. These
schedules have a number of regularities and irregularities. Cancelled or ad-
ditional trips are the irregularities, such as holidays and strikes. This causes
some difficulties to handle real world data[4] . Traditionally schedules are
represented as regular schedules. But that is not always true because of
occurring exceptions. The most actual solutions are linked to a static con-
verting. The Google Transit Feed is solving this problem by storing a regular
schedule for a certain period of time. The period is specified with a start and
a clear end date. In the whole period the schedule is valid, if an exception
occurs it is stored in the exceptions file. With that approach it is possible to
represent trips with the corresponding schedules. This approach is linked to
the discovery of common patterns of events. The algorithm is designed to
find commonly occurring sequences[5] . One problem linked to this approach
is to find the common pattern inside the period of validity, this problem is
also occurring in this thesis. SASA and SAD both are representing their
schedules in a bit string with a start and end date. The problem was to find
a common pattern that is occurring frequently. How this problem is solved
is shown later in this paper. The Google Transit Feed specifies the calendar
so that for every weekly day a 0 or a 1 indicates if regularly on that day
the service is traveling. If an exception is needed this exception is stored
inside the exception file. This makes it possible to represent every kind of
trip during the given period of validity.

Storing time-qualified data is causing the phenomenon of temporal rep-
etitions i.e. the association of multiple time values with the same data[6].
Google tries with the Transit Specification to store the data in an efficient
way. The schedules are split into routes, trips, stops, stop times and cal-
endars. This avoids that data is stored twice inside the database or the
files. Identifying common patterns is very useful, because agencies have

7

some trips that use the same schedules. Since the schedules are stored in-
side a separated file one schedule can be used for two or more trips that
have the common schedule. This is also preventing redundant data entries
in the files.

3 Converting SASA and SAD Schedules

3.1 Overview

The System Architecture is shown in Figure 2, it shows the general archi-
tecture, containing the most important parts of the solution. Apache Ant[7]
is the main part of the solution, Ant is connecting all the single short pieces
of Java code and SQL scripts and executes them in a chronological way. A
property file containing all the relevant information is passing the param-
eters to the Ant build script, such as input file path, table names, output
file path, etc. With these parameters Ant is executing SqlLoader, SqlPlus
from Oracle and Java code. The single pieces of code then are interacting
with the Oracle database. After the transformation and modification of the
raw data the export can be performed. This is done by SqlPlus, that uses a
command called ”spool” to redirect the sql statement output into a file.

Figure 2: System Architecture

The general algorithm to solve the problem is to import the data into a
database by parsing it with Java code or Oracle SqlLoader. Imported into
the database the data can be joined and modified in the needed way, this
is done by Java code or some SQL scripts that are executed with Oracle

8

SqlPlus. After transforming, the data can be exported with SqlPlus that
provides the ”spool” command. With these command the output of the
SQL statement is redirected into a text file.
To summarize, the most important steps are:

• Import the data with Java or SqlLoader by parsing it line by line.

• Transform the data using Java and SqlPlus.

• Export the data with SqlPlus to a file.

Apache Ant is a Java library and command line tool whose mission is to drive
processes described in build files as targets and extension points dependent
upon each other. With Ant it is possible to specify certain properties inside a
property file, these properties are then red by Ant and passed as parameters
to the called targets. This is really useful, because it is possible to specify
dynamically the table name or feed names etc. This helps to make the utility
dynamical and if a change is needed it is easier to apply changes to the code.
The target that calls the solution is finally executing all the needed steps
such as import, migrate, convert and export of the data. Ant is a very
efficient way to combine multiple code snippets, for example this solutions
uses multiple technologies to get the feed and is combining all of them to
one consistent piece, that can be started with one command and generates
the final output feed. The gained feed is then ready for use. For the SASA
the ”sasa2gtfs” task is shown in the Figure 3.

<target name=" sasa2gtfs" depends ="init">

<antcall target =" unzip" />

<antcall target =" migrate" />

<antcall target =" initPostFunctions" />

<antcall target =" complete" />

<antcall target =" exportTabls" />

<antcall target =" zipFeed" />

<antcall target =" terminate" />

</target >

Figure 3: sasa2gtfs target

3.2 SASA Solution

With the SASA raw data the first important step was to understand the
concept how the data is stored inside the CSV files. The files are arranged
in such a way that it is almost intuitive to get an understanding of the data.
The data needs to be splitted up into smaller pieces, from the four input files
in order to be exported correctly. In addition the imported data needs to
be changed in some cases. For example the SASA uses a Solari date format,
because they need that format to be able to display the trips at the stops
with their monitors that are installed there. Such data needs to be modified
to be able to use this data with the feed.

