
Efficient Whole Genome Haplotype
Block Partitioning using Linkage

Disequilibrium

Author:

Daniel Taliun

Supervisors:

Prof. Johann Gamper
Ph.D. Cristian Pattaro

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in the Faculty of Computer

Science at Free University of Bozen-Bolzano, Italy

March 31, 2015

Abstract

Investigation of linkage-disequilibrium (LD) patterns and underlying hap-
lotype blocks across large genomic segments is a key element of genetic in-
vestigations over the whole genome. LD-based haplotype block partitions
can be used in genome-wide haplotype association studies, set-based anal-
yses where adjacent single nucleotide polymorphisms (SNPs) are collapsed
together, cross-ethnicity comparisons, downstream analyses and interpre-
tation of genome-wide association studies (GWASs). However, the LD-
based haplotype block partitioning in large and dense genomic segments
has always been a challenge due to the poor computational scalability of
available algorithms. Moreover, the new sequencing technologies allow
generating datasets with millions of SNPs, which are an order of magni-
tude larger than previously available.

In this work, we introduce a series of new optimizations of the most
widely used LD-based haplotype block partitioning algorithm which was
proposed by Gabriel et al. in 2002. We developed MIG++ – a memory and
time efficient implementation of the Gabriel et al. algorithm. MIG++ has
only Θ(n) memory complexity and by >80% improved runtime compared
to the original algorithm, which has Θ(n2) memory and runtime com-
plexities. MIG++ incrementally constructs haplotype blocks and applies
sophisticated search space pruning. We theoretically proved that the ap-
plied pruning preserves all blocks and experimentally showed that it omits
>80% of computations. Differently from the existing software, MIG++

avoids restrictions on the maximal block length, considers SNP pairs at
any distance, and can handle any number of SNPs.

The MIG++ runtime was further improved by replacing the standard
likelihood-based LD variance estimator with an approximated estimator.
With the likelihood-based method, the haplotype block partition of the en-
tire HapMap II CEPH dataset was obtained in 457 hours. Meanwhile, the
approximate method obtained the full-genome haplotype block partition
of the entire 1000 Genomes Project CEPH dataset only in 44 hours, with no
restrictions on allele frequency or long-range correlations. However, com-
pared to the standard likelihood-based approach, with the approximate
method rare adjacent SNPs tend to be clustered together into wider haplo-
type blocks leading to a coarser partition. These genome-wide experiments

1

also showed that LD-based haplotype blocks can span more than one mil-
lion base-pairs in both HapMapII and 1000 Genomes Project datasets.

In order to avoid approximated LD variance estimator, we proposed a
new sampling-based algorithm, called S-MIG++, where the main idea is
to estimate the area that is most likely to contain all the haplotype blocks
by sampling a very small number of SNP pairs. A subsequent refinement
step computes the exact blocks by considering only the SNP pairs within
the estimated area. This approach significantly reduces the number of com-
putations making the recognition of haplotype blocks very fast. We theo-
retically and empirically prove that the area containing all the haplotype
blocks can be estimated with very high degree of certainty. Through exper-
iments on 243,080 SNPs on chromosome 20 from the 1000 Genomes Project,
we compared MIG++ with S-MIG++ and observed runtime reduction from
2.8 weeks to 34.8 hours. In a parallelized version of the S-MIG++ algorithm
using 32 parallel processes, the runtime was further reduced to 5.1 hours.

The proposed MIG++ and S-MIG++ algorithms enable to perform LD-
based haplotype block partitioning on genetic sequences of any length and
density, which was previously infeasible. In the new generation sequencing
era, this can help identify haplotypes that carry rare variants of interest.
The low computational requirements open the possibility to include the
haplotype block structure into GWAS, downstream analyses, and visual
interfaces for online genome browsers. With an application to the North
American Rheumatoid Arthritis Consortium (NARAC) dataset we show
how the MIG algorithms can support genome-wide haplotype association
studies. The MIG++ algorithm was already adopted by recent version of
PLINK, which is one of the most popular software applications for genetic
association studies worldwide.

2

Acknowledgements

I am very grateful to my supervisors Cristian Pattaro and Johann Gamper
for their help and support during this work. Cristian Pattaro guided me in
the areas of genetic association studies and statistics, while Johann Gamper
helped me in the various aspects of computer science. Their iterations and
comments significantly improved quality of all materials published and
presented during these years. I believe that I obtained from them many
professional skills which a good researcher should have.

I would like to thank my friends Francesca Pavani, Luisa Foco, Novella
Carpanese, Roberto Melotti, Martin Gögele, Fabiola Del Greco, Cosetta
Minelli, Damia Noce, Aude Saint Pierre, Christian Fuchsberger and Yuri
D’Elia for their constant support that was expressed in so many different
ways. I had an amazing time with them.

Finally, I would like to thank my family.

3

Preface

This work represents a result of collaboration between the Faculty of
Computer Science, Free University of Bozen-Bolzano, and Center for
Biomedicine, European Academy of Bozen/Bolzano, Italy.

We used data from the Genetic Analysis Workshop funded by NIH
grant R01 GM031575, and data that was gathered with the support of
grants from the National Institutes of Health (NO1-AR-2-2263 and RO1-
AR-44422), and the National Arthritis Foundation.

4

Contents

1 Introduction 12
1.1 Motivation . 12
1.2 Contributions . 13
1.3 Publications . 14
1.4 Organization of the Thesis . 15

2 Background 16
2.1 Single Nucleotide Polymorphisms 16
2.2 Linkage Disequilibrium . 17
2.3 Alternative Ways to Model D’ Distribution 19

2.3.1 The Wall and Pritchard (WP) Method 19
2.3.2 The Approximate Variance (AV) Method 20

2.4 Haplotype Blocks . 20
2.5 Gabriel’s Haplotype Blocks Recognition 21

3 Related Work 24
3.1 Recombination Crossovers . 24
3.2 Haplotype Coverage . 25
3.3 Minimal Description Length 25
3.4 Probabilistic Methods . 26
3.5 Comparison of Existing Methods 27

4 Incremental Computation of Haplotype Blocks 29
4.1 SNP-pair and Region Weights 29
4.2 The MIG Algorithm . 30
4.3 The MIG+ Algorithm . 32
4.4 The MIG++ Algorithm . 34
4.5 Experimental Evaluation . 37

4.5.1 Runtime and Memory Usage with the WP Method . 38
4.5.2 Runtime and Memory Usage with the AV Method . . 40
4.5.3 Block Partitions with the WP and AV Methods 40
4.5.4 Whole Genome Partition 43

4.6 Summary . 47

5

5 Sampling-based Computation of Haplotype Blocks 49
5.1 Overview . 49
5.2 Haplotype Block Contour Estimation 52

5.2.1 Overview . 52
5.2.2 Chromosome Splitting 54
5.2.3 Sampling SNP Pairs 55
5.2.4 Estimating the Haplotype Block Contour 56
5.2.5 Properties . 59

5.3 Haplotype Blocks Refinement 61
5.4 Experiments . 63

5.4.1 Error Rate . 64
5.4.2 Precision of the Estimated Haplotype Block Contour 65
5.4.3 Runtime and Memory Usage 68
5.4.4 Parallelized Contour Estimation 69

5.5 Summary . 70

6 Real Data Application 71
6.1 The NARAC Dataset . 71
6.2 GWAS Results . 72
6.3 Summary . 73

7 Conclusions and Future Work 77
7.1 Summary . 77
7.2 Future Work . 78

Appendix A 79

6

List of Figures

2.1 Chromosome and SNPs. 17
2.2 The D′i,j linkage disequilibrium coefficient. 19
2.3 Regions of reduced haplotype diversity. 21
2.4 LD heatmap of chr20:14,759,169-15,028,962 in the 1000

