

 FACULTY OF COMPUTER SCIENCE

Bachelor in Computer Science and Engineering

Degree Thesis

“Purchase Information System Implementation for

the Cockpit portal”

SONIA FREI

Supervisor:

Firstname: Johann Lastname: Gamper Signature:

Student

Firstname: Sonia Lastname: Frei Signature:

 Academic Year: 2013/2014

Contents

Abstract .. 3

1. Introduction ... 4

1.1 The University and its Need for a Purchase Information System 4

1.2 Cockpit ... 5

1.3 Contributions ... 6

1.4 Organization of the Thesis ... 7

2 Current State of PIS .. 8

2.1 Programming Language ... 9

2.2 Interface ... 9

2.3 Problems .. 10

3 Porting the PIS to the Cockpit .. 11

3.1 Logic of the Program .. 12

3.2 Programming Language ... 14

3.3 Implementation Choices .. 14

3.3.1 System Architecture ... 15

3.3.2 The Code .. 15

3.3.3 The Layout .. 16

4 Discussion ... 19

4.1 Lessons Learned ... 19

4.2 Advantages of the New System ... 20

4.3 State of the New PIS .. 21

5 Conclusion .. 24

6 Acknowledgments .. 25

7 Bibliography ... 26

8 Table of figures... 27

3

Abstract

Over the last two decades the pace of technological change has increased so quickly that software

developed 20 years ago seem now primitive and coarse. With the foundation of the Free

University of Bolzano 17 years ago, some applications essential for its operations have been

developed. During time, many of them were completely redesigned to fit new requirements and

trends: this never happened, however, for the Purchase Information System.

The main function of PIS is to manage employees’ requests for new purchases of goods and

services. Moreover, it is also used to delegate a co-worker during a user’s absence time and to

check some important information such as the list of staff and the budgets available.

The aim of my internship was the development of a new version of the Purchase Information

System integrated in the university’s management portal Cockpit. For this purpose, both the

layout and the code had to be completely rewritten. The logic of the program remained the same,

following specific workflows: for example in the case of a new purchase request each person in

the workflow should approve the request before it is sent to the next responsible, until it is

definitely marked as approved and passed to the person in charge of performing the purchase.

Therefore, the part of the logic which was stored in the database, such as the sending of e-mails

to the different supervisors, was kept unmodified.

In order to be integrated in Cockpit, the programming language had to be changed from Visual

Basic to C#. As several functionalities were not used anymore and the old code was extremely

long and complicated, the new C# code was completely written from scratch, utilizing the old code

only as a guideline.

The layout had to be adapted to the one of Cockpit, with light green colors and rounded-edges

objects instead of dark blue and grey colors, sharp edges and straight lines. It was created using

CSS instead of the tables used in the old version: this results in a better control of the layout and

will be useful in case of a future redesign of Cockpit, since only the references to the stylesheet

will have to be changed. The new interface results as more intuitive and easy to use.

During the development, also the most relevant problems of the application were solved: for

instance, the speed of the system was increased and the information is now visualized in the

correct language, German or Italian, and not a mixed visualization as before.

The application is now in the testing phase and will be added to Cockpit during the next months,

including a widget to reach it from the Cockpit main page.

 Introduction

4

1. Introduction

The Free University of Bozen-Bolzano was founded 17 years ago, in 1997, initially as a very small

institution with few faculties and courses. It was, however, expanded in the course of time,

reaching in 2014 a total of 352 staff members and 3183 students (Free University of Bolzano-

Bozen, Numbers, Facts and Figures, 2014).

During this time, a number of applications were created for the internal use of students,

professors and administrative staff, in order to ease the management of data and the information

flow between the institution and its users, from updating students’ careers and lectures’

timetables to controlling university’s budgets, and many more.

During the last decade, however, also the technologies available for building such applications

have remarkably changed, and often applications developed 10 years ago seem tremendously

ancient if used nowadays. This is the case of the university’s Purchase Information System (PIS),

one of the first applications developed by the university in 2002. It is clearly affected by its age,

displaying a quite old interface. In fact, both the layout and the development reflect the style of

the years of their creation. For this reason, there was the need to renew the old interface and

adapt it to the layout of the university management portal Cockpit, a container that groups all

university's functions. Moreover, some functionalities had to be changed as a consequence of

changing needs and requirements.

Therefore, this work will deal with the renewals and improvements brought to PIS during my

internship.

