
Efficient Joins With Reference Set

Andreas Villscheider
Free University of Bozen

Supervisor: Nikolaus Augsten
Free University of Bozen

September 14, 2010

1

Contents

1 Introduction 4

2 Related Work 6

3 Preliminaries 7

4 Problem Definition 8

5 Search Space Reduction 9

6 Choosing A Reference Set 10
6.1 Draw a sample set . 11
6.2 Cluster the sample set . 12
6.3 Draw reference points . 13

7 Experiments 14
7.1 The data sets . 14
7.2 Size of sample set . 14

7.2.1 Evaluation concepts 15
7.2.2 Unclustered . 16
7.2.3 Regular clustered . 17
7.2.4 Unregular clustered 18
7.2.5 Average case . 19

7.3 Varing threshold . 20
7.3.1 Unclustered . 20
7.3.2 Unregular clustered 21
7.3.3 Regular clustered . 22
7.3.4 Average clustered . 23

7.4 Varing threshold and input range 24
7.5 Experiment with real data . 25

8 Conclusion 26

9 Appendix 28
9.1 Application . 28

2

Abstract

How similar are two objects? Are they almost equal or are they too
different. This is a question of importance in many sciences such as
genetic research, crime scene investigations, linguistic sciences, com-
puter sciences and many more. In computer science this could be of
relevance in case like a join of data out of different sources.

A practical scenario could be the join of databases of inhabitants of a
city to enrich information. The join could be performed over the ad-
dresses. Performing an exact join over the addresses may end up with
poor results because of the lack of common keys, a different 14way of
naming the same real world object or misspelled addresses. To perform
an effective join, we have to match also similar pairs. Finding similar
pairs involves evaluating a distance function which is often very ex-
pensive to compute. In the brute force approach the distance must
be computed for each pair of objects from both sets leading to very
expensive joins. Our goal is to minimize these direct comparison using
a reference set. With this reference set we will be able to compute
upper and lower bounds which we will use as filters.

Instead of directly comparing every element of the original sets, we
compare each of the original sets with each element in the reference
set. Since the reference set is much smaller than the original sets there
are much less comparisons to do. Now, applying the triangle inequal-
ity, we are able to save comparisons between some elements because
they either match or do not match for sure.
An important thing is to find a good size for the reference set. Small
reference sets provide little overhead, because additional elements in
the reference set require additional distance computations at query
time. Large reference sets provide more effective filters thus save com-
parisons.

In this thesis I will show for which cases the approach with the ref-
erence sets works well and for which cases it works less effective. I
will show when the traditional brute force method would be a better
choice. For that I will experiment with the size and the clustering of
the input sets as with the size of the reference set to find a optimum.
Further I will show the impact of the threshold on the comparisons we
save. The experiments will be done on syntactical and real data.

3

1 Introduction

In many applications the quenstion of similarity of elements is fundamental.
In genetic research as in crime scene investigations we have to find matches
of similar DNA sequences or finger prints. In linguistic sciences the similar-
ity of words is of interest.
An other application scenario is data integration. For example a municipal
wants to enrich information about its inhabitants. It takes its own geo-
graphic data sources and tries to join them with the data of the province.
Due to the lake of a common way to store street names (see Figure 1, 2), an
exact join ends up with poor results, and a approximate matching technique
must be applied.

Grosser Graben

Nr 1

Fam A Fam B Fam C

Nr ...

Fam ...

Nr 23

Fam Y Fam Z

Figure 1: Naming convention of municipal

G. Graben

1

A B C

...

...

23

X Y Z

Figure 2: Naming convention of province

Definition 1 (Distance Function) Given two sets of elements, A and B,
a distance function for A and B maps each pair (a,b) ∈ A × B to a positive
real number (including zero).

δ : A × B → R+
0

Definition 2 (Approximate Join) Given two sets of elements, A and B,
a distance measure, dist(a,b), between the elements a ∈ A and b ∈ B, and a
threshold τ . The approximate join computes all pairs (a,b) ∈ A × B, such
that dist(a,b) ≤ τ .

