
Free University of Bolzano

Faculty of Computer Science

Clinical Data Warehousing with
QlikView: A Case Study

Author:
Michael Dejori

Supervisor:
Prof. Johann Gamper

Academic Year 2009/2010



Dedicated to my family

ii



Acknowledgements

I would like to thank everyone who helped me realizing this work during
the last three years of study.

• My parents, Martha and Walter Dejori, who supported me all the
time and allowed me to pursue this study.

• My university tutor Prof. Johann Gamper who proposed this the-
sis to me and led me in the right direction.

• Christian Krüger from the DIS (Database and Information Sys-
tems) research group who was always open for questions and dis-
cussions when problems arised.

• A special thank to my girlfriend Nora, who was always there for
me in the last years.

Last but not least I would like to thank the team from the Hospital
of Merano, my fellow students with whom I had a great time and the
University of Bolzano, which also gave me the possibility to spend a
wonderful semester in the United States as an exchange student.

Thank you all! Michael

iii



Abstract

We are deluged by data - scientific data, medical data, financial data
and business data. Due to the computerization of business, financial
and medical transactions, the amount of data increases rapidly. There-
fore, we need additional tools that can analyze the data and discover
trends from the relationship of the data. As a concrete example we
consider QlikTech’s Business Intelligence tool QlikView together with
the OncoNet data warehouse, which collects data of cancer therapies
at the Department of Hematology at the Hospital of Merano. In this
thesis we examine the suitability of QlikView with the underlying On-
coNet data warehouse. Moreover, we present a QlikView template ap-
plication for a multidimensional data model that can be used by peo-
ple without QlikView experience for an automated report generation.
Non computer-experts, for example doctors, can interact at a highly
abstracted level and generate their own statistics. The idea is that the
user can see the star schema of the underlying data model where he can
directly select the dimension attributes that he wants to have in his anal-
ysis. After specifying the aggregation function and the diagram type,
QlikView macros written in VBScript will automatically create the re-
port and the user does not have to cogitate about QlikView components
and its properties.
Afterwards we design a model that supports OLAP (on-line analyti-
cal processing) or cube operations and implement this model in our
QlikView template application so that the user can aggregate between
the defined concept hierarchies in the created diagrams. This makes a
flexible view changing by modifying the granularity of the data possible.

iv



Contents

1 Introduction 1

2 Background 2
2.1 Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Multidimensional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 QlikView, a Challenger in the Business Intelligence Software Market . . . 3

3 OncoNet Data Warehouse 4
3.1 Statistics of the Health State . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 General QlikView Template for Multidimensional Data Models 7
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Construction of a General QlikView Template for Multidimensional Data

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 QlikView Template Supporting Cube Operations 16
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Concept Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Cube Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 A Model Supporting Cube Operations . . . . . . . . . . . . . . . . . . . . 18
5.5 Implementation of the Model for Cube Operations . . . . . . . . . . . . . 20

6 Related Work 26

7 Conclusion and Future Work 27

v



List of Figures

1 Multidimensional Model - Star Schema . . . . . . . . . . . . . . . . . . . . 3
2 Quadrant for Business Intelligence Platforms . . . . . . . . . . . . . . . . 4
3 OncoNet Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Survey Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Data Model Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 User Input Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Date Dimension Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 Extended Date Dimension Hierarchy . . . . . . . . . . . . . . . . . . . . . 17
9 Concept Hierarchies - OncoNet DW . . . . . . . . . . . . . . . . . . . . . 18
10 Created Diagrams Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Applied Investigations Grouped by Month . . . . . . . . . . . . . . . . . . 24
12 Applied Investigations Grouped by Quarter . . . . . . . . . . . . . . . . . 24
13 Applied Investigations Grouped by Day . . . . . . . . . . . . . . . . . . . 25
14 Therapy Type - Gender Statistics . . . . . . . . . . . . . . . . . . . . . . . 25
15 Therapy Name - Gender Statistics . . . . . . . . . . . . . . . . . . . . . . 26

List of Tables

1 Fact Table Entry for an Investigation Measure . . . . . . . . . . . . . . . 5
2 Investigation Dimension Entry . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Fact Table Entry for a Drug Measure . . . . . . . . . . . . . . . . . . . . . 6
4 Drug Dimension Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Therapy Dimension Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Therapy Attribute-List Table . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Investigation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8 Therapy Attribute-List Table . . . . . . . . . . . . . . . . . . . . . . . . . 19
9 Date Attribute-List Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vi



1 Introduction

Clinical databases accumulate large quantities of information about patients and their
medical conditions and the amount of data increases every day. Thus it is unimagin-
able in Health Care to do without a data warehouse which collects the data from the
operational databases and keeps it for statistical report generation and data analysis.
Analytical tools can then retrieve important medical knowledge from the relationships
of the data. These tools are often called Business Intelligence (BI) tools and they can
be used to simplify the information reporting of the underlying operational data. BI
tools are mostly used in business companies to control and survey the business perfor-
mances and allow to managers, analysts and decision makers improving the business
performances.

The Department of Hematology in the Hospital of Merano has legacy systems which
daily collect new data from the cancer patients during cancer treatments and investiga-
tions. In a previous work, a data warehouse was constructed which loads the data from
the operational databases and preserves the data in a data warehouse. This historical
data can contain interesting information and is the base for statistical data analysis.
Until now, the data can only be retrieved by standard SQL queries, directly applied to
the data warehouse. Therefore, is needed an application which can visualize the under-
lying data to non-computer experts. The application should allow the user to navigate
through the data, visualize the data in a more abstract way and generate statistics and
reports he is interested in.