1.1 The University and its Need for a Purchase Information System

The university employs 249 administrative and technical staff members in different departments,

one of which being the ICT (Free University of Bolzano-Bozen, Numbers, Facts and Figures, 2014).

The Department Information & Communication Technologies (ICT) is responsible for the activities

regarding the digital processing of information and communication. It is in charge of maintaining

the Scientific Network South Tyrol, organizing the management of the computer network and of

all the electronic sequences, developing software to facilitate the workday at the university, and

coordinating all tasks concerning the digital processing of information and communication within

the Scientific Network South Tyrol (Free University of Bolzano-Bozen, Welcome to the

Department for Information and Communication Technology (ICT), 2014).

The ICT department is divided in 4 working groups, which are IT-Management, System

Administration, Knowledge Engineering and Software Development. My internship was

conducted in the area of software development. Its central scope was the porting of the Purchase

Information System (PIS) of the university in the management portal Cockpit.

During time, the main functionalities of the university, such as the student portal or the professor

register, were ported in Cockpit. However, this porting was still an open point regarding the

Purchase Information System.

Introduction

5

The current version of PIS was developed during the first years after the opening of the university

and is therefore affected by its age. In fact, both the layout and the implementation have a style

that recalls the nineties: buttons and objects inside the page have rectangular shapes with sharp

edges, inserted in a dark blue and gray context. The application was developed in Visual Basic and

a big part of the application’s logic is in the database in PSql.

Cockpit, instead, has an innovative layout with rounded edges and fresh, greenish colors. It

exploits the advantages of the .Net framework, one of the best platforms to develop fully

functioning websites, with simplified development and debugging and easy deployment. Cockpit

is developed mainly in C#.

The Purchase Information System fulfills many different functions inside the university: firstly, it

is used by employers to request the purchase of goods or services, from the purchase of new

laptops and books to the request of collaborations/expert advices or business travels.

A second important function of the PIS regards the delegations: when a worker is on holiday, he

can delegate a colleague to perform his tasks through the PIS system.

Moreover, PIS can be used to see the list of staff and suppliers with their contact information, to

get an overview about the personal situation regarding requests, delegations etc., and to discover

all cost centers and budgets related to the person.

1.2 Cockpit

Cockpit (Figure 1) represents a central visualization of all applications and processes related to a

user account. It is a portal dedicated to students, professors and workers of the Free University

of Bolzano, that allows them to keep an eye on the plan of study, exams and grades, list of books

and other media borrowed from the Library, expenditures incurred within the University and the

Student Card (Mensa, UniBar, photocopies), clocking in/out and many more.

Moreover, thanks to Cockpit news and information regarding the University can be organized in

a personalized way, according to the interests of the individual user. Everyone can configure his

cockpit, and make sure to display only the information interesting for him. In this way, the flow of

information is reduced, eliminating the superfluous. This is obtained through the use of widgets,

graphical control elements in the user interface. The user can choose which widgets to display in

his Cockpit start page and every widget contains a summary of the information regarding that

function. By clicking on the widget, the user can navigate to the related detailed page.

Cockpit was designed and realized between 2012 and 2013, at the beginning only with few

functions available and only one person responsible for it. During time, the quantity of

functionalities covered by Cockpit hugely increased, and in the same way the number of

employees working on the project.

Introduction

6

Figure 1: Cockpit start page

1.3 Contributions

The most manifest change brought to the system during my internship, which is immediately

revealed by looking at the new version of Pis, regards the visual part: the layout is in fact

considerably different, completely integrate in Cockpit and in line with the current time.

From the point of view of the implementation, the main programming language used was

migrated from Visual Basic to C#.

Some functions present in the old version, such as the part regarding the list of possible workflows

for a request, were removed, as they were never used and resulted in merely burden the usability

of the application.

The functions to extract data from the database were implemented in a class library, which can

be utilized in the future for the development of the application for smartphones (e.g. Android)

without the need to rewrite them.

Introduction

7

1.4 Organization of the Thesis

This work will begin with a description of the current state of the Purchase Information System.

First I will focus on the implementation part, more specific on the programming language. The

presentation of the interface will follow with some screenshots.

The second part will depict the new implementation of PIS in Cockpit and will be divided in the

exposition of the application’s logic and the description of the programming choices regarding the

programming language and the new interface.

The last part regards the evaluation of the results, including the illustration of the solved problems

and the displaying of the new layout.

Current State of PIS

8

2 Current State of PIS

The current Purchase Information System (Figure 2) is written in Visual Basic and utilizes an Oracle

database for the storage of data. The database contains also an important part of the logic in

PostgreSQL and connects the different information with each other. The Visual Basic part is

extremely huge, including more than 20000 lines of code.