4

The distance function depends on the elements we want to join. In the case
we want to join strings we could use the ”string edit distance” or the ”longest
common subsequence”. For points in the Cartesian plan the ”euklidean dis-
tance” would work well as approach. In the municipal scenario (Figure 1,
2), the items are structured as a tree like in XML documents. Here the
standard way for this is the so called “tree edit distance”. It defines the
distance between two trees as the minimal number of edit operations (node
insertion, relable, deletion) required to transform one tree into the other.
Since in this paper I will not have a look at a specific distances function I
introduce the term DIST() and will use this for every kind of distance com-
putation. The computation time of most distance functions is very high1.
This is not a big problem when we have to compare just small sets. But
since the brute force approximate join requires |A| × |B| distance computa-
tions with larger sets we have to do a lot of expensive computations. For
example with 2 sets of 1000 elements we already have to do 1 mio distances
computations. To address this problem we have to keep the number of ex-
pensive DIST() as low as possible. This means, we first have to reduce the
search space some how.

In this paper I will show an approach proposed by Guha et al. [11, 10]
which tries to reach this reduction introducing a third set the so called ref-
erence set. This set consists of some elements of set 1 and set 2. I will show
and anaylse the proposed approach, that does not compute the distance
functions of the cross product immediately. It pre-computes the distances
from each element of set 1 and set 2 to each element of the reference set.
Knowing the distances between a,b (a ∈ set 1, b ∈ reference set) and b,c (b
∈ reference set, c ∈ set 2) with the triangle inequality an upper and a lower
bound can be computed on DIST(a,c) (a ∈ set 1, c ∈ set 2). The upper and
lower bounds can be used to prune the search space.
It is evident that the size of the reference set is an important factor for this
approach. It should not be to large since the size of the set is proportional
to the all over work we have to do. Neither it should be to small because
it provides just effective filters when it is large enough. I will show how
according Guha et al. [11, 10] we find this optimum.
Further I will show the results of some experiments. One experiments states
for which thresholds the reference set approach works fine and why we reach
our average worst case at half way of the largest distance between the ele-
ments. An other experiment shows how the ”reference set approach” deals
with differently clustered input data. The experiments are done on syntac-
tical and real data with different cluster types and varying sizes of the input
sets.

1Worst case for the “tree edit distance algorithm“ is O(N4) where N is the sum of the
nodes of tree 1 and tree 2

5

2 Related Work

Matching approximate elements is a problem of central interest in many ap-
plications. In crime scene investigations for example the investigators have
to compare dusted finger prints [16] with their large databases to catch the
criminals. In genetic research a possible scenario could be the extraction of
a special gene of a DNA sequence [15] to determine whether it is responsible
for a given disease. Also here we have to compare a lot of different DNA
sequences among themselves.
With different approaches it is possible to map the differences between
the compared elements into the metric space [4, 7]. This paper assumes
such metric distances. Such distances were already introduced for differ-
ent complex data types such as strings [14, 9][Levensthein 1966], pairs of
trees [Zhang and Shasha 1997], ordered labeled trees [2][Tree Edit Distance
Apostolico and Galil 1992; Sankoff and Kruskal 1983] like XML documents
[1, 3, 13, 8, 5, 6] and so on. These distances are often combined with high
costs such as string edit distance and tree edit distance. For that we have
to keep the number of these distance computations as low as possible.

The algorithm for approximate joins which is presented and evaluated in
this paper is proposed by Guha et. al [11] in the paper “Integrating XML
Data Sources Using Approximate Joins”. The algorithm minimizes the pair-
wise distance computations using an attribute of triangle inequality. With
that approach introducing a new set, the so called reference set, it is pos-
sible to determine an upper and a lower bound for each distance between
the elements. Applying these bounds as filter it we are able to prune some
pairs of elements with out directly computing the distance between them.
To get these bounds we first have to sample the input sets. This sample
becomes clustered [12] and out of the largest n clusters we pic our reference
set elements.
The proposed approach was to implement nearly straight forward. Just the
choice of the size of the sample set required foreknowledge about the num-
bers of clusters in the sample before executing the method. Since that is
not always the case I varied the method of choice. More about that later in
section “Draw a sample set“.