In this thesis I will examine the suitability of the Business Intelligence tool QlikView
for a clinical data warehouse with the collaboration of the Hospital of Merano. More-
over, I will present a QlikView template application for a multidimensional data structure
that supports cube operations. This template application can be adapted to any mul-
tidimensional model and allows to generate reports at a highly abstracted level of user
interaction i.e. that QlikView analysis diagrams can be created without any experience
in QlikView.

The contributions of this thesis are (i) investigating the suitability of QlikView, a fast
evolving Business Intelligence tool with a clinical data warehouse, focusing on the gener-
ation of reports and statistics about cancer therapies. (ii) Creating a general QlikView
template application for multidimensional data models. (iii) Designing a model for
multidimensional data structures which supports OLAP or cube operations and (iv)
implementing the model in the template application.

The organization of the work is the following. In the next chapter you will get some
background knowledge about data warehouses and multidimensional data models in
order to understand the contributions of the work. In addition, we will shortly take a
look at the market position of QlikView in comparison to similar products. In chapter 3
we will focus on the basic design of the OncoNet data warehouse we are dealing with in
this thesis. In chapter 4 we will discuss the construction of the general QlikView template
application for multidimensional data models. Finally, in chapter 5 we will design a
model that supports OLAP or cube operations and we will show the implementation of
the model in our QlikView template application.

1



2 Background

2.1 Data Warehouse

Data Warehouses have been defined in many different ways. Crudely speaking, a data
warehouse refers to a database that is maintained separately from an organization’s
operational databases. Operational systems are where the data is put in, and the data
warehouse is where we get the data out[3]. According to William H. Inmon, a leading
architect in the data warehouse construction, ”A data warehouse is a subject-oriented,
integrated, time-variant, and nonvolatile collection of data in support of management’s
decision making process”[2]. These four keywords describe the main features of a data
warehouse:

• Subject oriented: a data warehouse represents data around a major subject, such as
medical investigations, treatments and drug therapies in a clinical data warehouse.
Data warehouses provide a clean and understandable view around a particular
subject to decision makers by excluding irrelevant data.

• Integrated: a data warehouse integrates data from more heterogeneous sources.
When the data is extracted from the operational sources, it is cleaned and loaded
consistently.

• Time-variant: the data in a data warehouse depend explicitly upon time and
every key structure in the data warehouse contains an element of time to provide
historical information.

• Nonvolatile: due to the separation from the operational databases, data warehouses
do not require transaction processing. The two operations which are performed on
the data are initial loading and access of data.

The major reason for the separation of the data from the operational databases is to
promote high performance in both systems[1]. Moreover, the design of these two systems
is different. While operational records deal with particular records, data warehouse
queries are more complex and involve large amounts of summarized data.

2.2 Multidimensional Model

Data warehouses are based on a multidimensional data model. Such a model can exist
in form of a star schema, snowflake schema or a fact constellation schema. The most
common modeling paradigm is the star schema which consists of a centralized fact table
and several dimension tables.[1]

The primary table in a multidimensional model is the fact table, where the numerical
measurements (which are also known as variables, metrics, or facts[6]) are stored. The
facts represent the organization’s measures and can be the sales of a company or inves-
tigation measures of a hospital. The measurements are defined over dimensions which
tell us what the scope of a measurement is[3].

2



Figure 1: Star schema of a clinical data warehouse. Notice that in the centralized fact
table there is the measure and the keys pointing to the dimension tables.

Dimension tables are integral companions to the fact table and contain the textual
descriptor of the business[3]. Generally speaking, dimensions are entities the records can
be referred to. For example, date, investigation, drug and patient might be the entities
which are relevant in a medical data warehouse. For each dimension of a multidimen-
sional model there exists a dimension table containing different levels of aggregation and
some other properties of these levels[5].

2.3 QlikView, a Challenger in the Business Intelligence Software
Market

Business Intelligence (BI) tools are application software designed to report and analyze
data. They read data generated by organization’s business performances which are
mostly collected in data warehouses.

Among the market share leaders in the area of BI software tools are Microsoft, Ora-
cle, SAP and IBM. Another big competitor of the top performing performance manage-
ment software solutions is QlikTech[11]. In the last years QlikTech’s BI software called
QlikView has increased its market share and has become one of the biggest challengers.

According to the magic quadrant for business intelligence platforms published by
Gartner Inc., a leading information technology research and advisory company, QlikView
has moved from a visionary product in 2008 to one of the biggest challengers in 2010
(figure 2). Since it is a very fast evolving tool, we can expect that it will increase its
value and market share even more. The success of QlikView derived from the intuitive
interface, being easy to use for developers and end-users, and from the patented in-
memory data calculation capability that promotes the high-performance of the tool.

3



Figure 2: Quadrant for Business Intelligence Platforms published in January 2010 by
Gartner Inc.[12]

3 OncoNet Data Warehouse

In this section we will present the OncoNet data warehouse and will see which informa-
tion can be retrieved from it. The clinical data warehouse we are using in the thesis
collects the data from an application called OncoNet, which the Department of Hematol-
ogy at the Hospital of Merano currently uses. During a chemotherapy treatment plan a
patient must go through different steps in order to combat the cancer over several years.
During these steps data about the state of health of a patient (questionnaire surveys
where the interviewer can choose from different given answers) is collected. Further,
all the drug takings a person receives during a treatment plan are recorded. The data
warehouse includes also laboratory tests and collects the measurements of different in-
vestigations such as pulse, blood pressure or blood compositions.

4



Figure 3: Shows the multidimensional model of the underlying OncoNet data warehouse.
In many dimension tables there are shown only a subset of the columns.

The central fact table contains the measurements (numerical value). The measure-
ments can describe two dimensions.