The original developer of the Purchase Information System abandoned the project in 2009. From

that moment, the project was committed to another university employer. However, given the

enormous size of the code, the new responsible did not implement big changes to the application,

since it would have required a complete knowledge of the code. Therefore, only small updates

and additions were possible during the last 5 years.

Figure 2: current PIS start page

Current State of PIS

9

2.1 Programming Language

The previous version of Pis was developed in Visual Basic.

Visual Basic, first released in 1991, is a third-generation event-driven programming language from

Microsoft. Its scope was to be relatively easy to learn and use.

The final release was version 6 in 1998 and from that moment Visual Basic 6.0 IDE is unsupported.

However, the community of programmers developed new third party components over time,

keeping this programming language in line with modern standards. For these reasons, even now

an interesting number of old school programmers still choose Visual Basic as a programming

language, in spite of its not negligible disadvantages. In fact, the development environment is no

longer supported by Microsoft. Users report versioning problems associated with various runtime

DLLs, calling them DLL hell (Microsoft, 2013).

2.2 Interface

The PIS system was originally developed in 2002, and its layout clearly reflects the period of its

creation, with the classical style used in the late nineties.

In August 1991, Tim Berners-Lee published the first website, a simple, text-based page with a few

links. Subsequent pages were similar, namely entirely text-based and with a single-column design

with inline links.

Prior to the late 90s, high-speed internet connections did not exist. Therefore, websites from that

period needed to be built for very slow connection speeds: they were largely comprised of text,

and the design layout we are nowadays used to did not exist (Myia, 2013).

By the mid-90s, web design had evolved both in terms of structure and appearance. In fact,

although the original table markup in HTML was meant for displaying tabular data, designers

quickly realized they could utilize it to give structure to their designs, and create more

complicated, multi-column layouts than HTML was originally capable of. Sites were still based

primarily on text, but this text could now be divided into columns, rows, and other navigational

elements. Graphical design elements also quickly grew in popularity.

This era of web layouts paid little attention to semantics and web accessibility, often opting for

aesthetics over good markup structure (Chapman, 2009).

CSS-based designs started gaining in popularity only after the dotcom boom in the early 2000′s.

Even if CSS had been available long before then, there was limited support for it in major browsers

and many designers were unfamiliar with it.

The PIS system does not make use of CSS: its formatting is solely based on html tables. The design

reflects the trends of the nineties, which were spread in each aspect of life, from interior design

to cars design to web applications: right-angled shapes and straight lines.

Current State of PIS

10

2.3 Problems

In the course of time, the Purchase Information System revealed some technical problems, which

were solved in the new Cockpit integration.

A first issue regarded the languages chosen for the showing of data. Being the Free University of

Bolzano a three-lingual university, users can have English, Italian or German mother tongue.

However, the current Pis version is not able to distinguish the language of the user, so information

is shown in Italian or German regardless of the user's mother tongue. Through the integration in

Cockpit, this problem can easily be solved, as Cockpit has a specified language assigned to each

user.

The retrieval and elaboration of data is particularly slow in this version. The speed was enhanced

in the C# implementation.

Some aspects of the user interface are not intuitive. For instance, when the list of requests made

by the user is shown, there is the possibility for the user to see the details for each request.

However, the detailed view of the particular request is visualized only by double clicking on the

row containing it. This is extremely user-unfriendly, as this option is not suggested in any way.

Porting the PIS to the Cockpit

11

3 Porting the PIS to the Cockpit

My contribution to the Purchase Information System was a complete restyling of the application:

in order to integrate the system in Cockpit, not only the layout had to be changed and adjusted

to the Cockpit's one, but also the programming language had to be adapted to the one used in

Cockpit, namely C#. Initially, the idea was to convert the script from Visual Basic to C# with an

automatic tool and work on this converted version of the code. However, this immediately

revealed as a too difficult task: in fact, the existing code was too long and complex and many parts

were not actually used. Moreover, the code in C# and the parts in html and Javascript had to be

changed too much. Therefore, I chose to write the new code from scratch based on the current

version of the system and referring to the old code only in some occasions.

The new Purchase Information System was developed using Visual Studio 2012 Ultimate.

All PIS pages have been implemented following the Cockpit standards. The new layout is in line

with the one of Cockpit. A comparison example is represented by Figure 3 and Figure 4, which

depict the staff page in the old version (Figure 3) and in the new version (Figure 4).