Genomes Project data. 21

4.1 Processing a chromosome with the MIG algorithm. 31
4.2 The first three computational steps of the MIG algorithm. . . 32
4.3 Processing a chromosome with the MIG+ algorithm. 34
4.4 Processing a chromosome with the MIG++ algorithm. 36
4.5 Performance of the algorithms with the WP method, when

applied to the 1000G dataset. 38
4.6 The λ pruning coefficient for MIG+ and MIG++ with the WP

method. 39
4.7 LD heatmap of chr20:31,767,872-33,700,401 in the HapMapII

dataset, which contains 1,000 polymorphic SNPs. 39
4.8 Impact of the WP and AV methods on runtime, when ap-

plied to the 1000G dataset. 40
4.9 The λ pruning coefficient for MIG++: comparison between

WP and AV methods. 41
4.10 Number of candidate haplotype blocks detected by the MIG,

MIG+ and MIG++ algorithms with the WP and AV methods. 41
4.11 Haplotype block characteristics of WP and AV methods. . . 42
4.12 Number of blocks detected with the WP method that are

completely inside blocks detected with the AV method. . . . 43
4.13 Within-block haplotype diversity with WP and AV methods. 43
4.14 Runtime of the MIG++ algorithm on whole-genome data. . . 44
4.15 Number of haplotype blocks in the HapMapII and 1000G

datasets when the D′ CIs are estimated with the WP and AV
methods. 45

4.16 Lengths of the haplotype blocks estimated with the WP and
AV methods in the complete HapMapII and 1000G datasets. 46

7

4.17 Lengths of the haplotype blocks estimated with the WP and
AV methods on the complete HapMapII and 1000G datasets
that do not overlap centromeres. 46

5.1 The LD matrix, T10×10, of a chromosome S = 〈s1, . . . , s10〉
consisting of ten SNPs. 50

5.2 The uniform 8× 8 grid of cells in T80×80 LD matrix after the
chromosome was split into 8 segments of 10 SNPs each. . . . 54

5.3 Sampling SNP pairs. 55
5.4 Estimating the haplotype block contour. 57
5.5 Inner region Ri+l,i−l and outer region Ri,j. 59
5.6 Schematic representations of the original and modified

MIG++ algorithms. 61
5.7 The LD matrix of chr20:14,759,169-15,028,962 in the 1000

Genomes Project data computed by the original and modi-
fied MIG++ algorithms. 62

5.8 The minimal coverage probability for the QH, FS and SG
methods. 65

5.9 The empirical probability of all correctly estimated simulta-
neous confidence interval bounds. 66

5.10 Size of the estimated haplotype block contour for different
values of k, σ and η. 67

5.11 The estimated haplotype block contours in chr20:24,520,185-
25,828,521 with 5,000 SNPs at different values of k and σ. . . 67

5.12 The sum of sampled SNP pairs and SNP pairs covered by
the estimated haplotype block contour. 68

5.13 Performance of the S-MIG++ algorithm. 69

A.1 Median MAF and median inter-SNP distance in sliding re-
gions of 1,000 SNPs on chromosome 16 with no centromere. 79

A.2 Sampled regions of 1,000 SNPs. 80

8

List of Tables

4.1 Characteristics of the whole-genome haplotype block parti-
tions obtained with the WP and AV methods. 45

5.1 The regions selected for the experiments with the S-MIG++

algorithm. 63

6.1 Results from the rheumatoid arthritis GWAS: comparison
between AV and WP haplotype blocks and single-SNP anal-
yses (continued on the next page). 74

6.1 Results from the rheumatoid arthritis GWAS: comparison
between AV and WP haplotype blocks and single-SNP anal-
yses (continued on the next page). 75

6.1 Results from the rheumatoid arthritis GWAS: comparison
between AV and WP haplotype blocks and single-SNP anal-
yses. 76

9

List of Algorithms

1 MIG . 33
2 MIG+ . 33
3 MIG++ . 35

4 S-MIG++ . 53

10

Table of Symbols

Symbol Description

si Single nucleotide polymorphism (SNP)
S Chromosome 〈s1, . . . , sn〉 of n SNPs
Ri,j Region 〈si, . . . , sj〉
The MIG, MIG+ and MIG++ algorithms

w(i, j) SNP-pair weight between si and sj SNPs
w̄(i, j) Weight of the region Ri,j
λ Pruning coefficient

The S-MIG++ algorithm

Pi,j Profile of the region Ri,j
Tn×n LD matrix
ti,j LD matrix element
Ci,j Cell in LD matrix
Mk×k Sampling matrix
(P̂) P (Estimated) Haplotype block contour
p Probability that P ⊆ P̂

π
(1)
i,j Proportion of strong LD SNP pairs in Ri,j

π
(2)
i,j Proportion of strong EHR SNP pairs in Ri,j

π
(3)
i,j Proportion of non-informative SNP pairs in Ri,j

ρi,j Ratio of strong LD to informative SNP pairs in Ri,j
k Number of segments in the chromosomal split
σ Sampling fraction
η Proportion of LD matrix elements covered by P

11

Chapter 1

Introduction

1.1 Motivation

The presence of block-like patterns in human genome have intrigued ge-
netic researchers for more than ten years and had a huge impact in the field
of genetic association studies. The entire human genome can be partitioned
into regions, haplotype blocks, that are characterized by a low diversity
of haplotypes and an excess of linkage disequilibrium (LD) between sin-
gle nucleotide polymorphisms (SNPs) compared to other genomic regions.
Although, in the past, haplotype blocks have been mainly used to identify
tag SNPs [1, 2], a variety of other applications is possible with currently
available data.

Recently, analysis of exome-chip data has shown that within-gene LD-
block distribution can be informative of the gene function and of the possi-
ble relationship between genes and specific groups of phenotypes [3]. An-
other application is the genome-wide haplotype association scan, which
was successful in uncovering risk loci for coronary artery disease [4],
Alzheimer’s disease [5] and breast cancer [6]. So far, genome-wide hap-
lotype association scans have been mostly performed based on fixed- or
variable-width sliding window methods, which systematically miss haplo-
types that are longer than some pre-specified maximal window width. An
efficient genome-wide haplotype block recognition could help overcome
such limitations, thus enhancing the biological interpretation of the results.
In the study of rare variants, where collapsing methods (mostly based on
gene boundaries) are becoming increasingly popular [7], the availability
of haplotype blocks at genome-wide level would allow collapsing variants
based on block boundaries, capturing inter-genic variants, and avoiding
the problem to define the gene boundaries. Additional applications in-
clude downstream analyses of GWAS, such as pathway-based approaches,
where statistics for multiple SNPs are summarized into gene-specific P-
values, which are then employed for gene ranking [8]. In pathway-based

12

analyses, SNP-to-gene mapping is typically based on SNP proximity to the
gene boundaries. With this method, when a region is gene-dense, it may
be problematic to assign SNPs to a single, specific gene. An LD-based as-
signment would overcome this limitation and increase the power of down-
stream analyses [9]. In general, ignoring the LD structure in downstream
analyses of GWAS can result in the misinterpretation of the findings [10].

Popular genome browsers, such as the Ensembl [11] or UCSC [12], are
suitable for visualizing the LD distribution over regions of interest. How-
ever, they only allow pairwise LD calculation between markers at <500 kb
distance from each other and do not provide any LD-block partition. With
no predefined block partition, the visual assessment of such LD patterns
might be influenced by investigator’s subjectivity. On the other hand, the
500 kb distance constraint may limit the investigation of larger strong LD
regions. With the availability of pre-calculated, threshold-free LD blocks,
we would overcome both these limitations.

The most widely used haplotype block recognition algorithm is based
on LD between SNPs. It was introduced by Gabriel et al. [13] and is im-
plemented in many popular software applications for genetic association
studies such as Haploview [14] and PLINK [15]. However, its runtime and
memory usage grow quadratically with the number of SNPs restricting its
possible applications only to genomic regions with up to several thousands
SNPs. This problem of poor scalability becomes especially relevant for the
very dense data generated by new sequencing and genotyping technolo-
gies, where even relatively short genomic region may contain thousands
SNPs and the total number of SNPs in the largest chromosome reaches sev-
eral millions. The focus of the thesis is the scalable implementation of the
Gabriel’s haplotype block partitioning algorithm that can be exploited to
genome-wide scale and integrated into current routines for analysis and
exploration of genetic data.