Firstly, it is a numerical value of an investigation such as a blood pressure measure-
ment. In this case the foreign key for the investigation dimension is set:

Table 1: Fact Table Entry for an Investigation Measure
Date
Key

Patient
Key

Therapy
Ķey

Drug
Key

Event
Key

Investigation
Key

Survey
Group
Key

Numerical
value

123 223 -2 -1 4608 4118 -1 140

Table 2: Investigation Dimension Entry
Investigation
Key

Investigation
Group

Investigation
Label

Investigation
Operator

4118 Blood Pressure Systolic =

Secondly, the measurement can describe the amount of an intake of medication. In
this case the investigation key will point to Not Applicable and the foreign key for the
drug dimension is set:

5



Table 3: Fact Table Entry for a Drug Measure
Date
Key

Patient
Key

Therapy
Ķey

Drug
Key

Event
Key

Investigation
Key

Survey
Group
Key

Numerical
value

3425 2123 6138 7242464 -1 -1 -1 8

Table 4: Drug Dimension Entry
Drug Key Drug ID Drug name Drug category Drug quantity

unit

7242464 23006 Zofran Gastrointestinali
Antiemetici

mg

3.1 Statistics of the Health State

One important information that can be retrieved from the OncoNet data warehouse is
the questionnaire data collected during a chemotherapy treatment. The survey is based
on fixed questions. For each question a patient’s state of health can be indicated by
selecting one of the five provided answers. Figure 4 displays the statistics of the health
state.

Figure 4: This diagram shows the survey statistics. There is shown the partial sum,
which displays immediately the number of patients to which a state of health
was given.

To get an impression how QlikView makes the development of powerful analysis simple,
we will compare the obtained result of figure 4 with an equivalent SQL query.

To create the SQL query, we must join the fact dimension with the event dimension
and the multivalued dimensions survey group dimension, survey group bridge and sur-
vey dimension in order to get all question and answer labels. Finally, we group the result
by event name, question label and answer label to get the respective count.

6



select event_name,sd.survey_question_label, sd.survey_answer_label, count(*)

from mdw_event_dimension ed

inner join mdw_medical_record_fact mrf

on ed.event_key = mrf.event_key

inner join mdw_survey_group_dimension sgd

on sgd.survey_group_key = mrf.survey_group_key

inner join mdw_survey_group_bridge sgb

on sgb.survey_group_key = sgd.survey_group_key

inner join mdw_survey_dimension sd

on sd.survey_key = sgb.survey_key

where survey_key <> -1

group by (event_name,sd.survey_question_label, sd.survey_answer_label)

To get the corresponding result in QlikView as presented in figure 4 we create a
pivot table with the dimensions event name, survey question and survey answer. As
expression count(Event Key) is used to count how often an answer was given to a certain
question. We do not have to consider the joins, which can be fairly complex in large
data warehouses, but we only need to specify the attributes of the dimensions we are
interested in. Because of the fact that the OncoNet data warehouse contains also fact
entries, where the survey dimension is not relevant as dimension entity, we want exclude
those entries from the result shown by the pivot table (see SQL query: where survey key
<>-1 ). Therefore, we have to expand the dimension where we inserted survey question
to an expression:

if(”Survey Question”<>’Not applicable’,”Survey Question”)

Notice that in our case Survey Question <>’Not applicable’ does mean the same as
Survey Key<>-1.

Anyway, if we take into consideration that we are dealing with a data warehouse
where all entities are relevant for the measurements, the creation of analysis in QlikView
would be much easier than making SQL queries. Moreover, the results are shown in nice
diagrams which can be used directly for reports.

4 General QlikView Template for Multidimensional Data
Models

4.1 Description

Qlikview simplifies the analysis of data and after having made some experience as a
QlikView application developer reports and analysis can be generated in a few days or
weeks. Anyway, it would be desireable that, for instance a doctor, who has no experience
in QlikView and programming, can generate his own reports and doing evaluations
without consolidating a QlikView application developer. The idea is that the user sees
the underlying data of a multidimensional data model. Then he can directly click on
the attributes that he wants to have in the analysis diagram. Additionally, he can

7



choose how he wants to have represented the diagram, for instance as table or pie chart.
The advantage of such an application is that the user does not need any background
knowledge about QlikView and its diagram components. Moreover, he sees the entire
star schema and according to it he can directly choose the information he is interested in.
This template application should not only be the basis for the OncoNet data warehouse
but it should also be usable with any other multidimensional data model.

4.2 Construction of a General QlikView Template for
Multidimensional Data Models

The most basic sheet object in a QlikView application is the list box. Each list box
represents a column (field) of a loaded database table. Once a list box is associated with
a field, it shows all values of this field and the main way of making queries is through
the selection of field values. After selecting field values, the program instantaneously
shows all the values that are related to that selection in the document. Taking the
data from table 5, we can insert, for instance, a list box of the field therapy type and
correspondingly its values Antidiarrheal and Hydration are shown. Then we can make a
query and by selecting therapy type Antidiarrheal we will see all information according to
that selection: all therapy names that are part of that therapy type such as Octreotide
and Loperamid from table 5 and other related information that is displayed in sheet
objects.

Table 5: Therapy Dimension Table

Therapy Key Therapy ID Therapy Name Therapy Type

535 2463 Octreotide Antidiarrheal
145 2674 Loperamid Antidiarrheal
147 3657 250 Ml Nacl 0,9% Hydration

To construct a QlikView template application we need to allow interaction at a higher
level of abstraction. This means that the user can create diagrams and reports by
specifying which fields (or also called dimensions in relation to the diagrams) he wants
to use as grouping attributes for the analysis. The user should not select possible values
of therapy type but rather therapy type itself. QlikView does not provide a way where
a selection on the level of column names is possible. Therefore, we need a corresponding
attribute-list table for each database table where the column names are inserted as values
of a field.