9

3.2.1 Importing the Data into the Database

The first implementation step is to make tables in order to be able to import
the raw data into an Oracle database. The tables are created with SqlPlus
executed by Apache Ant targets. The scripts contains placeholders that are
replaced by the names contained in the property file. The property file has
the big advantage that table names and attributes can be changed easily if
some change is needed. Otherwise the whole tool would have to be modified
in order to change some table names. After that step the data files are
imported with the SqlLoader from Oracle, this step is very easy because
the syntax of this utility is very easy and intuitive. An example template
is shown in Figure 4, placeholders look like @spaceholder@ and are later
replaced by an ant target as shown in Figure 5. The Ant target replaces
the placeholders @CSV FILE@ and @TABLENAME@ and then executes
the copied template with the SqlLoader. When the target is needed another
time the placeholders are replaced by the properties that are indicated in
the property file and then executed. After the import of the data into the
temporary tables the data can be transformed.

LOAD DATA

INFILE ’@CSV_FILE@ ’

INTO TABLE @TABLE_NAME@

FIELDS TERMINATED BY ";" OPTIONALLY ENCLOSED BY ’"’

(

ROUTE_ID SEQUENCE (1,1),

ROUTE_SHORT_NAME ,

ROUTE_LONG_NAME ,

ROUTE_DESC ,

AGENCY_ID CONSTANT ’1’

)

Figure 4: SqlLoader Script

<property name=" tableName" value=" @setme" />

<property name=" tempCtrlFile" value=" @setme" />

<property name=" sourceFile" value =" @setme" />

<property name=" dataFile" value="data.csv" />

<property name=" logFile" value=" import_${tableName }.log" />

<property name=" ctrlFile" value=" import_${tableName }.ctrl" />

<copy file="${properties.scripts.importPath }/${tempCtrlFile }"

tofile ="${properties.scripts.importPath }/${ctrlFile}">

<filterchain >

<replacetokens >

<token key=" TABLE_NAME" value ="${tableName }" />

<token key=" CSV_FILE" value="${dataFile }" />

</replacetokens >

</filterchain >

</copy >

<exec dir="${properties.scripts.importPath }" executable =" sqlldr">

<arg value="${properties.db.user}/${properties.db.password }"/>

<arg value=" control=${ctrlFile }" />

<arg value="log=${logFile }" />

</exec >

Figure 5: Ant target

10

3.2.2 Importing the Geometry

The specification requires that every stop provide the geometry where the
stop is located. A valid WGS 84 latitude and longitude are required for
every stop. The corresponding geometry provided by the SASA is stored
inside a KML file, this KML file can be parsed with a piece of Java code
that then stores the geometry into a geometry object inside the database.
From that object the latitude and longitude can be extracted easily to the
final tables. The following pseudo code describes the function of the Java
code:

while KML entry 6= null do
KML→ read
KML→ toDB(with prepared Statement)

end while

3.2.3 Generating the Calendars

Generating the calendars is another very important step of the transforma-
tion of the input data. Google transit requires for every trip a schedule entry,
this means that every trip has a weekly schedule that indicates whether the
service is valid for the given day. A table is generated that has an entry for
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, a start
date and an end date. A 1 indicated that the service is valid at that day,
instead a 0 indicates that it is non-valid. In addition to this also an excep-
tion table is created, in this table the exceptions are stored that occur. The
calendar issue is solved by a piece of java code that takes the input string
that looks like:

0111111011111101111 (in reality much longer)
with start date: 02.04.11

The 02.04.11 is a Sunday, therefore on Sundays the trips is not valid, because
this is indicated by the 0. Instead on Monday the 03.04.11 it is valid.
Therefore after the execution of the Java code it is known that the schedule
regularly is valid from Monday until Saturday. Then after the 16.04.11
exceptions are occurring, and these exceptions are then inserted into the
exception table, so that these exceptions then can be exported to the feed
at the end as also the calendar itself. The algorithm looks as follows:

11

for every bit string do
bitstring → find most common weekly schedule
schedule→ write schedule to table
schedule→ find exceptions and write to table

end for

The finished calendar for the example trip then looks like:

service id mon tue wed thu frid sat sun start end
5 1 1 1 1 1 1 0 20110403 201106010

3.2.4 Correcting the Representation of Time

The times need to be converted to a special format that Google Transit
Feed uses. Trips that span multiple dates will have stop times greater
than 24:00:00, in other words, if a Trip starts at 10:30:00PM and ends
at 2:15:00AM on the following day the stop times would be 23:00:00 and
26:15:00. This issue is resolved by an SQL script that changes the times-
tamp to the special output format that is used by Google Transit Feed. The
SASA agency is using a Solari date format, because they need to visualize
their schedules on the monitors that are installed at their stops. On the
monitors the next departures are shown, therefore they need that format.
In order to use this date, there is the need to convert it with a given tool
that is written in Java. The problem with the trips that start before mid-
night and end after midnight is solved by the mentioned SQL function. The
script is shown in Figure 7, the function TIMESTAMP2STRING is created
with that script. The function converts the time if it is needed. If a value
is larger than 24:00:00 the amount of additional hours is added to the time.
How this looks like is shown in Figure 6. The initial values are shown on
the left, and on the right the values after converting them.

TripID StopID DepartureTime
5 5432 23:57:00
5 5433 23:59:00
5 5434 24:05:00
5 5434 01:01:00

TripID StopID DepartureTime
5 5432 23:57:00
5 5433 23:59:00
5 5434 24:05:00
5 5434 25:01:00

Figure 6: Timestamp2String example data

12

DROP TABLE TMP_MAX_DATE_STR;

CREATE TABLE TMP_MAX_DATE_STR AS

SELECT TO_CHAR(MIN(DEPARTURE_TIME),’YYYY -MM-DD ’)

AS MAX_DATE_STR FROM @TABLE_NAME@;

CREATE OR REPLACE

FUNCTION TIMESTAMP2STRING(

P_TIME TIMESTAMP ,DATE_PATTERN VARCHAR2) RETURN VARCHAR2

IS

MAX_TIME TIMESTAMP;

DATE_STRING VARCHAR2 (10);

TIME_STRING VARCHAR2 (10);

HOUR_STRING VARCHAR2 (10);

BEGIN

SELECT MAX_DATE_STR INTO DATE_STRING

FROM TMP_MAX_DATE_STR WHERE ROWNUM =1;

MAX_TIME := TO_TIMESTAMP(CONCAT(DATE_STRING ,’-23:59:59’), CONCAT(DATE_PATTERN ,’-HH24:MI:SS ’));

IF P_TIME IS NULL

THEN RETURN NULL;

END IF;

IF P_TIME < MAX_TIME

THEN

TIME_STRING := TO_CHAR(P_TIME ,’HH24:MI:SS ’);

ELSE

HOUR_STRING :=24 + TO_NUMBER(TO_CHAR(P_TIME ,’HH24 ’));

TIME_STRING := CONCAT(HOUR_STRING ,CONCAT(’:’,TO_CHAR(P_TIME ,’MI:SS ’)));

END IF;

RETURN TIME_STRING;

END;

/

QUIT

Figure 7: Timestamp2String function

3.2.5 The Stop Sequence

The SASA is already providing a stop sequence, that saves a lot of time,
because Google Transit Feed requires a stop sequence. A stop sequence
indicates the order of stops for every particular trip. For example a certain
trip first stops at stop A, so that A has stop sequence 1, later it stops at
Stop B, that has stop sequence 2. The stop sequence is important, because
as the name stop sequence already says, it guarantees that the stops of a
single trip can be determined very easy in chronological order. The finished
stop sequence of the shown initial SASA values can be seen in Figure 8.

TripID StopID ArrivalTime DepartureTime Stop sequence
1 5108 06:43:00 06:43:00 1
1 5110 06:44:00 06:44:00 2
1 5112 06:44:30 06:44:30 3
1 5114 06:45:00 06:45:00 4
1 5115 06:45:30 06:45:30 5

Figure 8: Stop sequence example

3.2.6 Completing the Tables

In this step the data of the temporary table is rearranged in the final tables
where the data is ready for the export. This works well with the SASA
data, so that no data is lost. Most of the data is at the right place already

13

in the temporary tables so that the final export tables are looking almost
identically compared with the temporary ones. At this step the only problem
is to find unique keys, in order to be able to find a correlation between the
data. If there would be no unique key it would not be possible to transfer the
data to the Google Transit Feed. With the keys the data can be positioned
in every table were the specification requires them. So that the data finally
is ready for the export.