Figure 3: Old staff page

Porting the PIS to the Cockpit

12

Figure 4: New staff page

3.1 Logic of the Program

In order to perform all its functions, PIS has a quite complex logic behind, which had already been

decided and was reused for the new implementation.

The most important Pis function is the request of purchase of goods and services. In this case, the

user has to select a related group of goods to which his request belongs (such as books, furniture,

software…) and a budget that will be debited (such as outsourcing expenses, I&CT hardware

expenses…). Moreover, a description of the product should be added, with the explanation of the

reason for the request. A limit of money for the purchase has to be indicated, which should

represent the maximum amount that will be spent. The request is later sent first to the

responsible of the group and only in case of his approval will be sent to the responsible of the

budget. If the request is approved also by the latter one, it is marked as approved and is forwarded

to the person in charge of satisfying it, for example by ordering a new computer. In this process,

the budget limits should be taken into account by the different approving persons and in case of

approval the amount indicated is reserved to that action and subtracted from the total budget.

At the end of the purchase process, the actual expense is inserted and, in case it is less than it was

Porting the PIS to the Cockpit

13

foreseen, the remaining amount will be added again to the available budget. This process is better

described by Figure 5.

Figure 5: New purchase request logic

The user can later check the status of his requests and a brief description in the overview page,

or a detailed description in the detail page. From here, he can also choose to export this

information to Excel. Through these pages, the different supervisors can approve or reject the

requests, add some comment, change the price limit or the description.

A second important functionality of Pis is the managing of delegations. When going on vacation,

an employee may want to give control to his e-mails and approval competences to another

person. He can do this in Pis in the My Data page. Here the user can see his own basic information

(username, e-mail, employing structure), followed by the list of people who delegated this person,

with the relative starting and ending date and the length of the time interval. The second part of

the page is dedicated to the delegations: the user can select from a dropdown list the person he

wants to delegate and input the dates, or modifying an existing delegation. When confirming the

data inserted, the validity of the information is checked: the ending time should be after the

starting time, the date should be written in a valid format, there should not be another person

already delegated by the same user during that period. In case of correct information, the

delegation is saved in the database, or the already stored delegation is updated and the

correspondent interval in years, days and hours is calculated.

Porting the PIS to the Cockpit

14

Moreover, on the Cost Centers page the user can visualize all cost centers related to him and

select one of them to view the connected budgets with the time periods in which they are active.

In the Active Budgets page a list of the budgets at disposal for the employee which are currently

active is visualized.

In the Staff page a list of all current staff members with the structure they are working in and their

email is shown.

The list of all suppliers, instead, can be found in the Suppliers page. When clicking on one entry

on the list, complete information about that supplier is visualized, including the address, the e-

mail, the phone number and fax number, if it is active at the moment and, if not, the reopening

time and, in case, some additional information.

3.2 Programming Language

Cockpit is developed in C#: this multi-paradigm programming language was developed by

Microsoft within its .NET initiative and encompasses strong typing, imperative, declarative,

functional, generic, object-oriented (class-based), and component-oriented programming

disciplines.

Being a .NET language, C# supports language interoperability, i.e. it can access code written in any

.NET compliant language and can also inherit the classes written in these languages. This is not

possible in other languages, such as Java (Wadje, 2013).

The environment in which the software to be developed will run has a great importance in the

choice of the best language to work with. Windows is the dominating Operating System on client

computers. Moreover, the best GUI framework for Windows applications is the .NET Framework

and the best programming language to work with the .NET Framework and its APIs is C#.

Therefore, in an environment with Windows clients, Windows servers, Active Directory, IIS and

SQL Server such as the Free University of Bolzano C# is the far best language with the .NET

Framework (For what reasons should I choose C# over Java and C++, 2011).

3.3 Implementation Choices

The web part of the application is developed in html and Javascript. To be integrated in Cockpit,

the code calls the Cockpit master page in order to have a uniform layout, with the Cockpit lateral

bars which are equal for each page. Through Javascript the web service is called, which requests

data from the database. For example, when the user confirms a new purchase request, the web

service sends all the information to the Oracle database. The request should then be forwarded

to the responsible of the group to give his authorization: this is performed by database scripts in

Psql, which send an email to the involved person. In case of an approval, Psql scripts are

responsible to check if the foreseen expenditure meets the budget limits. Moreover, also the rest

of the approval logic is managed by the database, which is in charge of continuing the purchase

Porting the PIS to the Cockpit

15

workflow until the request is definitely approved or rejected. At this point, the part regarding the

interaction with the user who performed the request is managed by the C# code: it returns the

data about the approval/rejection to the web service, which will then display them in Cockpit

thanks to Javascript.