To make this more comprehensible we will look at an example. Looking at table 5 the
corresponding attribute-list table contains all column names or field names as tuple:

8



Table 6: Therapy Attribute-List Table

Therapy Dimension

Therapy Key
Therapy ID

Therapy Name
Therapy Type

We have to create this additional attribute-list table for each dimension table and
also for the fact table of the data warehouse. We can run a SQL script (in our use
case Oracle SQL), which creates these additional tables automatically. Basically, the
script runs through each table of the data warehouse, then it creates the corresponding
attribute-list table and inserts the column names as tuples in the newly created table.
In our OncoNet data warehouse all tables start with ”MDW” (medical data warehouse)
and so we can query in a outer loop all table names that start with ”MDW” and create
the corresponding attribute-list table with the same name and an ”AL” (attribute list)
prefix. In the inner loop, we run through all column names of the original table and
insert these as tuples in the new attribute-list table.

begin

for t in (select object_name from user_objects where object_type=’TABLE’

AND object_name like ’MDW%’) loop

newtablename := ’AL_’ || t.object_name;

createtable := ’CREATE TABLE ’ || newtablename || ’(’ ||

SUBSTR(t.object_name,5) || ’ varchar2(100) NOT NULL, ’’;

execute immediate createtable;

for colname in (select COLUMN_NAME from USER_TAB_COLUMNS where

TABLE_NAME = t.object_name) loop

insertvalue := ’INSERT INTO ’ || newtablename || ’(’ ||

SUBSTR(t.object_name,5) || ’) VALUES (’’’ || colname.COLUMN_NAME || ’’’)’;

execute immediate insertvalue;

end loop;

end loop;

end;

The attribute-list tables solve two problems: the column names of the tables can be
displayed in list boxes and they can be selected by the user. This allows us to create a
template application where the user can select the grouping attributes of the diagrams
he wants to create. For instance, he can select therapy type and therapy name as
grouping attributes. Additionally, the attribute-list tables represent the structure of the
underlying data model and so it should be easy for the user to select the attributes when
he can see the underlying data model.

After importing the new attribute-list tables with the load script of our QlikView
application, we can display the fields of the attribute-list tables in list boxes and create
a panel (see figure 5), which provides the user the possibility to select the attributes
of a certain dimension (such as month in date dimension and therapy name in therapy
dimension).

9



Figure 5: Shows the panel with the attributes of each dimension. The user has the
possibility to select different attributes. In this example event name, event
type and patient gender were selected. For an intuitive perception, the fact
table is colored differently and centralized and does not show the foreign keys
because they are already contained in the dimensions.

10



In addition to the panel where the data model is shown, we will need an input panel
(figure 6) where the user can insert additional information after having selected the
dimension attributes that he wants to include in the analysis:

• List of chosen attributes: the user should see the dimension attributes which he
has chosen. He can also see the order of the selected attributes, which is important
for the grouping of the analysis report. The order of the grouping is the same as
the order of the selection, i.e. the first chosen attribute is also the first grouping
attribute. As QlikView object we can use a customized input box and display
the QlikView variables, where the chosen dimensions are stored. The variables
must be defined in advance and its values are set by a macro when a selection in
a dimension occurred. Additionally, there is a clear selections button which will
deselect all chosen dimensions.

• Diagram type: contains a list with all possible diagram types that can be created
with QlikView Automation Reference for analysis diagrams. In the load script
of the application we can define the possible diagram types and create a list box
where these values are shown and only one value should be selectable.

diagrams:

LOAD * INLINE [

Diagram type

Bar Chart

Line Chart

Combo Chart

Radar Chart

Gauge Chart

Scatter Chart

Grid Chart

Pie Chart

Pivot Table

Straight Table];

• Aggregation function: contains a list with the common aggregation functions like
sum, average, maximum, minimum and count. In a classic multidimensional model
the aggregation function is mostly applied to the measures. Nevertheless, it is
necessary for some analysis to apply the aggregation function count on other at-
tributes, for instance, to sum up the number of patients making a certain therapy
(count(PatientID)). The approach to get the aggregation functions in a list box
is the same as we have already seen for the list box of the diagram types. Ad-
ditionally, we need to show the values of all attribute-list tables for specifying
which attribute the aggregation function should be applied to. Since the values of
the attribute-list tables for each dimension are in separate fields, they can not be
shown together in a QlikView component. Therefore, we need a new field where
all attributes are coalesced. In the load script we define the field All Attributes
and select the tuples of all attribute-tables:

11



All_Attributes:

SQL SELECT DATE_DIMENSION AS ALL_ATTRIBUTES

FROM ONCO."AL_MDW_DATE_DIMENSION";

SQL SELECT DRUG_DIMENSION AS ALL_ATTRIBUTES

FROM ONCO."AL_MDW_DRUG_DIMENSION";

SQL SELECT EVENT_DIMENSION AS ALL_ATTRIBUTES

FROM ONCO."AL_MDW_EVENT_DIMENSION";

SQL SELECT INVESTIGATION_DIMENSION AS ALL_ATTRIBUTES

FROM ONCO."AL_MDW_INVESTIGATION_DIMENSION";

...

• Sheet selection: the user should be able to create new sheets and select a sheet
where the newly generated analysis diagrams are created. The existing and newly
created sheets are stored in a table that is created in the load script.

SheetTable:

LOAD * INLINE [

Sheets

];

At runtime, the created sheets are integrated into the table with the dynamic
update command and are displayed in the multi box.

12



Figure 6: Shows the input panel.