1.2 Contributions

In this thesis, we provide a series of new algorithms that significantly im-
prove the runtime and memory usage of the Gabriel’s LD-based haplotype
block partitioning method. The proposed algorithms allow us to scale the
haplotype block partitioning to genome-wide extent and to process very
dense datasets without any restrictions on the long range LD between
SNPs, which was previously impossible. Precisely, our contribution con-
sists of the following gradual optimizations:

1. The MIG algorithm improves the memory complexity from quadratic
to linear. In MIG, every genomic region has a weight that determines
if this region is a haplotype block. The weight of any extended region
can be computed from the weight of the previous region. This allows

13

constructing all possible haplotype blocks incrementally while stor-
ing only linearly growing number of weights at any computational
step.

2. The MIG+ and MIG++ algorithms introduce a sophisticated search
space pruning that improved the runtime by >80%. At every step
of the incremental haplotype block construction in MIG, additional
information about LD between SNPs in already processed area of a
chromosome is obtained and collected. In MIG+ and MIG++, we use
this information to check if a current region can be further extended
without violating a haplotype block definition. If not, then such re-
gion and any of its further extensions are omitted from computations.

3. The S-MIG++ algorithm is a sampling-based approach that outper-
forms MIG++ by another order of magnitude in terms of runtime. In
S-MIG++, the search space is pruned in two steps: (1) the upper limits
for all possible haplotype block boundaries are estimated using only
a small sample of SNP pairs; (2) exact haplotype block boundaries
are refined taking into account only SNP pairs within their estimated
upper limits.

1.3 Publications

The MIG, MIG+ and MIG++ algorithms were published in paper 2 and
were presented at conferences 3 and 4, while the S-MIG++ algorithm was
described in paper 1:

1. D. Taliun, J. Gamper, U. Leser and C. Pattaro. Fast Sampling-based
Whole-Genome Haplotype Blocks Recognition. Under review at
ACM Transactions on Computational Biology and Bioinformatics, 2014.

2. D. Taliun, J. Gamper and C. Pattaro. Efficient haplotype block recog-
nition of very long and dense genetic sequences. BMC Bioinformatics,
15:10, 2014.

3. D. Taliun, J. Gamper and C. Pattaro. A Fast Whole-Genome Detection
of LD-based Haplotype Blocks. Poster at 12th European Conference on
Computational Biology, Berlin, Germany, 2013.

4. D. Taliun, J. Gamper and C. Pattaro. Memory and Time Efficient
Genome-Wide Haplotype Block Estimation. Poster at European Math-
ematical Genetics Meeting, Leiden, Netherlands, 2013.

14

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we give a
short introduction into genetic terminology, describe the concept of linkage
disequilibrium and its measures, provide a detailed description of Gabriel’s
haplotype block partitioning approach. In Chapter 3, we give an overview
of the existing alternative haplotype block definitions and corresponding
partitioning algorithms. Chapter 4 presents the new memory and time ef-
ficient incremental computation of haplotype blocks implemented in the
MIG, MIG+ and MIG++ algorithms. The impact of an approximated LD
variance estimator on the runtime and haplotype block partitions is evalu-
ated. Chapter 5 describes the new sampling-based haplotype block recog-
nition algorithm, S-MIG++, which avoids approximations. In Chapter 6,
we provide an example of genome-wide haplotype block association scan
in North American Rheumatoid Arthritis Consortium (NARAC) dataset.
Chapter 7 presents the conclusions of the work and the future research di-
rections.

15

Chapter 2

Background

In this chapter, we provide the necessary background on the linkage-
disequilibrium patterns and underlying haplotype blocks that are present
across the entire genome. We give a formal Gabriel’s haplotype block defi-
nition and provide a detailed description of its most prominent implemen-
tation in the Haploview [14] software.

2.1 Single Nucleotide Polymorphisms

The genetic information is carried by deoxyribonucleic acid (DNA) that is
typically represented as a sequence of four nucleotide bases: adenine (A),
thymine (T), guanine (G), and cytosine (C). The DNA molecules are orga-
nized into chromosomes, where one chromosome corresponds to a single
extremely long molecule. Every normal human cell, except for eggs and
sperm, has two versions of each chromosome. Hence, it contains 23 pairs
of chromosomes, where 22 pairs are autosomes and one pair is the sex chro-
mosomes that determine gender. The entire set of 46 chromosomes is called
the genome.

A particular DNA region that has two or more variants among indi-
viduals in a population is called a polymorphism. Every different variant
that the polymorphism may obtain is called an allele. Several types of poly-
morphisms exist and the most common of them is the single nucleotide poly-
morphism (SNP). This particular type of polymorphisms corresponds to a
change of a nucleotide base at a single DNA sequence position. A SNP
can have from two to four alleles, although the major part of known SNPs
have only two alleles and are often referred to as biallelic. The specific allele
makeup for the individual is called a genotype, while a particular combina-
tion of adjacent alleles found on a single chromosome copy of the individ-
ual is termed a haplotype.

16

T A C A C T G A C A A G · · ·
T G C A C T G A T A A G · · ·
T A C A C T G A T A A G · · ·
T G C A C T G A C A A G · · ·
T A C A C T G A C A A G · · ·
T A C A C T G A C A A G · · ·
T A C A G T G A C A A G · · ·
T A C A G T G A C A A G · · ·
T A C A C T G A C A A G · · ·
T A C A C T G A C A A G · · ·

S = 〈 s1 s2 s3 · · ·

Chromosome copy 1:
Chromosome copy 2:
Chromosome copy 1:
Chromosome copy 2:
Chromosome copy 1:
Chromosome copy 2:
Chromosome copy 1:
Chromosome copy 2:
Chromosome copy 1:
Chromosome copy 2:

Individual 1

Individual 2

Individual 3

Individual 4

Individual 5

Figure 2.1: Chromosome and SNPs.

In this work, we consider biallelic SNPs in 22 human autosomes1.
Hence, we represent a single chromosome S as a sequence 〈s1, . . . , sn〉 of
n SNPs, where si denotes a SNP at position i. A particular region in the
S = 〈s1, . . . , sn〉 chromosome that starts at si SNP and ends at sj SNP is
referred to as Ri,j = 〈si, . . . , sj〉. For example, Figure 2.1 illustrates three ad-
jacent SNPs s1, s2, and s3 in chromosome S = 〈s1, . . . , sn〉, which was read
in five individuals, yielding then ten DNA sequences (i.e., two copies of
the chromosome per individual). At every SNP, two alleles were observed:
A/G at s1, C/G at s2 and C/T at s3. Individual 1 has A/G genotype at s1,
C/C genotype at s2, and C/T genotype at s3. In contrast, individual 4 has
A/A genotype at s1, G/G genotype at s2, and C/C genotype at s3. The ACC
and GCT haplotypes are located on the 1st and 2nd chromosome copies of
individual 1 at s1, s2, and s3 SNPs, respectively.

2.2 Linkage Disequilibrium

The non-random association between two alleles that are found in the same
haplotype is called linkage disequilibrium (LD). Lewontin and Kojima [16]
introduced the Di,j measure of LD between two SNPs si and sj with alleles
a1/a2 and b1/b2, respectively:

Di,j = fa1b1 · fa2b2 − fa1b2 · fa2b1 , (2.1)

where fa1b1 , fa1b2 , fa2b1 and fa2b2 denote the relative frequencies of the four
possible haplotypes a1b1, a1b2, a2b1 and a2b2, correspondingly.

Since the range of Di,j depends on the frequencies of alleles, Lewon-
tin [17] later proposed a normalized LD coefficient, D′i,j:

D′i,j =
Di,j

Dmaxi,j

, (2.2)

1Here and later throughout the thesis, genome refers to complete set of autosomes, and
chromosome and autosome are used interchangeably.