6

3 Preliminaries

A data set is a collection of elements. In our case a set for example can
consist of XML-documents, strings or coordinates.
The reference set approach works with an attribute of the triangle inequality.
The triangle inequality in general says that one side of a triangle can be at
most so long as the sum of the other two sides.
Formally this means c < a+ b. The graphical mean is shown in Figure 3.

bA

b

C

b B
c

b a

Figure 3: c < a+ b

Because of symmetric reasons a < c+ b is true and we can derive |a− b| ≤ c
or analog |b− a| < c (see Figure 4).

bA

b

C

b B
c

b a

Figure 4: |b− a| < c

Further we distinguish two special cases. One when the sum of a and b is
exactly as long as c (b+ a = c). The other when the difference of a and b is
as long as c (|b− a| = c). Taking all cases together we can sum up:

|b− a| ≤ c ≤ a+ b

Applying this formula we are able to calculate an upper and an lower bound
for the length of c knowing the length of a and b. For the approximate join
with reference set we can use this attitude as follows. Knowing the distances
from the elements in set 1 and set 2 to the elements in the reference set we

7

can calculate an upper and an lower bound for the distances of the elements
in set set 1 to the elements in set 2.

|DIST (x, y)−DIST)(x, z)| ≤ DIST (x, z) ≤ DIST (x, y) +DIST)(x, z)
where x ∈ set 1, y ∈ reference set and z ∈ set 2

4 Problem Definition

Given two sets of size n and m. A distance computation of each element of
one set, to each element of the other will end up in n*m DIST() (see Figure
5). So the runtime complexity is O(n2). Filter algorithms are special algo-

bd1

bd2

bd3

b d4

b d5

b d6

Set1 Set2

Figure 5: Cross Product (9 comparisons)

rithms which are used to reduce the search space of a given problem. The
run time complexity of such algorithms has to be smaller than the DIST()
algorithm, otherwise it would not make sense to apply them. For the ”tree
edit distance” such a filter algorithm is the traversal string. It can be used
as lower bound for the ”tree edit distance”. An upper bound for it provides
the ”constrained edit distance”. To address our data integration problem
we have also to apply such a filter algorithm to reduce the search space.
To get a filter for the data integration problem according the approach
proposed in the paper “Integrating XML Data Sources Using Approximate
Joins“ by Guha et al. [11] we first choose at random some elements out of
set 1 and set 2. These elements form a sample set which becomes clustered.
Next we sort the clusters in decreasing order of the number of sample ele-
ments contained in them and form a reference set of size k by picking one
random element out of the largest k clusters. Now we have to calculate the
distances function of each element of the input sets to each element in the
reference set. Knowing these distances appling the triangle inequality we
are able to calculate an lower and an upper bound for the distances between

8

the elements of set 1 and set 2. We use these bounds as filter and are so
able to prune some pairs because they either match or do not match for
sure. The expensive distance computations has just do be applied for the
remaining pairs.
It is obvious that with the number of the elements in the reference set also
the number of over all distance computations rises. So we have to keep the
reference set as small as possible. But just when the reference set is large
enough it provides an effective filter. How Guha et al. [11, 10] propose to
find the optimal balance I will discuss later.

5 Search Space Reduction

Let S1 and S2 be two sets of elements from different data sources between we
wish to compute a join. Let K ⊂ S1 ∪ S2 be a chosen set of elements which
will refer as a reference set. Let di ∈ S1 and dj ∈ S1 be two elements. We
will compute for each element in S1 and S2 the distance function DIST()
to the elements in the reference set K. These distances become stored in
corresponding vectors vi(vj). The dimensionality of the vectors depends on
|K|. Let kl, ...k|K| be the elements in K. Further let vil = DIST(di, kl), 1
≤ l ≤ |K|; similarly vjl = DIST (dj , kl), 1 ≤ l ≤ |K|. Since DIST() is a
metric the following is true by application of the triangle inequality:

∀1 ≤ l ≤ |K||vil − vjl| ≤ DIST (di, dj) ≤ vil + vjl

Example with one item in the reference set:

bd1

bd2

bd3

b d4

b d5

b d6

b

k1

Set1 Set2

ReferenceSet

v31 v61

DIST

|v31 − v61| ≤ DIST (d3, d6) ≤ v31 + v61

Figure 6: Comparison with reference set

Assume we want to find all pairs of elements of S1 and S2 which are closer
than a specific threshold, say τ . We can take |vil − vjl| as lower bound and