3.3.1 System Architecture

The application’s workflow starts with the user who selects one of the PIS’ functions. The request

is elaborated and forwarded to the web service, which is in charge of contacting the database to

obtain the needed information or to save the new information in the database. The database’s

response is received by the web service and passed to the web application in order to be displayed

for the user, as shown in Figure 6.

Figure 6: New system architecture

3.3.2 The Code

The web part of the application was developed in html using Javascript to allow client-side scripts

to interact with the user.

JavaScript (often shortened to JS) is a lightweight, interpreted, object-oriented language with first-

class functions, mostly known as the scripting language for Web pages, but used in many non-

browser environments as well. It is a prototype-based, multi-paradigm scripting language that is

dynamic, and supports object-oriented, imperative, and functional programming styles (Scholz,

2014) (Crockford, 2008).

All data used by the application had to be taken each time from the Oracle database. The

programmatic interfaces made available to perform this, that is to communicate between

applications, are web services: they are defined by the World Wide Web Consortium (W3C) as “a

software system designed to support interoperable machine-to-machine interaction over a

network”. A web service “has an interface described in a machine-processable format (specifically

Porting the PIS to the Cockpit

16

WSDL). Other systems interact with the Web service in a manner prescribed by its description

using SOAP (Simple Object Access Protocol) messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards”.

Web services provide a standard means of interoperating between software applications running

on a variety of platforms and frameworks. They are characterized by their great interoperability

and extensibility, as well as their machine-processable descriptions, thanks to the use of XML.

Web services can be combined in a loosely coupled way to achieve complex operations. Programs

providing simple services can interact with each other to deliver sophisticated added-value

services (Oracle, 2013).

Therefore, I created a web service to call C# functions from the web application via Ajax calls. Ajax

(Asynchronous JavaScript and XML) is a group of interrelated Web development techniques used

on the client-side to create asynchronous Web applications. With Ajax, Web applications can send

data to, and retrieve data from, a server asynchronously (in the background) without interfering

with the display and behavior of the existing page.

For the purpose of transmitting information between server and web application, Javascript

Object Notaton (JSON) was used. JSON is a lightweight data interchange format, based on

Javascript's object literal notation. Even though it is a subset of Javascript, it is language

independent, therefore can be used to exchange data between applications written in all modern

languages. Being a text format, it is readable by both humans and machines (Crockford, 2008).

In order to reutilize part of the work done in the future for the development of the same

application for smartphones, the functions to extract data from the database were implemented

in a class library.

A class library is used in object-oriented programming and is a collection of prewritten classes or

coded templates, any of which can be specified and used by a programmer when developing an

application program. The programmer specifies which classes are being used and furnishes data

that instantiates each class as an object that can be called when the program is executed.

Thanks to class libraries, it results easier to organize and maintain a project. In fact, application

extensions can be reused for multiple projects: in this way, code is available that the programmer

doesn't have to rewrite. Moreover, a program with a class library runs much faster than one with

all the code in the main executable.

3.3.3 The Layout

For the look and formatting of the application, the markup language CSS was used: Cascading

Style Sheets is a style sheet language used by almost all web pages to describe their presentation.

Styles were added to HTML 4.0 to solve formatting problems. In fact, HTML was never intended

to contain tags for formatting a document but rather to define the content of a document, like:

<h1>This is a heading</h1>

<p>This is a paragraph</p>

Porting the PIS to the Cockpit

17

When tags like , and color attributes were added to the HTML 3.2 specification, it started a

nightmare for web developers, because the development of large web sites, where fonts and color

information were added to every single page, became a long and expensive process. Therefore,

to solve this problem, the World Wide Web Consortium (W3C) created CSS: in this way, from

HTML 4.0 onwards, all formatting can be removed from the HTML document, and stored in a

separate CSS file. Nowadays all browsers support CSS (CSS Introduction, 2013).

One of the most important advantages of CSS is the separation of document content from

document presentation, which includes elements such as the layout, colors, and fonts. Thanks to

this division, content accessibility is greatly improved and more flexibility in the specification of

presentation characteristics is given. In this way, multiple pages can share the same formatting,

reducing the complexity and repetition in the structural content. It lightens the code by providing

that portion of code that would specify presentation in a separate file.

CSS provides for each relevant HTML element (identified by tags) a list of formatting instructions.