3.2.7 The Export

The export of the data is done with the SqlPlus from Oracle, with the
command ”spool” it is possible to redirect the output of the command line
execution into a file. The file headers that are required by the Google Tran-
sit feed are copied with an Apache Ant target before the execution of the
export, so that the output is added to the bottom of the header file. In
Figure 9 the placeholders @OUTPUT FILE@ and @TABLE NAME@ are
replaced before the execution by an ant target with the right table name.

SET TRIMSPOOL ON;

SPOOL "@OUTPUT_FILE@" append;

SELECT

ROUTE_ID ||’,"’||

Rtrim(ROUTE_SHORT_NAME) ||’","’||

Rtrim(ROUTE_LONG_NAME) ||’","’|| Rtrim(ROUTE_DESC) ||’",’||

ROUTE_TYPE

FROM @TABLE_NAME@ ORDER BY ROUTE_ID ASC;

SPOOL OFF;

QUIT

Figure 9: Example output script

3.3 The SAD Solution

In general the procedure to generate the feed from the SAD input files is
the same, only that it is a little more complicated to do it. The SAD data
requires some thinking, because it is not that trivial to understand the data
modeling by looking at it. The manual needs to be understand and some
logistical problems need to be solved when the data is rearranged for the
Google Transit Feed.

14

In general the main steps for the SAD data are:

• Import the data with Java parsing it line by line.

• Join and modify the data by using Java and SqlPlus.

• Exporting the data with SqlPlus to a file.

3.3.1 Parsing

This step with the SAD data is not very easy, because all the data is in one
single file, and is listed after each other. The data is stored in the following
order:

• Stops

• Routes

• Trips

• Stop Times

In addition there are two files containing the stops geometry, that also need
to be parsed, they are parsed in the same way as the sntsel.txt file. The
general algorithm to parse the sntsel.tot file is:

while file entry 6= null do
if line starts with TABULATOR then

STATUS++
end if
if STATUS == 1 then

Split Stops data and insert into db
end if
if STATUS == 2 then

Split Routes data and insert into db
end if
if STATUS == 3 then

Split Trips data and insert into db
end if
if STATUS > 3 then

Split Stops Times data and insert into db
end if

end while

After every tabulator the status is increased, so that it is possible to
insert every data set into the right table. If the status is larger than 3 this
means that the stop times are proceeded. Every stop has different stop times

15

from different trips. Each single stop time entry has an unique id and starts
with a tabulator. Every entry is proceeded once at a time. All the stop
times are inserted with the corresponding trip id and route id. After the
import into the database the stop times table is looking as shown in Figure
10.

StopID T ARR T DEP RouteID TripId PredNode SuccNode
4513 20:16:00 20:16:00 519 8466 -1 4573
4001 20:58:00 20:58:00 519 8466 2139 -1
4573 20:20:00 20:20:00 519 8466 4513 467
606 20:41:00 20:41:00 519 8466 35 2115
2115 20:45:00 20:45:00 519 8466 606 2139
467 20:25:00 20:25:00 519 8466 4573 603
603 20:30:00 20:30:00 519 8466 467 35
35 20:38:00 20:38:00 519 8466 603 606

2139 20:49:00 20:49:00 519 8466 2115 4001

Figure 10: Stoptimes table example

3.3.2 Update Geometry

One problem that occurred was that there is no clear geometry, because the
SAD uses so called ”palines”, what is meant by a ”paline” is illustrated in
Figure 11. Every point represents one stop inside one location called ”pa-
line”. For example my home town Vintl - Vandoies is one paline containing
6 different stops. The problem is that every stop is referenced to one ”pa-
line”, which means that 1 stop is referenced to several different geometries.
This means that no unique geometry for the stops is given. The solution for
solving this problem is to take a centered point inside the paline. With that
approach one ”paline” references to one stop.

Technically this is solved by the SQL function SDO AGGR CENTROID,
that takes a set of points an searches the central point in the given set of
points. After this step it is possible to reference the geometry into the
temporary stops table with a script, shown in Figure 12.