9

vil + vjl as upper bound for the distance of the two elements di and dj (see
Figure 6).
In the case when the upper bound is smaller than the threshold τ it is
obvious that the two elements (di and dj) are within the given threshold
and we can add the pair to the result set without calculating the expensive
DIST().
Another case is when the lower bound is bigger than τ . In this case we
know for sure that di and dj are not within the threshold and we can prune
the pair. The DIST() function has just to be applied for pairs where τ is
between the upper and lower bound.
The importance of good bounds becomes here quite evident. How these
according Guha et al. [11] can be found I will explain in the next sections.
As an example, we will consider points in the Cartesian plan.

6 Choosing A Reference Set

In our example as input we get 100 points for set 1 and 100 points for set 2.
The points are spread over the Cartesian plain in the space from 0 to 100 in
x- and y-direction. As we can see in Figure 7 for the example I have chosen
an input of clusters of different size, because with such an input some later
operations are easier to show and the whole process becomes clearer. Of
course each distribution would be a valid input.

Figure 7: Experiment Input

To estimate the distance between the points I use the euklidean distance:

10

Note: depending on the input type the distance function can vary. For
XML documents we could use the tree edit distance and for strings the
string edit distance or the longest common subsequence. It is not evident
which distance estimation is applied, it has just to map the distance into
the metric space.
To get good bounds we first have to find good reference points. The size of
the reference set should be as small as possible since it is proportional to
the amount of work we have to do, yet it should provide bounds that are as
decisive as possible. According the paper “Integrating XML Data Sources
Using Approximate Joins“ our strategy will be first to sample the input and
than to clusters the sample into n clusters. Out of the larges k cluster I will
pick a point and add it to the reference set.

6.1 Draw a sample set

First we have to draw a sample out of the two input sets S1 and S2. For
that we form a super set S (S ∈ S1∪S2). Out of this new set S we randomly
pick items for our sample set. The size of the sample set depends on the
size of S1 and S2. According the approach proposed by Guha et al. [11, 10]
a sample size of

12

√
k|S|
ε log|S|

is enough to identify all k clusters with high probability. This formula
assumes that we already know the number of clusters in our input sets
which is not always the case for our inputs. For that I decided to make some
experiments with different input- and sample sizes on differently clustered
sets to identify what actualy is a good size for the sample set. According my
experiments for an input of clusters of different size2, like in our example
a good choice are 3 percent of the super set S. I will explain more on this
experiment later.
In our example it is enough when we pick 6 points for the sample set, because
S1 consists of 100 points as also S2. So the super set S contains 200 points.

|K| = |S1|+ |S2|/100 ∗ 3
|K| = |S|/100 ∗ 3
|K| = 200/100 ∗ 3

|K| = 6

Consider the two input sets in Figure 7. Figure 8 shows the sample that
were chosen at random.

2in term of number of contained elements

11

Figure 8: Sample Set

6.2 Cluster the sample set

The next step will be the clustering of the sample set. We will cluster the
set with a cluster size of half threshold (τ/2). This has the consequence that
inside a cluster the distances between the points are at most τ .

Figure 9: Clustered Sample

We call every point which does not belongs to a cluster a free point. Initially
every point is a free point. So we pick a point at random and compute the
distance function DIST() to each other point in the sample set. Every point
which is inside the radius τ/2 comes in this first cluster. Then we pick
our next free point and compute the distances to the other remaining free
points and put them in the next cluster. We repeat this until no free point
is remaining. At the end of this procedure we have a clustered sample set

12

where each point belongs to exactly one cluster. Figure 9 shows the resulting
clusters (the clustered points are circled)

6.3 Draw reference points

Finally we can draw some reference points. Since the sample set is clustered,
we could pick out of each cluster a reference point. But as we already know,
is the size of the reference set proportional to the amount of work we have
to do. So we pick just one point out of the largest i clusters. We compute
fi as the fraction of points in the first i clusters. As i increases, we will
be comparing (1− fi)2n2 pairs. Thus the number of comparisons decreases
by ratio (1 − fi+1)

2/(1 − fi)2 and the size of the reference set increases by
1 + 1/i in size. We balance these two and choose k ≥ i ≥ 2 such that:

(1−fi+1)
2

(1−fi)2
> i

i+1

Figure 10: Reference points

1. Turn: i=0; fi = 0
6 ; fi+1 = 2

6 ;
(1− 2

6
)2

(1− 0
6
)2
> 0

0+1 → 0.44 > 0

2. Turn: i=1; fi = 2
6 ; fi+1 = 4

6 ;
(1− 4

6
)2

(1− 2
6
)2
> 1

1+1 → 0.25 > 0.5

We reach the balance already at the second turn where i is only 1. Since
k ≥ i ≥ 2 we choose for our example 2 reference points. We pick them out
of the largest 2 clusters.

13

7 Experiments

7.1 The data sets

For expressive experiments we need different distribution in the input data.
For my experiments I dived non-, regular- and unregular-clustering.

Unclustered means that the items are distributed uniformly over the space
(see Figure 11 left).
Regular clustered means that the items are clustered in equal large3 clusters
(see Figure 11 right).
Unregular clustered means that the items are clustered in varying large4

clusters (see Figure 12).

Figure 11: Unclustered (left), Regular Clustered (right)

Figure 12: Unregular clustered

7.2 Size of sample set

In this experiment we want to find out what actually is a good size for a
sample set and on which parameters it depends. For that I take different
clustered input sets with different sizes, increase the sample size from 0 to
100 percent and count the saved distance computations at each step.

3size in term of points in a cluster
4size in term of points in a cluster

14

The inputs are the following: unclustered, regular and unregular clustered
points of the sizes5 20, 100, 400, 800 and 1000.
In my first experiment I increase the size of the sample set at each step by
5 percent. I started at 1 percent and went up to 100 percent. The results
showed that an actual good sample size for each distribution is to find below
20 percent of the input sets.
So I started a second experiment in which I increased the size at each step
by 1 percent from 1 percent to 20 percent.

7.2.1 Evaluation concepts

Let me introduce first some concepts. S1 and S2 are the input sets, K is the
reference set, O is the number of distance computations required to cluster
the sample set, R is the number of DIST() computations using the reference
set, SR is the number of saved distance computations using the reference set,
C is the candidate set, i.e, the subset of S1 × S2 for which DIST() must be
computed after filtering. The amount of distance computations are calculate
as follows:

|R| = |S1| ∗ |K|+ |S1| ∗ |K|+ |O|+ |C|

Subtracting that number from the cross product |S1|∗|S2| we get the number
of saved computations:

|SR| = |S1| ∗ |S2| − |R|

Following graphs illustrate the outcome of the experiments. On the x-axis
I put the percentage of the sample set and on the y-axis the percentage of
the saved distance computations.

5The size is given as the number of points in the input set 1 plus the number of points
in the input set 2

15

7.2.2 Unclustered

Figure 13: Normal clustered (sample set 0-100 percent)

In Figure 13 we can see how much the size of the sample size influences
the number of distance computations for a uniform distributed input. It
shows us dramatically that the choice of the sample size is important. If
the size is too small we do not reach the optimal performance, if it is too
big, using reference sets is less efficient than the brute force algorithm that
computes the cross product (see negative values in Figure 13)

Figure 14: Unclustered (sample set fist 20 percent)

A nearer look to the first 20 percent of the experiment (see Figure 14) shows
us that a good average sample size for a unclustered input would be 1 percent
of the actual size of the two input sets.

16

7.2.3 Regular clustered

Figure 15: Regular clustered (sample set 0-100 percent)

Figure 15 shows us the impact of the reference set size on a regular
clustered input. We can see that such an input is much tolerant in respect
to saved distance computations than an unclustered. In other words, also
with a big sample size we save some DIST() computations in almost all
settings.

Figure 16: Regular clustered (sample first 20 percent)

But also in this case we reach the optimum below 20 percent. Figure 16
shows that this point is reached at about 15 percent for regular clusters.

17

7.2.4 Unregular clustered

Figure 17: Unregular clustered (0-100 percent)

Our third cluster type is also quite tolerant with large input sets. This
is so because the more points we have in the sample set, the higher the
probability that we cover each cluster (see Figure 17).