17

where

Dmaxi,j =

{
min(fa1 · fb2 , fa2 · fb1) if Di,j > 0
min(fa1 · fb1 , fb1 · fb2) if Di,j < 0

and fa1 , fa2 , fb1 and fb2 are the marginal frequencies of the corresponding
alleles a1, a2, b1 and b2 in the two SNPs. The D′i,j LD coefficient goes from
−1 to +1 and is independent of the allelic frequencies of the two SNPs
involved. When D′i,j = 0, the two SNPs are independent (perfect equilib-
rium), while |D′i,j| = 1 indicates that no more than three of the four possible
haplotypes are being observed in the sample (complete disequilibrium).

Figure 2.2 shows D′1,2, D′1,3, and D′2,3 between s1, s2, and s3 SNPs. For
example, the marginal frequencies of alleles A and G at s1 are fA = 0.8 and
fG = 0.2, while the marginal frequencies of alleles C and T at s3 are fC = 0.8
and fT = 0.2. The relative frequencies of four possible haplotypes AC, AT,
GC, and GT at s1 and s3 are fAC = 0.7, fAT = 0.1, fGC = 0.1 and fGT = 0.1.
This results in D1,3 equal to

D1,3 = 0.7 · 0.1− 0.1 · 0.1 = 0.06.

Since D1,3 > 0, then

Dmax1,3 = min(0.8 · 0.2, 0.2 · 0.8) = 0.16.

Consequently, the normalized D′1,3 LD coefficient between s1 and s3 SNPs
is equal to

D′1,3 =
0.06
0.16

= 0.375.

The remaining normalized LD coefficients D′1,2 and D′2,3 are computed in a
similar way. Note, that D′i,j is symmetric but not transitive.

Hill and Robertson [18] proposed an alternative normalized LD coeffi-
cient, r2

i,j, that is currently more commonly used than D′i,j to identify inde-
pendent signals in genome-wide association studies (GWASs):

r2
i,j =

D2
i,j

fa1 · fa2 · fb1 · fb2

. (2.3)

However, it has been shown that r2
i,j is not significantly more precise, ac-

curate or efficient than D′i,j [19]. Both coefficients capture similar informa-
tion but their range of variation can be very different. In contrast to D′i,j,
the range of ri,j greatly depends on the allele frequencies and equals −1
or +1 only when the two SNPs have the same allele frequency. In such
cases, |ri,j| = 1 indicates that knowing the allele at one SNP allows deter-
mining the allele at the other SNP (perfect disequilibrium). But when the
two SNPs have very different allele frequencies, the interpretation of r2

i,j be-
comes difficult. This is especially relevant with the data generated by the

18

A C C · · ·
G C T · · ·
A C T · · ·
G C C · · ·
A C C · · ·
A C C · · ·
A G C · · ·
A G C · · ·
A C C · · ·
A C C · · ·

S = 〈 s1 s2 s3 · · ·

|D′1,3|=0.375

|D′1,2|=1 |D′2,3|=1

b1 b2

a1 fa1b1 fa1b2 fa1

a2 fa2b1 fa2b2 fa2

fb1 fb2

sj

si

C G

A 0.6 0.2 0.8

G 0.2 0.0 0.2

0.8 0.2

s2

s1

C T

C 0.6 0.2 0.8

G 0.2 0.0 0.2

0.8 0.2

s3

s2

C T

A 0.7 0.1 0.8

G 0.1 0.1 0.2

0.8 0.2

s3

s1

Figure 2.2: The D′i,j linkage disequilibrium coefficient.

new sequencing technologies that allow genotyping SNPs over a very wide
spectrum of allele frequencies. In such situations, the r2

i,j may fail to identify
the correct relationship between nearby variants. In GWAS, this may lead
to a wrong definition of the identified loci. Therefore, D′i,j should remain
the statistics of choice for LD modeling because of its more direct biological
interpretation. It reflects the history of recombination, mutation, and selec-
tion events that cause some chromosomal regions to be less diverse than
others and, therefore, influence the haplotype distribution.

2.3 Alternative Ways to Model D’ Distribution

In this work, we considered two different methods to estimate the confi-
dence interval (CI) of |D′i,j|. First method is the likelihood-based procedure
proposed by Wall and Pritchard [20] and implemented in Haploview [14],
which requires from 100 to 1,000 iterations. The second method is based
on an approximated estimator of the D′i,j variance, as proposed by Zap-
ata et al. [21]. The latter method is computationally cheaper.

2.3.1 The Wall and Pritchard (WP) Method

The true allele frequencies of each SNP are assumed to be equal to the ob-
served allele frequencies. The likelihood of the data in the four-fold table
obtained by crossing any SNP pair, conditional to the |D′i,j| value, can be ex-
pressed as l=P(data||D′i,j|). l is evaluated at each value of |D′i,j| = 0.001× p,
with p = 0, 1, . . . , 1000. The lower bound of CI is defined as the largest
value of |D′i,j| such that ∑

p−1
k=0 l(k)/ ∑1000

k=0 l(k) ≤ α, where α is the signif-

19

icance level. Similarly, the upper bound of CI is defined as the smallest
value of |D′i,j| such that ∑1000

k=p+1 l(k)/ ∑1000
k=0 l(k) ≤ α.

2.3.2 The Approximate Variance (AV) Method

Consider two SNPs, si and sj, with alleles a1/a2 and b1/b2, respectively.
Zapata et al. [21] showed that the variance of D′i,j can be approximated as
follows:

V(D′i,j) ≈
((

1− |D′i,j|
)
×
(

N ·V(Di,j)− |D′i,j|Dmaxi,j(fa1 f1 + fa2 f2 − 2|Di,j|)
)

+ |D′i,j| f3(1− f3)
)/(

N · D2
maxi,j

)
,

where N is the total number of observed haplotypes; f1 is fb1 when D′i,j > 0
or fb2 when D′i,j < 0; f2 is fb2 when D′i,j > 0 or fb1 when D′i,j < 0; f3

is fa1b1 , fa1b2 , fa2b1 , and fa2b2 when Dmaxi,j is fa1 fb1 , fa1 fb2 , fa2 fb1 , and fa2 fb2 ,
respectively; and

V(Di,j) ≈
(

fa1 fa2 fb1 fb2 + Di,j(fa2 − fa1)(fb2 − fb1)− D2
i,j
)
/N.

When D′i,j = ±1, then V(D′i,j) = 0. The 1 − α CI of D′i,j is equal to

D′i,j ± Zα/2

√
V(D′i,j), where Zα/2 is the 1− α/2 percentile of the standard

normal distribution.

2.4 Haplotype Blocks

The maximal theoretically possible number of different haplotypes at m
adjacent biallelic SNPs is equal to 2m. However, the genetic make-up of
different individuals at some adjacent SNPs can be almost identical and at
such genomic regions the number of different haplotypes is significantly
less than expected. Such regions with reduced haplotype diversity were
termed haplotype blocks [1, 22].

For example, consider two adjacent SNPs s1 and s2 on Figure 2.3. Since
all four theoretically possible haplotypes GA, GC, TC and TA were ob-
served, the R1,2 = 〈s1, s2〉 region has high haplotype diversity and is a poor
candidate for haplotype block. In contrast, at adjacent SNPs s3, s4, s5, and
s6 only two out of 24 = 16 theoretically possible haplotypes were observed:
TCGA, TGGC. Thus, the R3,6 = 〈s3, . . . , s6〉 region may be a good candidate
for haplotype block.