4.3 Implementation

QlikView has integrated an Automation interface which allows internal macros to access
and control objects of an QlikView application[9, 10]. Macros can be written either
in JScript or VBScript (Visual Basic Script) programming language. Given that all
the examples in the Automation Reference API are in VBScript, it is the most used
script language in QlikView and therefore we will also use it for our QlikView template
application. It is important to know that the macros can be invoked as an action trigger
in different ways, for example, after selections in any field or pressing a button or when a
sheet is activated. For a deeper understanding of the QlikView functions I would suggest
to look in the QlikView Refence API.

Once we want to make a new diagram, we need all the chosen attributes (or dimension
levels). Since we want to be able to show the currently chosen attributes at any point in
the panel of the chosen attributes, we need to keep track of any selection. We can define a
field event trigger on the fields of the attribute-list tables that are shown in table 5 and on
the event OnSelect we call a macro SelectionInDimensionField that stores the selections
in QlikView variables. We can assume that when the event is triggered, the list box,
where the selection occurred, changes its status to active. In this case a selection means

13



that either a value was selected or a chosen value was deselected. Moreover, we only know
in which field the selection occurred but we do not know which value was the last selected
one in a case when more are selected. Therefore, the method appendToChoosenFields,
which assigns the selected value to the QlikView variables, should append the value only
if it was not appended so far. At each selection event there is also the possibility that
the macro is called due to a deselected value. The method removeDeselectedValues runs
through all variables and checks if its value or attribute is still selected. Otherwise, the
variable is emptied and the order rearranged.

sub SelectionInDimensionField

set doc = ActiveDocument

activeObject = getActiveSheetObjectFromMain

’ check if activeElement of mainSheet

if activeObject <> -1 then

set listbx = doc.GetSheetObject(activeObject)

set field = listbx.getField

set selections = field.GetSelectedValues

for i = 0 to selections.Count - 1

appendToChoosenFields(selections.Item(i).text)

next

removeDeselectedValues

end if

end sub

sub appendToChoosenFields(field)

i = 1

exist = false

while i <= MAX_DIMENSION and exist = false

varCont = ActiveDocument.Variables(i & ". Dimension").GetContent.String

if strcomp(varCont,"") = 0 then

’ no entry in dimension dimension i

ActiveDocument.Variables(i & ". Dimension").SetContent field, true

exist = true

else

’ there is an entry in dimension i

if strcomp(varCont,field) = 0 then

’ this entry of the field already exists

exist = true

end if

end if

i = i+1

wend

end sub

The attributes are stored in QlikView variables and can be easily retrieved when
the user wants to instantiate a new diagram. As we have seen, the user has to insert
additional information such as the diagram type and the aggregation function. This
information can be read directly from the QlikView objects when the user pushed the
Create Diagram button and according to the selected diagram type the corresponding

14



QlikView object is instantiated. Then, the dimensions, which after the previous work
can be easily read from the variables, are added to the diagram. The following code
lines are part of the function which creates the new diagram. In this example the func-
tion makeDiagram() creates the new diagram of the selected type and on the specified
sheet. Finally, we add the selected dimension attributes and the aggregation function as
expression to the diagram and then we get the desired result.

sub createDiagram

...

set allattr = doc.Fields("ALL_ATTRIBUTES").GetSelectedValues

aggregationAtt = allattr.Item(0).text

set diagramTyp = ActiveDocument.Fields("Diagramm Typ").GetSelectedValues

set newDiagram = makeDiagram(diagramTyp.item(0).Text, sheetName)

’ append selected dimension levels to the diagram

for each present in createArrayOfSelectedDimensions

newDiagram.AddDimension present

next

’ set expression

set aggregationExp = ActiveDocument.Fields("Agg Expression").GetPossibleValues

newDiagram.AddExpression aggregationExp.item(0).text &"("& aggregationAtt &")"

...

end sub

function makeDiagram(dia, sheetName)

On Error Resume Next

set sheet = ActiveDocument.GetSheet(sheetName)

if Err.number <> 0 Then

set sheet = ActiveDocument.GetSheet("Main")

end if

On Error Goto 0

if dia = "Bar Chart" then

set makeDiagram = sheet.CreateBarChart

...

elseif dia = "Pie Chart" then

set makeDiagram = sheet.CreatePieChart

elseif dia = "Straight Table" then

set makeDiagram = sheet.CreateStraightTable

else

set makeDiagram = sheet.CreateLineChart

end if

end function

function createArrayOfSelectedDimensions

countDimensions = getCountSelectedDimensions

redim arrDim(countDimensions - 1)

for i = 0 to ubound(arrDim)

arrDim(i) = ActiveDocument.Variables(i + 1 & ". Dimension").GetContent.String

next

createArrayOfSelectedDimensions = arrDim

end function

15



5 QlikView Template Supporting Cube Operations

5.1 Description

In the last section we have seen how we can construct a template application for a
multidimensional model in QlikView. Now we will expand the model further, so that
we can do some OLAP or cube operations on the selected data. Cube operations allow
a flexible view changing on the created diagrams. Sometimes, the user wants to see the
selected data in a more detailed way or even in a more general way. The user does not
have to create new diagrams and entering the new dimension attributes but he can select
the diagram and perform a cube operation in order to change the view of the selected
data.

In the next subsections we will get the idea of concept hierarchies and look in more de-
tail at cube operations. After designing a model that supports the most important cube
operations we will focus on the implementation of some primary functions in QlikView.

5.2 Concept Hierarchies

A concept hierarchy can be defined as a sequence of mappings from a set of low-level
concepts to higher-level concepts[1]. A common example of a concept hierarchy is the
date dimension which can be divided into the dimension-levels day, month and year
(figure 7). We can aggregate data according to the low-level day and map it afterwards
to a more general level such as month or year. Another example used in our clinical
data warehouse is the investigation dimension (see table 7). The finest granularity is
the investigation label which could be diastolic and systolic. Both investigation labels
are part of the investigation group label blood pressure which then corresponds to a
higher-level, more general concept.