Figure 18: Unregular clustered (sample set first 20 percent)

But since we do not need necessarily to identify each cluster we already
reach our optimal point at 3 percent (see Figure 18).

18

7.2.5 Average case

Figure 19: Average clustered (sample set 0-100 percent)

The previous results showed us that the optimal percentage for the sam-
ple size varies for each type of input cluster. Since we do not know always
how our inputs are clustered we need an average case which works some
how for each type of clustering. To find this point I took the average of each
previous result and build the overall average (see Figure 19).

Figure 20: Avarage clustered (sample set first 20 percent)

As we can see in Figure 20 the optimal point for unknown clustering is
reached at 5 percent of the sum of the elements in the input sets.

19

7.3 Varing threshold

In the second experiment I will vary the threshold to see what is its impact
on the number of saved distance computations, overall computations and
overhead. Further i will observe the size of the matching as also the pruning
set.
As in the first experiment I will differ the inputs in size as in clustering. The
points are distributed over the Cartesian plane from 0 to 100 in x- as in y
direction. After some preliminary experiments I noticed that it is enough
when I vary the threshold from 0 up to 250. To be able to compare the
results of the different clustered inputs I have to take the same percentage
of sample sizes for each distribution. For that I have chosen the average
percentage of 5 percent for my experiment.

7.3.1 Unclustered

The threshold has a big influence on the number of distances computations
we have to do as we can see in the Figure 21. Is the threshold small we save
many computations because most of the pairs can be pruned. The larger
the threshold becomes the larger the candidate set becomes. (see Figure 22)
Since we have to check each candidate whether it matches, the number of
overall calculations rises.

Figure 21: Unclustered (threshold 0-250)

But we reach a point from that onwards we save again more an more calcu-
lation increasing the threshold further. This point in our experiment with
unclustered inputs is reached at a threshold of round 70, independent of
the number of points in the input sets. Since the input set is uniformly
distributed we reach the inflection point at half of the maximal distance

of the points (
√
1002+1002

2 ≈ 70). The graphical representation of the saved

20

distance computation is an inversion of a classical bell shape (see Figure 21,
22).

Figure 22: Unclustered

7.3.2 Unregular clustered

Feeding our experiment with clusters of different sizes we get some similar
results. The graph of saved DIST() is again an inverted bell shape. But on
an closer look we can see that we have not a equable falling/rising graph.
At some part the slop of the graph is larger than on other parts.

Figure 23: Unregular clustered (threshold 0-250)

The reason is that the input is clustered. That means on some threshold
value we are able to prune many pairs at a time. But after this point we
have to increase the threshold a lot till we find the next cluster to be able to

21

prune new pairs. Since the clusters are not so far away from each other we

Figure 24: Avg clustered (0-100)

have the inflection point again at nearly the half of the maximal distance of
points (around 70).

7.3.3 Regular clustered

Our next inputs will be regular clustered points. Also here I got a quite
similar outcome as before. The graph (Figure 25) of the saved distance
computations is an inverted bell shape with some anomalies.

Figure 25: Regular clustered (threshold 0-250)

The only difference to unregular clustered trees is that the graph is a bit
smoother because of the regularity of the clusters.

22

Figure 26: Regular clustered (threshold 0-250)

7.3.4 Average clustered

Of course, also in the average case I got a bell shape with some anomalies
(see Figure 27). Comparing the cluster types directly we see that with an

Figure 27: Avg clustered (threshold 0-250)

unclustered input in the worst case we save just 20 percent of the computa-
tions we had to do with the brute force approach. Instead with regular and
unregular clustered inputs we are able to save about 40 percent even in the
worst case. This is so because with regulare and unregular clustered inputs
the filters work most effective.

23

Figure 28: Average clustered

7.4 Varing threshold and input range

To find out when actually the point of inflection is reached I started a third
experiment in which I increment the threshold on different input ranges6.
Since we have seen in the pervious experiment that the inflection points of
clustered inputs depends on their clustering, for that experiment I will take
unclustered inputs only. As we can see in Figure 29, we always get our
inverted bell shape with the reflection point at half of the maximal distance
between the points. For example with a range7 of 300 we get the inflaction

point at
√
3002+3002

2 ≈ 212) (range 1000 → 707...)