There are many biological factors that influences the DNA diversity,
but the main factor for haplotype blocks is considered to be recombi-
nation events. By analyzing haplotype structure on chromosome 5q31,
Daly et al. [22] observed that regions of reduced haplotype diversity were

20

G A T C G A T G T A · · ·
G C T G G C C C T A · · ·
G C T C G A C G T A · · ·
T C T G G C T C T A · · ·
T A T G G C C C T A · · ·
G A T C G A C G T A · · ·
G C T C G A T G C C · · ·
G C T G G C T G T A · · ·
T A T C G A T C T A · · ·
T A T C G A C C T A · · ·

S = 〈 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 · · ·
SNPs

Diversity
Haplotype Frequency

s1, s2

GA 2
GC 4
TC 1
TA 3

s3, s4, s5, s6
TCGA 6
TGGC 4

s7, s8

TG 3
TC 2
CG 2
CC 3

s9, s10
TA 9
CC 1

Figure 2.3: Regions of reduced haplotype diversity.

s1

s1

s1000

s1000

Figure 2.4: LD heatmap of chr20:14,759,169-15,028,962 in the 1000 Genomes
Project data.

punctuated by apparent sites of recombination. Moreover, the presence of
underlying haplotypes of limited diversity is reflected in LD patterns. Us-
ing SNPs across entire chromosome 22, Dawson et al. [23] observed regions
of high LD that are interspersed with regions of low LD, where high LD
was in regions of low recombination. Figure 2.4 illustrates such LD pattern
of chr20:14,759,169-15,028,962 in the 1000 Genomes Project data [24]. Red,
green, and blue colors correspond to high, moderate, and low |D′i,j|, respec-
tively. The black line outlines the haplotype blocks. Hence, the LD between
two SNPs is related to the distance between them in the genome: nearby
SNPs are more likely to be in high LD than distant SNPs [25].

2.5 Gabriel’s Haplotype Blocks Recognition

The most commonly used haplotype block definition was proposed by
Gabriel et al. [13] and exploits the interconnection between underlying hap-
lotypes and LD patterns. The SNP pairs are classified into three classes
based on 90% CI of the |D′i,j| LD coefficient.

Definition 1. (Classification of SNP Pairs). Let S = 〈s1, . . . , sn〉 be a chromo-

21

some and [lbi,j, ubi,j] ⊆ [0, 1] be the 90% confidence interval of the |D′i,j| LD
coefficient between si and sj. The SNPs si and sj form

• a strong LD pair if lbi,j ≥ 0.7 and ubi,j ≥ 0.98,

• a strong EHR (evidence of historical recombination) pair if ubi,j < 0.9,
and

• a non-informative pair otherwise.

The strong LD and strong EHR pairs are also referred to as informative
pairs. Based on this classification, Gabriel et al. [13] introduced the follow-
ing formal definition of haplotype blocks.
Definition 2. (Haplotype Block). Let Ri,j = 〈si, . . . , sj〉 be a region of consecu-
tive SNPs in a chromosome S = 〈s1, . . . , sn〉, l the number of strong LD SNP
pairs in Ri,j, and r the number of strong EHR SNP pairs in Ri,j. Then, Ri,j is
a haplotype block if

(a) the two outermost SNPs, si and sj, form a strong LD pair, and

(b) there is at least a proportion d of informative pairs that are strong LD
pairs, i.e.: l/(l + r) ≥ d.

In their original work, Gabriel et al. [13] set d = 0.95 after investigating
the fractions of strong LD SNP pairs in genomic regions of different length
and in different populations2.

Definition 2 implies two important properties: haplotype blocks may
partially or completely overlap each other, and a haplotype block may con-
tain (sub)regions that do not represent haplotype blocks, i.e., do not satisfy
the above definition.

The most prominent implementation of Definition 2 is shipped with the
popular tool Haploview [14] and works in two steps3: (1) all regions sat-
isfying Definition 2(a) are collected in a set of candidate haplotype blocks;
(2) from this set of candidates, a subset of non-overlapping regions that
satisfy Definition 2(b) is selected. In the first step, the entire chromosome
is scanned and, for every SNP pair, the |D′i,j| CI is computed and stored
in an n× n matrix. The matrix is then traversed to identify the pairs that
satisfy Definition 2(a). These pairs mark regions of different length that
are candidates to become haplotype blocks. In the second step, the candi-
date regions are sorted by decreasing length and processed starting with
the largest one. If a region satisfies Definition 2(b), it is classified as a hap-
lotype block, and all other overlapping candidate regions are discarded.

2Here and later throughout the thesis, if not stated otherwise, we consider d always
equal to 0.95.

3Here and later throughout the thesis, the Haploview algorithm and the Gabriel’s algo-
rithm are used interchangeably.

22

Regions not satisfying Definition 2(b) are skipped. This process continues
with the next largest candidate region, until the candidate set is completely
processed and the list of haplotype blocks is complete.

The overall complexity of the algorithm is mainly determined by the
first step. More specifically, the Θ(n2) time and memory complexity is due
to the computation and maintenance of the n× n CI matrix. For this reason,
we focused our improvements on the first step of the algorithm.

23

Chapter 3

Related Work

The haplotype blocks have received considerable attention in the research
community, leading to a multitude of different haplotype block definitions
and algorithms for their recognition. However, in the absence of a com-
monly accepted formal definition, the most widely used definition is that
proposed by Gabriel et al. [13] and implemented in popular software appli-
cations such as Haploview [14] and PLINK [15]. In this chapter, we provide
a short overview of other available haplotype block definitions and algo-
rithms for their recognition.

3.1 Recombination Crossovers

Wang et al. [26] defined a haplotype block as a region of consecutive SNPs
where no recombination crossover was observed between any two SNPs
in the region. The presence of the recombination crossover is tested using
the four-gamete test (FGT): if all four possible haplotypes were observed
in two biallelic SNPs, then at least one historical recombination event has
happened. Hence, FGT implies a very conservative definition of haplotype
blocks. The proposed algorithm for haplotype blocks recognition starts
constructing a block from the very left of the chromosome by appending
SNPs while FGT didn’t show recombination with any other SNP in the
block. If the FGT showed the recombination, then the current block ends
and the new block starts. The algorithm has O(h · n) runtime complexity,
where h is the number of SNPs in the longest haplotype block and n is
the total number of SNPs in a chromosome. Although the computationally
fast FGT makes this algorithm very scalable, it didn’t become as popular as
other methods.

24

3.2 Haplotype Coverage

Patil et al. [1] proposed the haplotype block definition that uses a haplo-
type coverage criteria: a region of consecutive SNPs is a haplotype block
if more than 80% of haplotypes constitute of common haplotypes repre-
sented more than once in the region (i.e. 80% coverage). For every haplo-
type block, exists a minimal number of tag SNPs that uniquely discriminate
common haplotype in the block. The proposed greedy algorithm for haplo-
type blocks recognition maximizes the length of the blocks and minimizes
the number of required tag SNPs. It works in two steps: (1) all possible
regions of one SNP and longer are considered and regions with less than
80% coverage are excluded; (2) the overlapping regions are excluded prior-
itizing longer regions with less tag SNPs. The first step leads to exponential
runtime complexity and makes this greedy algorithm not scalable.

Zhang et al. [27] introduced a dynamic programming algorithm us-
ing the coverage-based haplotype block definition. Assuming the pre-
computed tag SNPs for every haplotype block, the space and runtime
complexities of the proposed algorithm are, correspondingly, O(m · n) and
O(h · m · n), where m is the number of tag SNPs, h is the number of SNPs
in the longest haplotype block, and n is the total number of SNPs in chro-
mosome. However, as Zhang et al. [27] noted, the computation of minimal
number of tag SNPs in the block is NP complete. Later, Zhang et al. [2, 28]
and Chen et al. [29] implemented a set of similar dynamic programming
algorithms under various constraints.