Table 7: Investigation Dimension

Investigation Group Label Investigation Label

blood pressure diastolic
blood pressure systolic
lymph node inguinal size left
lymph node inguinal size right
lymph node supraclavicular size left
lymph node supraclavicular size right

In [4, 6] a dimension D is formally defined as a lattice of levels (L,<) such as: L=(L1,
L2...Ln) where Li represent the different levels. So the dimension date would be a
lattice (L,<):L=(day, month, year) and day<month<year is an example of a partial
order (figure 7).

Now, if we define our date dimension in a more detailed way and expand it with the at-
tributes week and quarter the concept hierarchy becomes more complicated. Since a week
often crosses the boundary of a month and therefore it belongs to two months, sometimes

16



Figure 7: Date dimension with dimension levels.

weeks are not considered as a lower abstraction of the month level. It is then treated
as a lower level of year and a year is then approximated to 52 weeks. Consequently,
the new partial orders of the date dimension would be day<month<quarter<year and
day<week<year as we can see from figure 8.

Figure 8: Date dimension with dimension levels.

One task will be to define manually the concept hierarchies of the multidimensional
model. This will be important since we later define cube operations which can be per-
formed only on the predefined concept hierarchies. Beside the many concept hierarchies
that can be defined in each date dimension, possible hierarchies in the OncoNet data
warehouse are shown in figure 9.

17



Figure 9: Shows possible concept hierarchies in the use case of the OncoNet data
warehouse.

5.3 Cube Operations

Cube operations or OLAP operations are well known operations in OLAP tools, which
provide multidimensional analysis to the underlying information[5]. As we have seen,
the dimensions contain different levels of aggregation. This concept of logical hierarchies
is useful because it provides a flexible view of the data from different perspectives. A
number of well-known cube operations, which support interactive view changing, exist:

• Roll-up: the roll-up operation (drill-up) corresponds to an aggregation of the data
from a lower level of hierarchy to a higher level of hierarchy within a dimension[4].
In the hierarchy of the investigation dimension investigation label<investigation
group label the roll-up operation from the investigation label is defined as the
climbing up in the concept hierarchy to investigation group label.

• Drill-down: the drill-down is the reverse of the roll-up operation. It corresponds
to a navigation from a higher level to a more detailed level of abstraction. For ex-
ample, the resulting attribute of a drill-down operation from the quarter attribute
in the concept hierarchy of day<month<quarter<year (figure 8) would be month.
Consequently, the data will be displayed in a more detailed way.

• Slice and dice: The slice operation would correspond to a selection on one dimen-
sion. For instance, by selecting quarter = ”1” in the date dimension, it will only
show those data sets that are in the first quarter of a year. The dice operation
is defined as a selection in two or more dimensions such as quarter = ”1” and
investigation group label = ”blood pressure”.

5.4 A Model Supporting Cube Operations

As we have seen, each dimension is a lattice of levels. We name a path in a dimension
hierarchy as dimension path[4] or hierarchy path and define it as a path from a most
detailed level to a most general level.

From figure 8 we can extract two dimension paths: day → week → year and day →
month → quarter → year.

18



To allow cube operations in our QlikView application we must add to each dimension
in the model its dimension hierarchies. So we define the existing hierarchy paths in our
data warehouse as we have seen in section 5.2 and expand the attribute-list tables of each
dimension with two additional columns, the dimension level and the dimension hierarchy.
The dimension level indicates the level of aggregation of the corresponding attribute and
the dimension hierarchy gives us the concept hierarchy to which the attribute belongs.

Table 8: Therapy Attribute-List Table

THERAPY DIMENSION DIMENSION LEVEL DIMENSION HIERARCHY

THERAPY KEY -1 -1
THERAPY ID -1 -1

THERAPY NAME 1 1
THERAPY TYPE 2 1

The placeholder -1 indicates that we do not want that this attribute belongs to a
dimension path. In table 8 we defined the only possible dimension path as therapy
name<therapy type.

Now we will see how the table might look like when there are more dimension paths
such as in the example of the date dimension. The basic idea is that we extract each
possible path. In the case of figure 9 we define two dimension paths and we can recog-
nize that day and year are contained in both dimension paths. So we also need these
attributes to appear twice in the attribute-list table of our date dimension. The dimen-
sion hierarchy indicator tells us that we defined two concept hierarchies, one consisting
of day → week → year and the other of day → month → quarter → year.

Table 9: Date Attribute-List Table

DATE DIMENSION DIMENSION LEVEL DIMENSION HIERARCHY

DAY 1 1
WEEK 2 1
YEAR 3 1
DAY 1 2

MONTH 2 2
QUARTER 3 2

YEAR 4 2

To complete the model we will expand it with a few functions. First of all, if we want
to perform a cube operation on a dimension level (or attribute) of any dimension, we
need to know which dimension the attribute belongs to. So we define the function

D = dimension(attribute)

19



which returns the dimension name where the attribute is contained; D = dimension(’Therapy
Name’)=’Therapy Dimension’.

Moreover, let

DP = dimension paths(dimension, attribute)

be a function which gives us all dimension paths (dimension hierarchies) where the passed
attribute is contained; dimension paths(’Date Dimension’, ’Day’)=[Day, Week, Year];
[Day, Month, Quarter, Year].

Then we introduce the function

level(dimension, attribute, hierarchy) = k

where k is a number representing the level in a dimension path, starting with 1 for the
lowest level (for instance in figure 9, the level of the attribute Week in the dimension
path [Day, Week, Year] would be 2 ). Knowing the dimension D, the dimension paths
DP, and the level k, it is possible to do the cube operation roll-up to level k+1 or a
drill-down to level k-1.