16

Figure 11: A Paline

update @BUS_STOPS@ S1 set S1.geometry =(

select SDO_AGGR_CENTROID(MDSYS.SDOAGGRTYPE(S2.geometry , 0.005))

from @BUS_STOPS_GEOMETRY@ S2 where S1.stop_id=s2.stop_id

);

Figure 12: Script for updating the geometry

But this approach has two disadvantage, the first that some of the given
points can not be used and the second that the geometry is not 100% precise.
The loss of data sets is around 5%, but without this compromise it would
not be possible to transfer the data to the Google Transit Feed. Therefore
the loss of data has do be taken into account.

3.3.3 Generate an Unique TripID

Another problem is that the SAD data provides no unique TripID, that
makes it difficult to generate the feed. Because the specification requires
a unique TripID for the whole set of data. Therefore there was the need
to find a unique way to identify a set of attributes in order to be able to
generate an unique TripID, that then can be referenced to the different tables
that contain the old ID. It is possible to identify every single data entry by
routeID, tripID and the first instance of the entry, with these attributes as
unique identification it is possible to generate a new unique tripID in the
trips table and later that new tripID can be updated in the stop times table.
This approach has the disadvantage that some data sets are lost, but the
amount of lost data is still acceptable because it is between 5 -10 %. This
approach is needed, because without an unique trip id the feed could not be
generated. Using only the first instance seemes to be the best solution for
the transformation of the data, because from the SAD specification it was

17

not possible to understand the meaning of having two instances. And the
number of two instances of one trip is very small, so that is makes sense to
don’t consider them. The script that generates the ID and references it is
shown in Figure 13, and in Figure 14 a finished example is shown.

drop sequence SEQ_@T_TRIP_TAB@;

CREATE SEQUENCE SEQ_@TMP_TRIPS_TABLE@ INCREMENT BY 1;

UPDATE @T_TRIP_TAB@ T SET T.new_trip_id=SEQ_@T_TRIP_TAB@.NEXTVAL

where INSTANZA_TRIP_ID =1;

update @TMP_STOPTIMES_TABLE@ ST set new_trip_id =(

select T.new_trip_id

from @TMP_TRIPS_TABLE@ T

where T.new_trip_id is not null and

ST.route_id=T.route_id and ST.trip_id = T.trip_id);

Figure 13: Script for generating the ID

StopID T ARR T DEP RouteID TripId PredNode SuccNode
4513 20:16:00 20:16:00 519 5 -1 4573
4573 20:20:00 20:20:00 519 5 4513 467
606 20:25:00 20:25:00 519 5 35 2115
467 20:30:00 20:30:00 519 5 4573 603
603 20:38:00 20:38:00 519 5 467 35
35 20:41:00 20:41:00 519 5 603 606

2115 20:45:00 20:45:00 519 5 606 2139
2139 20:49:00 20:49:00 519 5 2115 4001
4001 20:58:00 20:58:00 519 5 2139 -1

Figure 14: Finished generated ID example

3.3.4 Generating the Stop Sequence

Generating the stop sequence with the SAD data is not that easy as with
the SASA one, because the SASA agency already provided the complete
stop sequence. Instead the SAD is only providing for every trip, the stops
and the stop times (arrival and departure times). In order to be able to see
in which order the stops are, the SAD gives also information for every stop
such as stop predecessor and successor. If a stop has no predecessor it has
the value -1 and when it has no successor it has the value -1. This makes it
possible to generate the stop sequence with a piece of JAVA code. in Figure
15 is illustrated how the stop times of a trip can look like. The first entry
has predecessor -1, so it is the first stop in the sequence. The first entry
then has the successor stop 4573 therefore it is known that the entry with
stop 4573 is the second stop in the sequence. Stop 4573 has successor stop
467 so it is the third stop in the sequence. And continuing this procedure
the right stop sequence is generated.
An important thing is that in this approach already the new generated trip
id is used, because with the old one the problem was much more difficult.