3.3 Minimal Description Length

Anderson and Novembre [30] proposed an algorithm for haplotype blocks
recognition based on the minimal description length (MDL) principle,
which captures both the LD decay and the reduced haplotype diversity.
According to the MDL principle, the best set of adjacent non-overlapping
haplotype blocks is the set that minimizes the number of bits required to
encode the data i.e., minimizes the description length of the data. The de-
scription length for a set of haplotype blocks is computed based on the es-
timated probabilities of haplotypes in blocks using Hidden Markov Chain
models. The iterative dynamic programming (IDP) algorithm explores all
possible sets of haplotype blocks and selects one that minimizes the de-
scription length. It has O(n3) runtime complexity and O(n2) memory com-
plexity, where n is the total number of SNPs in chromosome. The alterna-
tive approximate algorithm, IADP, has O(n2) runtime complexity and O(n)
memory complexity.

Manilla et al. [31] proposed an alternative MDL-based algorithm for
haplotype block partitioning. In contrast to Anderson and Novembre [30],

25

the description length for every haplotype block is computed without em-
ploying Markov model. Instead, haplotypes inside a block are clustered
using k-means clustering and the description length depends on the num-
ber of clusters within the block and how closely haplotypes within blocks
cluster together. The developed dynamic programming algorithm for com-
puting an optimal block partition has O(s · n3) time complexity, where s is
the number of haplotypes (i.e. 2× number of individuals) and n is the total
number of SNPs in chromosome.

Greenspan and Geiger [32] developed another MDL-based algorithm
based on Markov model. Their model is more complex than the model
proposed by Anderson and Novembre [30]. It allows accounting for recom-
bination hotspots, bottlenecks, genetic drifts, and mutations. In addition to
hapotype data, it accepts genotype data and performs haplotype resolu-
tion. However, Greenspan and Geiger [32] do not use dynamic program-
ming to infer a single globally optimal partition as in the method by Ander-
son and Novembre [30], but infer an ensemble of locally optimal models to
allow for the ambiguity of block partitioning. Authors state that if a bound
is placed on the maximum number of SNPs and ancestors in any block,
then the time complexity of their algorithm is O(m · s · n), where m is the
number of models to be sampled (e.g. 100 or more), s is the number of
haplotypes and n is the total number of SNPs in chromosome.

3.4 Probabilistic Methods

Pattaro et al. [33] introduced the MCMC Algorithm To Identify blocks of
Linkage DisEquilibrium (MATILDE) for clustering consecutive SNPs. The
MATILDE algorithm assumes that pairwise LD statistics arises from one
of two separate probability distribution functions, where one is the LD
distribution and another is the independence (i.e. non-LD) distribution.
Using the two distributions, algorithm constructs the vector of probability
scores, γ, for every block boundary between two adjacent SNPs si and si+1.
MATILDE allows using D′i,j or r2

i,j as an LD statistics of choice. The non-LD
probability distribution is estimated non-parametrically by randomly per-
muting genotypes between individuals, while the LD probability distribu-
tion is assumed to follow Beta distribution with the unknown parameters
α > 0 and β > 0 such that β > α. Then, for two given distributions, the
log-likelihood function is expressed using three unknown parameters γ, α
and β, which are estimated with Metropolis-Hastings algorithm.

The probabilistic graphical models (PAMs) offer a framework for an ac-
curate modeling of dependencies between random variables using graphs.
PAMs were considered as a promising approach for LD modeling and for
clustering SNPs [34]. They allow an accurate identification of SNP clusters
even in situations when SNPs are not necessary contiguous. The LD may be

26

modeled using directed graphs (Bayesian networks) or undirected graphs
(Markov random fields). Mourad et al. [35] proposed to use a forest of hi-
erarchical latent class models (FHLCM) which consists of a directed acyclic
graph whose non-connected components are trees. In FHLCM, leaves (ob-
served variables) represent SNPs and internal nodes are latent (unobserved
variables) organized in multiple layers, while edges represent conditional
dependencies between variables. The set of parameters in FHLCM is a ma-
trix of all conditional probability distributions. The learning of FHLCMs is
computationally demanding and consists of two parts: structure (i.e. nodes
and edges) learning, learning of parameters. The corresponding CFHLC
algorithm proposed by Mourad et al. [35] is able to process only up to ten
thousand of SNPs.

3.5 Comparison of Existing Methods

Schwartz et al. [36] compared the haplotype block partitions derived by
recombination-based Wang’s [26] method, LD-based Gabriel’s [13] method,
and haplotype coverage-based Patil’s [1] method. The assessment was
performed using 22,047 SNPs in chromosome 21 and 88 SNPs in chromo-
some 8. The measure of similarity between partitions was computed using
the number of shared haplotype block boundaries. The experimental re-
sults showed very poor agreement between haplotype block partitions de-
rived by different methods. However, the number of shared block bound-
aries was much greater than can be expected by chance. In terms of the
similarity between partitions, the recombination-based method was much
closer to LD-based and haplotype coverage-based methods than either of
those was to the other. Schwartz et al. [36] suggested that the contradiction
in block boundaries is due to the fact that haplotype blocks are not sharply
defined as the concept of discrete blocks would imply.

Schulze et al. [37] performed a formal comparison between Gabriel’s
and Patil’s methods using 33 SNPs in chromosome 18q21.32-33, 55 SNPs
in chromosome 22q13.31-32 and 54 SNPs in chromosome 22q13.33. Their
results showed that haplotype coverage-based method consistently identi-
fied fewer and larger haplotype blocks than the LD-based method. In both
methods, the number of identified haplotype blocks decreased when rarer
SNPs were excluded. Schulze et al. [37] noted that block partitions are sen-
sitive to different parameter choices (i.e. haplotype coverage and |D′i,j| CI
thresholds), but the results could not be reconciled by adjustment of this
parameters.

Ding et al. [38] compared Wang’s, Gabriel’s and Patil’s methods us-
ing systematic simulations under various population-genetics parameters
(mutation and recombination rates) and under different recombination
models (coalescent model with uniform recombination and recombination

27

hotspots). They concluded that the recombination-based method appears
to be much closer to the LD-based method than either of those is to the
haplotype coverage-based method under two recombination models.

Using coalescent simulations Indap et al. [39] generated 1,000 haplo-
types with high SNPs density (1,349 SNPs in 200kb region) to compare
haplotype block partitions derived by Gabriel’s method, Patil’s method
and MDL-based method from Anderson and Novembre [30]. Their re-
sults showed that the haplotype coverage-based method generally in-
ferred the largest number of blocks of smallest size, which contradicts
to Schulze et al. [37]. The MDL-based method inferred the fewest num-
ber of blocks of largest size. While there were very few exact matching
block boundaries between different partitions, there were a large amount
of common block regions between them. For all methods, the number of
detected haplotype blocks increased with the increased density of SNPs.
Consequently, the average number of base pairs per block decreased with
a higher density of SNPs. The increase in SNPs density had a more dra-
matic effect on the Gabriel’s method than other two methods due to fact
that LD patterns are sensitive to SNPs density and may change with the ad-
dition of more SNPs. In contrast to Schulze et al. [37], the number of blocks
detected by each method didn’t decrease when rare SNPs were excluded.
Indap et al. [39] concluded that there is a great divergence in haplotype
blocks detected by each method and advised to use multiple algorithms in
parallel to comprehensively account for haplotype block structure in ge-
netic studies.

Pattaro et al. [33] proposed the probabilistic MATILDE algorithm for
haplotype block partitioning and compared it to Wang’s, Gabriel’s and
Patil’s methods using first 500 SNPs in chromosome 14q11 from HapMap
phase II [40] dataset. Methods were compared using Cohen’s κ statistics
on the number of shared break points. The results showed that the hap-
lotype block partition derived by MATILDE was more similar to the LD-
based method than to the haplotype coverage-based method, which can
be explained by the fact that block estimations in MATILDE are based on
LD patterns. Also, experiments confirmed results of Schulze et al. [37] that
Gabriel’s method generate higher number of smaller blocks compared to
Patil’s method.

In summary, all evaluations agree on existence of block-like patterns in
human genome. Although the agreement between different block parti-
tioning algorithms is low, it is still higher than can be expected by chance.
The differences is due to the absence of a universal haplotype block defi-
nition, since it is not clear how exactly genetic processes of mutation, drift,
and recombination affect the formation of haplotype blocks. Despite this,
the concept of haplotype blocks has a big impact on analysis and interpre-
tation of genetic data.