Concluding this model we define a function for the roll-up operation as

newAttribute = rollUpInDimensionPath(dimension, level, dimension path);

rollUpInDimensionPath(’Date Dimension’, 1, [Day, Week, Year])= ’Week’ and rollUpInDi-
mensionPath(’Date Dimension’, 1, [Day, Month, Quarter, Year]) = ’Month’. It is im-
portant to obtain all dimension paths with the function we defined above and then
retrieve all possible attributes for a roll-up operation, because it might occur that a
roll-up is ambiguously defined such as in our date dimension.

Analogously, we can do the same for a drill-down operation, we just introduce a new
function

newAttribute = drillDownInDimensionPath(dimension, level, dimension path)

which gives us the new attributes when performing a drill-down operation.

5.5 Implementation of the Model for Cube Operations

In this subsection we will see some implementation examples in QlikView. We will focus
on the functions that we defined in subsection 5.4.

The function dimension(attribute) will retrieve all list boxes that contain the dimen-
sion levels. From a list box it is possible to retrieve the field of which the list box shows
the values. Once the field is retrieved, we can search if the attribute is contained in that
dimension and if this is the case return that dimension.

20



function dimension(attribute)

arr = getDimensionListBoxIDs

for each present in arr

set field = ActiveDocument.GetSheetObject(present).GetField

count = field.SearchFor(attribute, True, 1)

if uBound(count) >= 0 then

dimension = field.Name

end if

next

end function

In our model we have defined the function dimension paths as a function that returns
the entire paths with all dimension levels. In the implementation of the function we are
not retrieving the entire path but only the indicators of the dimension hierarchy (see
column dimension hierarchy of table 8 and table 9), since each path is uniquely defined by
the indicator and so the path can be easily retained. If we want to retrieve all dimension
hierarchies where Day is contained, we immediately think that we can make an SQL
query, but it is impossible to execute an SQL query in a QlikView macro. Nevertheless,
we can execute the select command and select Day in the date dimension field which
is equivalent to an SQL query. After this selection, all values from dimension level and
dimension hierarchy, which are not related to Day, are excluded and we can use the
function GetPossibleValues in the field of dimension hierarchy. GetPossibleValues will
return an array with all possible hierarchy values where day is contained; in our example
it will be (1;2).

function dimension_paths(dimension, attribute)

ActiveDocument.Fields(dimension).Select attribute

set x = ActiveDocument.Fields(dimension &"_HIERARCHY").GetPossibleValues

redim arrHierarchies(x.Count - 1)

for i = 0 to x.Count - 1

arrHierarchies(i) = x.item(i).text

next

dimension_paths = arrHierarchies

end function

In order to make a roll-up (or drill-down) operation we need to know the level index
of a dimension level. The implementation of the function level(dimension, attribute,
hierarchy) is similar to the function dimension path. We select the dimension attribute
and the hierarchy and can request the possible values of the level index.

21



function level(dimension, attribute, hierarchy)

ActiveDocument.Fields(dimension).Select attribute

ActiveDocument.Fields(dimension &"_HIERARCHY").Select hierarchy

set x = ActiveDocument.Fields(dimension &"_LEVEL").GetPossibleValues

if x.Count > 0 then

level = x(0).text

else

level = -1

end if

end function

Finally, we have to implement the function newAttribute = rollUpInDimensionPath(dimension,
level, dimension path). We can evaluate an expression by setting the level indicator to
level + 1 to obtain the roll-up attribute (level - 1 in drill-down operation).

function rollUpInDimensionPath(dimension, level, hierarchy)

expression = "Only(if("& dimension &"_LEVEL="& level + 1 &"AND"

& dimension &"_HIERARCHY="&hierarchy&",dimension))"

rollUpInDimensionPath = ActiveDocument.Evaluate(expression)

end function

As soon as the new attribute is found, we only need to retrieve the diagram where the
roll-up (or drill-down) operation is performed and reset its dimensions by replacing the
old attribute with the new attribute.

In parallel with the additional macros that contain the functions for performing cube
operations, we will need to expand the QlikView application itself.

Since we want to perform cube operations on the created diagrams, we need an addi-
tional panel with a list box, which shows the created diagrams. After selecting a diagram
there appears another list box with the dimensions belonging to this diagram (figure 10).
Then, if there is a possibility to perform a roll-up or drill-down operation, the buttons
are enabled properly.

22



Figure 10: Shows the panel with the created diagrams and after a selecting one, its di-
mension attributes show up in the other list box. The buttons for performing
a cube operations are disabled since no dimension was selected.

To be able to show the created diagrams, the application has to record them after
they are instantiated. In the load script of the application we define two empty tables,
one for the diagrams and another for the dimensions which belong to a diagram and are
referenced by its unique ChartID.

// Table containing all diagram objects

ChartTable:

LOAD * INLINE [

ChartName, ChartID

];

// Dimensions of a created diagrams

DimensionOfCreatedTables:

LOAD * INLINE [

DimensionOfCreatedTable, ChartID, DimNumber

];

After each diagram creation the diagram name, its unique ID that is needed for retriev-
ing the QlikView objects and its dimensions are stored in these tables with the dynamic
update command. Furthermore, we need also an event trigger that calls a macro which
removes all entries of deleted tables.

Finally, we will see two examples in QlikView, where we can perform a cube operation.
For instance, we will create a diagram that shows the number of applied investigations
in the year 2006 (select 2006 in a year list box) grouped by month and gender. We
select Month and patient gender as dimension attributes and count(investigation key) as

23



expression. As diagram type we can specify a pivot table and get the following diagram.

Figure 11: Pivot table showing the number of applied investigations grouped by month
and gender.