Figure 29: Varing range and threshold

6maximal distance between the points
7maximal distance between the points

24

To show that the size in term of points in the input has no impact on the
outcome, I started the experiment with range 1000 twice. One time with
100 points in the input and a second one with 200 points. Also that behavior
we can see in Figure 29.
Figure 30 shows why we get the inverted bell shape for the saved distance
computations increasing the threshold. Is the threshold small the upper
bound is realy strong and we are able to prune many pairs with it. The
increasing of the threshold brings the effectiveness of the upper bound down
and we save at each step less computations. But as the effectiveness of the
upper bound sinks, the stronger the lower bound becomes (see Figure 30).
So we reach a point from that onwards we again are able to prune more
and more pairs. From now on with the lower bound. The worst case of
the reference set approach is reached when neither the upper nor the lower
bound are able to prune many pairs. Depending on the clustering this point
in average is reached at half of the maximal distance between the elements.

Figure 30: Bound Pruning

7.5 Experiment with real data

To varify that the approach does not work only with syntactical data I
started some experiments on real data. The data consists of streets of the
municipal Bozen. One representation of the streets is the streetname like
”cesare abba strasse“. The other is a kind of tree. For example, 30:{cesare
abba strasse{1}{2}{3{{1}{3}}}{11}} is the address tree with ID 30, its root
node has the label ”cesare abba strasse” and the children of the root are
labeled 1, 2, 3, 11; 3 has a child with an empty string label, which in turn
has two children with labels 1 and 3. Since my application does not supports
trees like that I applied for both representations the ”String Edit Distance”

25

as distance computation method. For the tree representation the “String
Edit Distance“ can be seen as lower bound like the tree traversal. In Figure
31 we can see the outcome of the experiments with street names only. As on
syntactical data also in this experiment we get an inverted bell shape for the
saved distance computations. The maximal distance between the elements
is 29. Since the input is not that much clustered we get also with real data
the inflaction point nearly at half of the maximal distance (13).

Figure 31: Street names representation

Things change in the second real data experiment (see Figure 32). Here
the outcome at a first look, seams strange. But again it shows that with
small and high8 thresholds we are able to prune more pairs than with an
intermediate threshold. Because the input data is realy widespread clustered
the filters work quite effective and so we save in the worst case even more
than 70 percent of the overall computations we had to do appling the brute
force methode. But also because of the clustering in spite of kowing the
maximal distance between the elements is 7298 a prediction of how many
calculations we have to do at a given threshold, is realy hard to provide with
out executing the experiment almost once.

8 Conclusion

After many experiments under different conditions I can say that the ap-
proach to find similar elements of two sets by pruning elements with an
reference set is very efficient. Under optimal conditions we are able to save
up to 98 percent with respact to the brute force algorithm that computes
the cross product. Only if the input sets are very small (for example each
contains just 5 elements) the traditional brute force approach is superior.

8high in respact to the maximal distance between elements

26

Figure 32: Tree representation

Is the amount of input data big enough we even save some distance com-
putation under for the approach worst conditions. These conditions depend
mainly on the size of the sample set and the threshold of the approximate
join.
If the sample set is to large, we produce a lot of overhead, clustering it and
the approach becomes unprofitable. But the experiments showed that it is
never necessary to choose the sample set larger than 15 percent of the size9

of the input sets. Depending on the clustering of the input data, the optimal
percentage varies between 1 and 15 percent of the number of elements in
the input sets.
I found out that for unclustered inputs a sample set size of 1 percent is
enough to form a adequate sample set. Are the input sets unregular clus-
tered this percentage is about 3 percent. The highest percentage is necessary
when the inputs are regular clustered. In that case we need 15 percent of
the input elements to form a good sample set. In our experiments 5 percent
gave good results for all data sets and we recommend this value if the dis-
tribution of the input data is unknown.
The experiments showed that also the threshold has a big impact on the
number of calculations we are able to save with the reference set method.
If it is small enough, we save many of calculations pruning pairs with the
upper bound. The larger the threshold becomes the weaker the upper bound
becomes and the less calculations we save until the lower bound becomes
strong enough to prune more and more pairs. From that point on we again
save more calculations if we further increase the threshold. We conclude that
the average worst case for the reference set approach is when the threshold
is at half way of the largest distance between two elements. But even in this

9size in term of elements in the set

27

case we save calculations. For unclustered inputs more than 20 percent and
for regular and unregular clustered inputs even more than 35 percent.