28

Chapter 4

Incremental Computation of
Haplotype Blocks

In this chapter, we describe how we improved the efficiency and scalability
of Haploview algorithm by adopting an incremental computation of the
haplotype blocks based on iterative chromosome scans. The incremental
computation strategy led to an algorithm, termed MIG++, that has Θ(n)
memory complexity and omits more than 80% of the pairwise LD com-
putations, while obtaining exactly the same final haplotype bock partition
as Haploview. In contrast to Haploview, the new algorithm can consider
pairwise LD between SNPs at any distance.

4.1 SNP-pair and Region Weights

The core ideas of our optimizations are to compute haplotype blocks incre-
mentally and to omit, as soon as possible, regions that cannot be extended
to larger blocks due to an insufficient proportion of strong LD SNP pairs. In
this way, we avoid both unnecessary computations and the storage of an
n× n CI matrix. The incremental haplotype block computation is based on
the concepts of a SNP-pair weight and a region weight described below.
Definition 3. (SNP-pair weight). Let d be a threshold as defined in Defini-
tion 2. For a given pair of SNPs si and sj, the SNP-pair weight, w(i, j), is
defined as follows:

w(i, j) =


1− d if si and sj is a strong LD pair,
−d if si and sj is a strong EHR pair,
0 otherwise.

Definition 4. (Region weight). Let Ri,j be a chromosome region. The region

29

weight of Ri,j, w̄(i, j), is defined as the sum of all SNP-pair weights in Ri,j:

w̄(i, j) =
j

∑
v=i+1

v

∑
u=i

w(u, v).

The following theorem defines a haplotype block based on the region
weight.

Theorem 1 Let Ri,j be a chromosome region. Ri,j is a haplotype block if w(i, j) =
1− d and w̄(i, j) ≥ 0.

Proof. From Definition 3, if SNPs si and sj form a strong LD pair, then
w(i, j) = 1 − d. Therefore, Definition 2(a) is satisfied. Ri,j contains

L = ∑
j
v=i+1 ∑v

u=i 1 possible SNP pairs, of which l are strong LD pairs, r are
strong EHR pairs, and the remaining ones are non-informative. From Defi-
nitions 3 and 4, it follows that w̄(i, j) = ∑

j
v=i+1 ∑v

u=i w(u, v) = l(1− d) +
r(−d) + (L− l− r)·0 = l− d(l + r). If w̄(i, j) ≥ 0, then l− d(l + r) ≥ 0 =⇒
l/(l + r) ≥ d. Therefore, Definition 2(b) is also satisfied. �

Theorem 1 is the basis for the incremental haplotype block reconstruc-
tion, which is the core of our optimizations. In the following, we present
three gradual improvements of the Haploview algorithm: a memory-
efficient implementation based on the Gabriel et al. [13] definition (MIG);
MIG with additional search space pruning (MIG+); and MIG+ with it-
erative chromosomal processing (MIG++). Theorem 1 ensures that all
three algorithms produce block partitions that are identical to the original
Haploview results.

4.2 The MIG Algorithm

For a given chromosome S containing n SNPs, the maintenance of an n× n
matrix containing all the |D′i,j| CIs can be avoided by storing n region
weights in a unidimensional vector Wn×1. In each element of W, W[i], we
store the weight of a chromosomal region that starts at SNP si. When the re-
gion is enlarged by including additional SNPs to the right of si, the weight
W[i] is updated accordingly. This procedure, illustrated in Figure 4.1, be-
gins with setting all the weights to 0. At the initial stage, the vector W rep-
resents all one-SNP regions. Then, the region starting at SNP s1 is enlarged
by including the next SNP, s2. Therefore, starting from s2, chromosome S
is processed one SNP after the other, from left to right. For a SNP sj, with
j ≥ 2, all SNP pair weights w(i, j), i = j− 1, ..., 1, are computed and added
up as σ = w(j− 1, j) + · · ·+ w(i, j).

30

s1 snS = 〈 〉sj

w(1, j)

si

w(i, j)

si+1

σ = w(j− 1, j) + · · ·+ w(i, j)

w̄(i, j)
w̄(1, j)

Regions under
processing

Regions to
be processed

W
1

i

j− 1
j

n

w̄(1, j)
...

w̄(i, j)
...

w̄(j− 1, j)
0
...
0

Figure 4.1: Processing a chromosome with the MIG algorithm.

σ and W[i] are updated for every computed weight w(i, j). Before
the update, σ = w(j − 1, j) + · · · + w(i − 1, j) and W[i] contains the re-
gion weight w̄(i, j − 1), which was already computed for the previous
SNP sj−1. Then, σ is incremented by w(i, j) and W[i] is incremented by
the new value of σ. W[i] now represents the region weight w̄(i, j), i.e.,
w̄(i, j) = w̄(i, j− 1) + w(j− 1, j) + · · ·+ w(i, j). Whenever w(i, j) = 1− d
and w̄(i, j) ≥ 0, Theorem 1 is satisfied and the region 〈si, . . . , sj〉 is added to
the set of candidate haplotype blocks. This procedure is repeated with the
next SNP, sj+1. The pseudocode is provided in Algorithm 1.
Example 1. An example of the first three computational steps is given in Fig-
ure 4.2. The vector W and the variable σ are initialized to 0. The processing
starts at s2 with the analysis of the region 〈s1, s2〉. The SNP-pair weight
w(1, 2) is computed and added to σ. Then, the region weight w̄(1, 2) is
incrementally computed as W[1] + σ and stored in W[1] (by replacing the
old value). Next, SNP s3 is processed. After initializing σ = 0, weight
w(2, 3) is computed and stored in σ. w̄(2, 3) is incrementally determined
as W[2] + σ, and stored in W[2]. Then, weight w(1, 3) is computed, and
w̄(1, 3) = w̄(1, 2) + w(2, 3) + w(1, 3) = W[1] + σ. The next SNP to the
right, s4, is processed in a similar way.

MIG reduces the memory complexity from Θ(n2) to Θ(n). Moreover,
instead of identifying candidate regions that satisfy only Definition 2(a) (as
in Haploview), MIG checks immediately both conditions (a) and (b). This
yields a smaller set of candidate blocks, and therefore indirectly speeds up
also the second step of the Haploview algorithm.

31

1: processing s2 i = 1, j = 2

σ

s1 s2 s3 s4

w(1, 2)
σ

∑
w(1, 2) 1

W

2
3

w̄(1, 2)0
0
0

w̄(1, 2) = W[1] + σ

2: processing s3 i = 2, j = 3

σ

s1 s2 s3 s4

w(2, 3)
σ

∑
w(2, 3) 1

W

2
3

w̄(1, 2)
w̄(2, 3)0

0

w̄(2, 3) = W[2] + σ

i = 1, j = 3
σ
W[1]

s1 s2 s3 s4

w(1, 3)
σ

∑
w(2, 3)
w(1, 3)

1
W

2
3

w̄(1, 2)
w̄(2, 3)

0

w̄(1, 3) = W[1] + σ

3: processing s4 i = 3, j = 4

σ

s1 s2 s3 s4

w(3, 4)
σ

∑
w(3, 4) 1

W

2
3

w̄(1, 3)
w̄(2, 3)
w̄(3, 4)0

w̄(3, 4) = W[3] + σ

i = 2, j = 4
σ
W[2]

s1 s2 s3 s4

w(2, 4)
σ

∑
w(3, 4)
w(2, 4)

1
W

2
3

w̄(1, 3)
w̄(2, 3)
w̄(3, 4)

w̄(2, 4) = W[2] + σ

i = 1, j = 4
σ
W[1]

s1 s2 s3 s4

w(1, 4) σ

∑
w(3, 4)
w(2, 4)
w(1, 4)

1
W

2
3

w̄(1, 3)
w̄(2, 4)
w̄(3, 4)

w̄(1, 4) = W[1] + σ

Figure 4.2: The first three computational steps of the MIG algorithm.