For instance, it might give the instruction that all “heading 1” elements should be bold. Therefore,

no formatting markup such as bold tags () is needed within the content; what is needed

is simply semantic markup saying, "This text is a level 1 heading".

CSS also helps developing a multi platform application: in fact, it allows the same page content

to be presented in different styles for different rendering methods, such as on-screen, in print,

when read out by a speech-based browser or screen reader and on Braille-based, tactile devices.

Thanks to it, the web page can display differently depending on the screen size or on the device

on which it is being viewed.

CSS handles the case in which more than one rule matches against a particular element by

specifying a priority scheme to determine which style rules to apply. The resulting layout is always

predictable, as priorities or weights are calculated and assigned to rules.

The CSS specifications are maintained by the World Wide Web Consortium (W3C). Internet media

type (MIME type) text/css is registered for use with CSS by RFC 2318, and they also operate a free

CSS validation service (W3C, 2014).

Specifically in the case of Cockpit the use of CSS is very important, because the portal has to

maintain a uniform style in all its numerous pages, created by different developers. In this way,

once the common layout is defined, each page can refer to the CSS to use the specifications

contained in the sheet. Despite the portal is quite new, it has already happened that the layout

was completely changed: for instance, some months ago it passed from a blue theme to a green

one. Especially in this occasion, having all style information saved in the same file and the different

pages referring to that file allowed to completely change the layout without having to modify the

code in each page.

The old PIS application layout was styled using html tables. In HTML, tables are defined with the

<table> tag. A table is divided into rows with the <tr> tag (tr stands for table row) and a row is

divided into data cells with the <td> tag (td stands for table data) (w3schools, 2013).

In the past, tables were used for all sorts of tasks. The most obvious scope is to display data in a

table format. However, this was not the solely use: in fact, tabular arrangements were also utilized

to align the different elements in a page in a predictable manner. This second use is problematic

Porting the PIS to the Cockpit

18

because it confuses some software such as screen readers and the position of page elements may

not be easily predictable. Moreover, tables are often quite inflexible to work with.

Using the old HTML tags to create tables can be error prone and difficult. Even the self-proclaimed

HTML Terrorist David Siegel, the first inventor of the use of tables to contain pure narrative text

to format the page, declared in his article “The web is ruined and I ruined it” that tables were not

meant for layout scopes and it was a mistake using them in that way (Siegel, 1997).

A new way to handle this matter is by using <div> tags: in this way, it is possible to create tables

or to logically arrange elements with equal ease without confusing screen readers and other

software (Müller, 2014).

The <div> tag defines a division or a section in an HTML document and is used to group block-

elements to format them with CSS. A <div> element can be nested inside another <div> element

to create different columns of content. Divs are supported by all mayor browsers: Chrome,

Internet Explorer, Mozilla Firefox, Safari, Opera (HTML <div> tag, 2012).

Using divs instead of tables to format the page has many advantages.

Firstly, tables are slower. Even if we usually have powerful computers at home nowadays and this

problem can seem unimportant, people are using more and more mobile phones to view pages,

and they are not as powerful. Divs require less code, which means having smaller files and

therefore faster load times.

Moreover, tables are not flexible. In fact, moving an element from one part of the page to another

inside tables can be extremely difficult, especially by using Javascript or other scripting languages.

In addition, search engines can fail to understand the relationship from one table cell/column/row

to another, as they do not follow how a page looks on the screen but only the outline of the

document with headings, sections and paragraphs.

I therefore decided to discard the use of tables to format my application and use divs instead. The

understanding of their functionality is slightly more difficult than the utilization of tables at the

beginning, but it is soon rewarded by a more fix and easily changeable design of the page.

Discussion

19

4 Discussion

4.1 Lessons Learned

During the internship project, I was able to apply many notions from my study career to a practical

project. I already developed many small applications as projects for different courses, but this was

the first project of an important size. This helped me understand the importance of a good

planning before starting the coding phase and of clarifying with the customers their exact needs

before starting the implementation, in order not to have to redesign the whole application.

I deepened my knowledge about databases and SQL and the risks connected to the handling of

sensitive data.

Another important lesson I learnt regards collaboration with colleagues and customers: during

the university projects, our co-workers are always our colleagues/friends, while the working

environment is something rather different. A worker may have to collaborate with someone he

never saw before and this collaboration should be optimal even if the two are not close-knit. I had

to work with people of different ages, mother tongues, cultures, with different interests and it

taught me much from a personal perspective. I even had to collaborate with people working in

other countries who I could not personally meet, so we had to talk by online chat.