After selecting this diagram, we can perform a roll-up operation from month dimension
level to quarter. Respectively, the pivot table is changed and we can see the results
grouped by quarter and gender:

Figure 12: Pivot table showing the number of applied investigations grouped by quarter
and gender.

Equally, we can also perform a drill-down operation from month to day in the initial
table. Then, we get the data aggregated in a more detailed way, where the number of
applied investigations is grouped according to day and gender.

24



Figure 13: Pivot table showing the number of applied investigations grouped by day and
gender.

Another example is the diagram in figure 14 that shows the gender statistics about
patients who did the therapy type ”Chemioterapia E Sostanze Immunostimolanti”. We
can see how many of the patients are males and how many are females.

Figure 14: Block chart showing gender statistics about therapy type ”Chemioterapia E
Sostanze Immunostimolanti”.

Since we defined therapy type as an upper level of therapy name, we can perform a
drill down operation and look at the data in a more detailed way by granulating from
therapy type to therapy name.

25



Figure 15: Block chart showing gender statistics about the therapies of type ”Chemioter-
apia E Sostanze Immunostimolanti”.

Now we got a detailed gender statistic about the therapy type ”Chemioterapia E
Sostanze Immunostimolanti”, where the data is grouped according to the more detailed
level therapy name.

6 Related Work

Inmon[2] and Kimball[3] are probably the most cited authors regarding data warehousing
and multidimensional modeling. Inmon provides a clear definition of the data warehouse
and describes its main features. Kimball focuses on areas, where data warehouses are
used and additionally he describes the design of a data warehouse when dealing with
medical records.

Jiawei Han and Micheline Kamber[1] describe different technologies of data analysis
and present the basic concepts and architectures of data warehouse and on-line analytical
processing (OLAP).

Vassilidias[4, 5, 6] published many research papers focusing on on-line analytical pro-
cessing and cube operations. In [6] Vassilidias describes a model for multidimensional
databases and introduces dimension hierarchies and cubes. Furthermore, he designs a
model that supports a series of operations on cubes such as level climbing, function
application and navigation.

In [7] the possibility of using data warehousing in OLAP technologies in public health
care and how interactive exploration and analysis can be enabled are discribed.

On the page [8] there can be found a case study about QlikView in the public health

26



care. Some good examples that demostrate how QlikView can be used in the public
health care for report generation and statistics gathering are provided. Moreover, it
demostrates the vary possibilities of different diagrams that can be used to represent the
data.

Gartner Inc.[12] and Aberdeen Group[11] are information technology research and ad-
visory companies and both do market analysis for Business Intelligence tools. Gartner
Inc. uses its Magic Quadrant for BI platforms providing a qualitative analysis of the
market and its participants. Similar to the Magic Quadrant, the Aberdeen Group uses
its Business Intelligence Performance Management (BIPM) axis to classify the prod-
ucts according to value delivered and market readiness. These documents describe the
strenghts and weaknesses of the different solutions that exist on the Business Intelligence
software market.

7 Conclusion and Future Work

In this thesis we have seen how we can import data of a clinical data warehouse in Qk-
lickView. Moreover, we generated some analysis reports and investigated the suitability
of QlikView together with the OncoNet data warehouse. We underlined that QlikView
can not only be used by application developers for report generation, but there exists
the possibility to make a template application using VBScript macros, which allows non-
experts to create reports and diagrams by interacting at a higher level of abstraction.
The template is not only the basis for the use case of the OncoNet data warehouse but
can be applied also to any other multidimensional data model. Additionally, the tem-
plate application supports cube operations on the level of diagrams and a flexible view
changing can be carried out by the user.

At the moment, to set up the template application for another underlying multidi-
mensional data model, some work has to be done manually in order to get the template
application to work, for instance, importing the structure tables (attribute-list tables)
in list boxes and linking the QlikView components to the macros.

A future work could be to concentrate on the definition of an installation macro which
automatically instantiates the QlikView components of the template application after
the user has indicated the tables of the star schema and associates them to the defined
macros.

27



References

[1] Jiawei, Han / Kamber, Micheline: Data mining. Concepts and Techniques. Second
Edition. 2006.

[2] Inmon, W.H.: Building the Data Warehouse. John Wiley & Sons. 2006.

[3] Kimball, Ralph / Ross, Margy: The Data Warehouse Toolkit. Second Edition. 2002.
John Wiley & Sons.

[4] Vassilidias, Panos / Skiadopoulos, Spiros: Modelling and Optimization Issues for
Multidimensional Databases. CAiSE 2000: international conference on advanced in-
formation systems engineering No. 12, Stockholm. 2000.

[5] Vassilidias, Panos / Sellis, Timos: A Survey of Logical Models for OLAP Databases.
SIGMOD Record. Vol. 28, No. 4. December 1999.

[6] Vassilidias, Panos: Modeling Multidimensional Databases, Cubes and Cube Opera-
tions. In Proceedings of the 10th SSDBM Conference. 1998.

[7] Hristovski, Dimitar / Rogac, Mitja / Marakota Mladen: Using Data Warehousing
and OLAP in Public Health Care. In Proceedings of the AMIA Symp. 2000.

[8] http://www.4s-dawn.com/clinicalperformance/Report.htm current as of July 1,
2010.

[9] QlikTech International: QlikView Reference Manual. Version 9.0 for Windows. Swe-
den. October 2009.

[10] QlikTech International: QlikView Automation Interface Reference. Version 9.0 for
Windows. Sweden. June 2009.

[11] Aberdeen Group, Inc., David Hatch, Michael Lock: Business Intelligence (BI):
Performance Management AXIS. 2009.

[12] Gartner RAS Core Research, Joseph Feiman, Neil MacDonald: Magic Quadrant for
Business Intelligence Platforms. January 2010.

28