18

StopID T ARR T DEP RouteID TripId PredNode SuccNode Stop sequence
4513 20:16:00 20:16:00 519 5 -1 4573 1
4573 20:20:00 20:20:00 519 5 4513 467 2
467 20:25:00 20:25:00 519 5 4573 603 3
603 20:30:00 20:30:00 519 5 467 35 4
35 20:38:00 20:38:00 519 5 603 606 5
606 20:41:00 20:41:00 519 5 35 2115 6
2115 20:45:00 20:45:00 519 5 606 2139 7
2139 20:49:00 20:49:00 519 5 2115 4001 8
4001 20:58:00 20:58:00 519 5 2139 -1 9

Figure 15: Finished stop times example

The new id simplifies the whole problem a lot. The code first is reading all
the relevant data from the database and then taking every single entry one
by one. Each entry is proceeded after the other, if the predecessor is -1 a
new object for that trip is generated in a vector that contains a vector of
trips. If the predecessor is not -1 the trip is searched in the vector and there
is added a new entry to the trip vector. When all the entries are proceeded
the vector containing the trip vectors is red. Every trip vector is red after
each other. With an update the sequence is generated, by updating where
the data of the vector is equal to the data of the database entry. In that
way the stop sequence is generated. This procedure is not very fast because
the update of the database is very cost intensive, but there is the need for
the stop sequence so the loss of time has to be considered into account. The
following pseudo code describes how the stop sequence is generated.

while result set with sequence data 6= null do
if predecessor == -1 then

TripEntry(stopId, tripId,newTrId)
else

TripEntry(stopId, tripId,newTrId, previousTripEntry)
end if

end while
while vector with elements 6= null do

update StopSequence in DB where entry(stopId, tripId,newTrId, pre-
viousTripEntry) = stopID, TripID, nTripID, prevEntry

end while

3.3.5 Generate Calendars

Generating the calendars is one of the difficult parts with the SAD data,
because the SAD provides a long string called bitfield for the period of
validity specified in the first lines of the main document. The bitfield is a
string that contains only the values 0 or 1, a 1 indicates that the trip is valid
at the certain date instead a 0 indicates that it is not valid at that day. An
example for a bitfield is the following one:

19

11

In all the examples the start date is the 01.03.11 this remains the same,
since the bit filed always has a unique start value for all the entries of the
document, the start date is a Tuesday, therefore on that Tuesday the service
starts and from there on the service is valid every day. A more interesting
example would be the following one:

111000111110011101001111100111110011111001111100111110011111001111

This is an example for a service that is valid only from Monday to Friday
and that is not traveling on Saturday and Sunday. On the fourth day there
is an exception, this kind of exception needs to be stored into the calendar
exemptions file, in order to be able to consider also that special cases. In
this example the given service would be stored in the exceptions table with
the entry

service id = 2, date = 04.03.2011 exception type = 2.

The 2 indicates that the service at this day is not valid, a 1 would indicate
the opposite.
The problem was to generate the calendar with the given bitfield with given
start date. This is realized by finding the most frequent weekly pattern in
the bitfiled. This weekly pattern is stored as the weekly schedule in the
calendar table, and all the exceptions are then stored inside the exception
table. Later the calendar tables can be exported easy by Ant. The algorithm
for solving this problem is the following one:

while set of data 6= null do
bitfield→ identify start and end date
bitfield→ identify most frequent weekly pattern
write→ schedule with dates and service id into database

end while
while calendar entry in db 6= null do

for i = 1→ bitfield.length do
if bitfield.at(i) != schedule.day then

write→ exception into exception table
end if

end for
end while

20

4 Implementation

The solutions can be used in two ways, the whole code can be used by
executing the ant target from the command line. This is done by navigating
into the ant folder of the project where one of the following commands is
executed:

• ant sasa2gtfs

• ant sad2gtfs

Secondary and more comfortable the web application can be used. The web
application provides a html page that offers the possibility to upload the
input file to the University host, and finally the generated output feed can
be downloaded by a provided link to the feed. In addition to this an email
is sent to the responsible of the transport agency. In Figure 16 the web
interface is shown.

Figure 16: The web application

The property file contains all the needed information for the execution
of the whole project. It is important to specify all the needed information
in this xml file. Ant is extracting the data from the file and passing it to
the methods and targets. The most important attributes contained in the
property file are the paths of input and output files and the table names.
Figure 17 shows how the property file looks like. The important attributes
as inputPath, inputFile, outputPath, outputFile, srcDir, etc are shown. All
the attributes are specified in this file, also the table names for creating the
tables are set in this file. This guarantees that the tool is as dynamical as
possible. The important settings are the following ones:

• project: input and output files.