9 Appendix

9.1 Application

To experiment with the reference set approach I have implemented it in
C++ with an Qt-Gui. The application accepts XML-files, n-dimensional
points and strings as input. One can define the desired threshold and the
sample set percentage. The sample set percentage can be entered directly or
by choosing the clustering in a combo box. The reference set can be chosen
manually or is computed automatically. If no reference set is chosen, the
traditional brute force method is applied. After the match finding procedure
is finished, the results are shown on the main window (see Figure 33). It
shows the matches as also the candidates in the final set. Also the number of
matches, candidates, needed calculations, saved calculations and overhead
calculations are printed out. It shows also the maximal found distance of
the elements during sampling. When the inputs are not to much widespread
clusterd with this distance we are able to predict how many calculation
will be saved before we start an experiment. Further the applications after
the pre-calculations provides the posibility to check which candidates are
matches. So finally we exactly know how many matches we have an which
they are.
The application supports two experiment modes. One is the experiment
with varying sample percentage and the other with varying threshold.
The user can decide from which value (percentage/threshold) the experiment
starts and until where it goes. Further he/she can set the step size which
defines how much the percentage/threshold increases each step.
The user is also able to determine how often the experiment is executed.
This is important to get authentic results without great variations. The
results become stored on the hard drive in csv files and so he/she is able to
calculate the average of the experiment files to get a good final result.
In the csv files following data is stored: threshold, size of set1, set2, reference
set, sample set, match set, candidate set, number of overhead calculations
and saved calculations. How many calculation we would have to do with the
brute force method. How many we have done with the reference set method.

28

Figure 33: Main Application

29

References

[1] S. AL-KHALIFA, H.V. JAGADISH, N. KOUDAS, J. M. PATEL,
D. SRIVASTAVA, and Y. WU. Structural joins: a primitive for ef-
ficient XML query pattern matching. 2000.

[2] P. BILLE. Tree edit distance, alignment distance and inclusions. Tech-
nical report, 2003.

[3] N. Bruno, N. KOUDAS, and D. SRIVASTAVA. Holistic twing joins:
Optimal XML pattern matching. 2002.

[4] E. CHAVEZ, G. NAVARRO, R. BEAZA-YATES, and J. MAR-
ROWUIN. Searching in metric spaces. 2001.

[5] S. CHAWATHE, H. MOLINA, and J. WIDOM. Meaningful change
detection in structured data. 1997.

[6] S. CHAWATHE, A. RAJARAMAN, H. MOLINA, and J. WIDOM.
Change detection in hierachical structured information. 1996.

[7] P. CIACCIA, M. PATELLA, and P ZEZULA. An efficient access
method for similarity search metric spaces. 1997.

[8] G. COBENA, S. ABIDEBOUL, and A. MARIAN. Detecting changes
in XML documents. 2002.

[9] L. GRAVANO, P. IPERIROTIS, H. V. JAGADISH, N. KOUDAS,
S. MUTHUKRISHNAN, and D. SRIVASTAVA. Approximate strings
joins in a database (almost) for free. 2001.

[10] S. GUHA, D. JAGADISH, N. KOUDAS, D. SRIVASTAVA, and T. YU.
Approximate XML joins. 2002.

[11] S. GUHA, D. JAGADISH, N. KOUDAS, D. SRIVASTAVA, and T. YU.
Integrating XML data sources using approximate joins. 2004.

[12] S. GUHA, R. RASTOGI, and K. SHIM. Cure: An efficient clustering
algorithm for large databases. 1998.

[13] A. MARIAN, S. ABIDEBOUL, G. COBENA, and L. MIGNET.
Change centric management of versions in an XML warehouse. 2001.

[14] G. NAVARRO. A guided tour to approximate string matching. 2001.

[15] F. SANGER, S. NICKLEN, and A R. COULSON. Dna sequencing
with chain-terminating inhibitors. 1977.

[16] M. TICO and P. KOUSMANEN. Fingerprint matching using an
orientation-based minutia descriptor. 2003.

30