In addition, having to work with different people underlined the importance of writing good

commented code: in fact, as plain English is easier to read than code, comments ease

comprehension and can describe things that cannot otherwise be clearly expressed in the source

language. If different persons have to work on the same code, it is much easier to understand the

parts written by the others if they are good commented. Moreover, even the same person who

wrote the code can benefit from good comments in the future, when something needs to be

changed in the application or by reusing some parts of it.

Furthermore, I discovered the issues of migrating an application from a programming language to

another. Users were already accustomed to use the old application and the major part of them

wanted a new version which exactly reflects the old one, even in the not-so-intuitive but at least

familiar, parts. It is difficult to satisfy both the old users, who look for something familiar, and the

new ones, who look for something more innovative and efficient.

To develop an application starting from an existing code is certainly easier in some aspects, as the

idea of how the result should be is already clear. However, there are some disadvantages. Firstly,

if the old developer is not available, it can be extremely complicated to understand the code, and

the customers are usually not particularly willing to explain again their needs to a new developer.

This means that the new developer has to base his comprehension of the requirements

completely on the code, which often leads to a repetition of the same suboptimal routines present

in the old version.

Discussion

20

4.2 Advantages of the New System

The new PIS layout follows the one used for Cockpit. It was created using css: in this way, in case

of future changes in the layout of Cockpit it will be sufficient to change the css file. The new

programming language is C#, so that the application is completely integrated with Cockpit.

The new interface results as more intuitive and easy to use. Other main problems of the system,

such as the visualization of the information in the correct language and the slowness of the

system, were solved.

Moreover, smaller problems which emerged during the implementation were also solved. For

instance, in the cost center page a list of all cost centers is visualized. By clicking on one element

of the list, the list of budgets related to it is displayed in another table on the lower part of the

page. However, there is no indication of which cost center these budgets relate to. As shown in

Figure 7, it is not possible to understand that the user clicked on “telefono” to see the budgets in

the lower table.

Figure 7: Old cost center page with budgets

Discussion

21

In the new version I decided to change the color of the selected budget, therefore from the normal

list with all green budgets, the element becomes blue when selected (Figure 8).

Figure 8: New cost centers page with budgets

The speed of the application was notably increased: in the old version there was always a gap of

about 2 seconds between the time the user clicked on the page to be shown and the visualization

of it, reaching a waiting time of 5 seconds in the case of the “my Data” page. In the new version,

instead, the page appears after less than 1 second.

The weight of the program was also sensibly reduced: in fact, the old version had about 20.000

lines of code, which were more than halved (to about 7.000 locs) in the new version. The bulky

size of the previous version was due to a massive amount of code repetition. Moreover, it

contained some unneeded parts, which were removed in the new one.

4.3 State of the New PIS

For the time being, all pages were developed separately and a menu to navigate between them

is currently missing. The proposal for the complete integration of the application in Cockpit and

the navigation between its pages is the creation of a dedicated tab in the upper part of the page,

under “Management” (Figure 9). A lateral bar which remains fixed for every page of the

application will be shown on the left side. Thanks to this bar, the user can select in which page to

navigate. Pages are divided in two main categories “Orders” and “Base data”. The detailed menu

Discussion

22

for each category of functionalities will be shown depending on which main functionality the user

is using. Orders contains the subpages Overview, New request, Search, Details and Invoices, while

Base data contains My data, Cost Centers, Active Budgets, Staff and Suppliers.

Figure 9: Pis new menu

The application is now in the testing phase and will be integrated in the production Cockpit during

the next months. The old version will then be removed. A link to the new version will be added

also to the lower Cockpit menu (Figure 10).

Figure 10: Pis link

Discussion

23

Moreover, a widget to reach the application from the start page will be linked to the page (Figure

11). As the other Cockpit’s widgets, the user can choose to visualize it or not and where to put it

inside his start page. The widget summarizes the main PIS information and the user can click on it

to reach the Pis page.

Figure 11: Pis widget

Conclusion

24

5 Conclusion

During my internship, I had the opportunity of applying the theoretical knowledge assimilated

during the study to a concrete project. It was extremely useful, as I was assigned a quite important

task and had the possibility to learn many new notions in my field. Working in a quite large group,

I was surrounded by professionals to whom I could always ask for help and from whom I could

absorb new knowledge.

All functions of the old PIS application were implemented in the new version, with the exception

of the page Workflows, which was merely a list of supervisors for each group and was not used.