• database: host with schema and user data.

• webapp: host, port and e-mail addresses.

21

• scripts: names of the used script templates.

• export: names of the used export scripts.

• parameters: here can be set that the tables are deleted after the export.

These attributes need to be set before the execution. Once set, the tool can
be used unlimited. If needed, a change can be performed easily by changing
the property file.

Figure 17: Property file

4.1 Automatization and Web Application

The whole project is executed with Apache Ant, this means that a property
file containing all the table information and the settings that are needed for
the execution is delivering the information to Ant. The data is proceeded
with an Ant build file so that the right parameters are passed to the Java
code, the SqlLoader and SqlPlus. Ant is also responsible for the internal
copying of data to the right folder, for example for the WEB application
that works with Apache Maven[8] it is important to copy the whole ant
project into a certain target directory, in order to be able to deploy the
application.
The web application technically is realized with a servlet that gets called
from a html page. The servlet takes the input file, and sets all the important
properties in the property file, and then executes the ant target for the
execution of the whole utility. The email notification is realized inside the
servlet, the servlet uses a Java class to send the email.

22

4.2 Validating and Visualizing the Feed

The feed can be checked with a utility that is written in Python and also
visualized with another one that also is based on Python. The validation of
the feed is done with the python tool ”feedvalidator.py”, this tool takes as
parameter the url to the feed that needs to be checked. After checking the
data the browser opens a page that shows whether the feed is valid or not,
and if there are some warning also they are shown. This looks like shown in
Figure 18.

Figure 18: Feedvalidator output

After a successful validation of the feed it can be visualized with the
”scheduleviewer.py”, that is opening in the browser the feed, so that it can
be used like if it would be on google maps. This offers the possibility to check
the feed another time visually. Figure 19 shows how a feed looks like in the
schedule viewer, a trip from Bolzano/Bozen to Merano/Meran is shown, all
the stops are indicated with the stop times of that trip. This is very useful
to check the feed again manually if it is correct or not. If a geometry would
not be at the right place this can be seen easily with this python tool.

23

Figure 19: Scheduleviewer output

5 Conclusion and Future Work

The solution shown in this thesis is working quite well, even if there are some
compromises that are needed in order to get a working feed. But more or less
the loss of data taken into account is acceptable for the transformation from
raw data to the feed. The provided data from SASA can be transformed
100% into the Google Transit Feed where the SAD data can be transformed
only by 90% into the Google Transit Feed. The gained feed makes it possible
to use the data that were provided by the local transport agencies. The feed
can be used for Isochrone computations[9], kNN query processing, and for
Google Shortest Path computations.

A possible step for the future could be the extension of the tool. It would
be good if the tool could convert more formats to the common Google Transit
Specification. Changing from SASA directly to SAD and vice versa would
be nice. This could be realized by implementing a tool for changing Google
Transit Feed to SASA and SAD formats. Also adding some new formats
to the tool would make sense. For example the formats of other transport
agencies such as the Austrian train agency or the German train agency could
be added. The main goal for the future is to provide as much as possibe
formats in the Google Transit Feed Specification.

24

References

[1] Sasa Bozen-Bolzano: http://www.sasabz.it/

[2] Sad - Trasporto Locale S.p.a.: http://www.sad.it/

[3] Google Transit Feed Specification:
http://code.google.com/transit/spec/transit feed specification.html

[4] Representing Public Transport Schedules as Repeating Trips - Romans
Kasperovics, Michael H. Böhlen, Johann Gamper Free University of
Bozen-Bolzano, June 2008

[5] An Algorithm to Discover Calendar-based Temporal Association Rules
with Item s Lifespan Restriction - Geraldo Zimbro, Jano Moreira de
Souza, Victor Teixeira de Almeida, Wanderson Arajo da Silva, Federal
University of Rio de Janeiro

[6] Querying Multi-granular Compact Representations - Romans Kasper-
ovics and Michael Boehlen Free University of Bozen-Bolzano.

[7] Apache Ant: http://ant.apache.org/

[8] Apache Maven: http://maven.apache.org/

[9] Computing isochrones in multi-modal, schedule-based transport net-
works (Demo paper) - V. Bauer, J. Gamper, R. Loperfido, S. Profanter,
S. Putzer, and I. Timko Free University of Bozen-Bolzano

25