The layout was adapted to the one of Cockpit: therefore, every page looks completely integrated

in the portal. In case of a future change in the layout, it will not be necessary to modify the code

because the layout is structured with css, so that only the style references will have to be changed.

The functions to extract the correct information from the database are stored in a class library: in

this way, when the same application will have to be implemented for smartphones or tablets the

same library can be reused.

The PIS system has now to be accurately tested in all its details. Only after this, it will be published

and will substitute the old system.

A further addition that would be useful to implement in the near future is the English language

support: in fact, as data were stored in the database only in a German and an Italian version,

information in English language could not be visualized. Therefore, it would be extremely

important to add all specification also in English, in order to fulfill the needs of the increasingly

international university staff.

25

6 Acknowledgments

I am heartily thankful to my supervisor, Professor Johann Gamper, who helped me in the

development of this work by guiding me and pointing to the most important topics.

I would also like to thank my internship supervisor, doctor Andreas Pircher, who demonstrated a

great patience and kindly introduced me to the work environment.

Many thanks to all the university’s I&CT staff, especially Manuel Kinzler and Lukasz Karolak, who

were always helpful and assisted me in solving every problem I encountered.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the

completion of the project.

26

7 Bibliography

Chapman, C. (2009, November 28). The evolution of web design. Retrieved from Six Revisions:

http://sixrevisions.com/web_design/the-evolution-of-web-design/

Crockford, D. (2008). Javascript: the Good Parts. Sebastopol (CA): O' Reilly.

CSS Introduction. (2013). Retrieved from w3schools: http://www.w3schools.com/css/css_intro.asp

For what reasons should I choose C# over Java and C++. (2011). Retrieved from Programmers

StackExchange: http://programmers.stackexchange.com/questions/125712/for-what-

reasons-should-i-choose-c-over-java-and-c

Free University of Bolzano-Bozen. (2014). Numbers, Facts and Figures. Retrieved from The

statistics of unibz:

http://www.unibz.it/SiteCollectionDocuments/2014_Numbers_Facts_Figures.pdf

Free University of Bolzano-Bozen. (2014). Welcome to the Department for Information and

Communication Technology (ICT). Retrieved from

http://www.unibz.it/en/ict/about/default.html

HTML <div> tag. (2012). Retrieved from w3schools: http://www.w3schools.com/tags/tag_div.asp

Microsoft. (2013). Visual Basic Language Reference. Retrieved from Microsoft Developer Network:

http://msdn.microsoft.com/en-us/library/sh9ywfdk.aspx

Müller, J. P. (2014). Using the div tag to create tables. Retrieved from CSS3 for dummies:

http://www.dummies.com/how-to/content/using-the-div-tag-to-create-tables.html

Myia, K. (2013, July 10). A Look Back at 20+ Years of Website Design. Retrieved from Hubspot:

http://blog.hubspot.com/marketing/look-back-20-years-website-design

Oracle. (2013). What are web services? Retrieved from The Java EE 6 Tutorial:

(http://docs.oracle.com/javaee/6/tutorial/doc/gijvh.html

Scholz, F. (2014, August 28). JavaScript. Retrieved from Mozilla Developer Network:

https://developer.mozilla.org/en-US/docs/Web/JavaScript

Siegel, D. (1997, October 02). The Web is ruined and I ruined it. Retrieved from

http://www.xml.com/pub/a/w3j/s1.people.html

W3C. (2014, August 27). What is CSS. Retrieved from W3C: http://www.w3.org/Style/CSS/

w3schools. (2013). HTML Tables. Retrieved from w3schools:

http://www.w3schools.com/html/html_tables.asp

Wadje, V. (2013, June 11). Advantages of C# over Java. Retrieved from C# Corner: http://www.c-

sharpcorner.com/Blogs/11917/advantages-of-C-Sharp-over-java.aspx)

Zhao, J. (2010, April). Why Java sucks and C# rocks. Retrieved from

http://www.slideshare.net/jeffz/why-java-sucks-and-c-rocks-final

27

8 Table of figures

Figure 1: Cockpit start page .. 6

Figure 2: current PIS start page... 8

Figure 3: Old staff page ... 11

Figure 4: New staff page ... 12

Figure 5: New purchase request logic ... 13

Figure 6: New system architecture ... 15

Figure 7: Old cost center page with budgets .. 20

Figure 8: New cost centers page with budgets ... 21

Figure 9: Pis new menu ... 22

Figure 10: Pis link .. 22

Figure 11: Pis widget ... 23