4.3 The MIG+ Algorithm

While MIG drastically reduces the memory requirements by avoiding the
maintenance of the CI matrix, it still computes weights for all SNP pairs,
totaling n(n− 1)/2 computations as in Haploview. To omit more unneces-
sary computations, we apply a search space pruning to the MIG algorithm
to identify regions that cannot be further extended to form a haplotype
block. The pseudocode of the new algorithm, MIG+, is shown in Algo-
rithm 2.

Instead of computing weights for all pairs of SNPs, only weights w(j−
1, j), . . . , w(b, j) are computed, where b = min({i | 1 ≤ i < j ∧ w̄max(i, j) ≥
0}) and w̄max(i, j) = max{w̄(i, k) | j < k ≤ n}. The function w̄max(i, j) is
an upper bound for the weight of all regions 〈si, . . . , sj, . . . , sk〉 that start at
si and end after sj, i.e., those extending beyond the region 〈si, . . . , sj〉. If
w̄max(i, j) < 0 for some i, none of the regions 〈si, . . . , sk〉 can satisfy Def-
inition 2(b). The smallest i, that can be a potential starting point of a re-
gion with a positive weight, can therefore be set as breakpoint b. Regions
starting left of b and stopping right of j receive negative weights and are
discarded. Figure 4.3 schematically illustrates the pruning step. w̄max(i, j)
is computed taking into account the SNP-pair weights computed at the
previous stages and colored in gray. Since w̄max(i, j) < 0 for any region
that starts before the SNP sb and ends after the SNP sj, then the SNP-pair
weights within the hatched area are omitted from computation.

32

Algorithm 1: MIG
Data: S = 〈s1, . . . sn〉
Result: H = ∅

W ← 〈0, . . . , 0〉 ;
for j = 2 to n do

σ← 0;
for i = j− 1 downto 1 do

w← w(i, j);
σ← σ + w;
W[i]←W[i] + σ;
if w = 1− d and W[i] ≥ 0 then

H← H ∪ 〈si , . . . , sj〉;

return H;

Algorithm 2: MIG+

Data: S = 〈s1, . . . sn〉
Result: H = ∅

W ← 〈0, . . . , 0〉;
new_b← 1;
for j = 2 to n do

σ← 0;
b← new_b;
new_b← j;
for i = j− 1 downto b do

w← w(i, j);
σ← σ + w;
W[i]←W[i] + σ;
if w = 1− d and W[i] ≥ 0 then

H← H ∪ 〈si , . . . , sj〉;
if w̄max(i, j) ≥ 0 then

new_b← i;

return H;

33

s1 sj sj+1 snsb si

w(i, j)

w̄(i, j)

w̄(i, k)

w̄max(i, j) = max{w̄(i, k) | k > j}

Figure 4.3: Processing a chromosome with the MIG+ algorithm.

The upper bound, w̄max(i, j), is estimated assuming that all unprocessed
SNPs to the right of sj are in strong LD with each other and with all SNPs in
the region 〈si, . . . , sj〉. Then, w̄(i, k) ≤ w̄(i, j) + (1− d) · L, where w̄(i, j) is
already computed and L = ((j− i + 1) + (k− i))(k− j)/2 is the number of
unprocessed SNP pairs. Since L is largest for the longest region 〈si, . . . , sn〉,
we have max{w̄(i, k) | k > j} ≤ w̄(i, j) + (1− d) · ((j− i + 1) + (n− i))(n−
j)/2, and the estimated upper bound w̄max(i, j) is defined as follows:

w̄max(i, j) = w̄(i, j) + (1− d) · ((j− i + 1) + (n− i))(n− j)/2. (4.1)

The MIG+ algorithm performs at most λn(n − 1)/2 computations,
where λ, 1− d ≤ λ ≤ 1, depends on the data. The worst case of λ = 1
occurs only in the unlikely situation when a few very large blocks span an
entire chromosome.

4.4 The MIG++ Algorithm

A limitation of the MIG+ algorithm is its blindness about the unprocessed
area to the right of the current SNP sj. Assuming strong LD for all SNP
pairs in this area results in a conservative upper bound, w̄max(i, j), for the
region weights. An additional optimization step allows obtaining a more
precise estimate of w̄max(i, j) and further pruning of unnecessary compu-
tations. The pseudocode of the modified algorithm, MIG++, is given in
Algorithm 3.

The improved algorithm is an iterative procedure that, at each itera-
tion, scans the chromosome from left to right and computes the weights
only for a limited number of SNP pairs. For a SNP sj, the SNP pairs con-
sidered in an iteration are restricted to a window of size win: only the
weights w(j−1, j), . . . , w(t, j) are computed, where t = max({b, j−win})
and 1 ≤ win ≤ n. At each new iteration, the window size is increased

34

Algorithm 3: MIG++

Data: S = 〈s1, . . . sn〉
Input: win
Result: H = ∅

W ← 〈0, . . . , 0〉 ;
σ← 〈0, . . . , 0〉 ;
T← 〈2, . . . , n〉 ;
B← 〈2, . . . , n〉 ;
new_win← 0 ;
calculations← 1;
while calculations > 0 do

new_win← new_win + win;
calculations← 0;
b← 1;
new_b← 1;
for j = 2 to n do

if new_b = B[j− 1] then
B[j− 1]← b;
b← T[j− 1];
new_b← T[j− 1];
continue;

if i− new_b > new_win then
B[j− 1]← j− new_win;
b← j− new_win;

else
B[j− 1]← b;
b← new_b;

new_b← T[j− 1];
for i = T[j− 1]− 1 downto b do

w← w(i, j);
σ[j− 1]← σ[j− 1] + w;
W[i]←W[i] + σ[j− 1];
if w = 1− d and W[i] ≥ 0 then

H← H ∪ 〈si , . . . , sj〉;
if w̄max(i, j) ≥ 0 then

new_b← i;

calculations← calculations + 1;

T[j− 1]← b;

return H;

35

win

s1 sj sj+1 snst si

w(i, j)

w̄(i, j)

w̄(i, k)

w̄max(i, j) = max{w̄(i, k) | k > j}

Figure 4.4: Processing a chromosome with the MIG++ algorithm.

by a number of SNPs equal to win. Therefore, the number of computed
SNP-pair weights increases proportionally. This allows a more precise es-
timation of the upper bounds for the region weights with every new it-
eration. Figure 4.4 illustrates the pruning step in MIG++. The SNP-pair
weights computed at the previous stages are distributed uniformly across
entire chromosome and are colored in gray. The SNP-pair weights within
the hatched area are omitted from computation if w̄max(i, j) < 0 for any
region that starts before the SNP st and ends after the SNP sj, or st is out
of the window win (in the latter case the omitted SNP-pair weights may be
used in the next iteration).

By considering all SNP-pair weights computed in all previous itera-
tions for the estimation of the upper bound, w̄max(i, j), the algorithm re-
quires linear time for each individual SNP pair to sum up all weights in-
side the corresponding region. We use a computationally cheaper constant-
time solution, though it may lead to a less accurate estimation. Since
w̄(i, k) ≤ w̄(i, j) + w̄(1, k) − w̄(1, j), we have max{w̄(i, k) | k > j} ≤
w̄(i, j) + max{w̄(1, k) | k > j} − w̄(1, j). An upper bound w̄max(i, j) can
then be computed as follows:

w̄max(i, j) = w̄(i, j) + max{w̄(1, k) | k > j} − w̄(1, j). (4.2)

max{w̄(1, k) | k > j} is computed in linear time after every scan of the chro-
mosome, whereas w̄(1, j) is computed in constant time. Thus, the compu-
tation of the upper bound w̄max(i, j) for each individual SNP pair requires
only constant time.

When win = n, MIG++ is identical to MIG+. When win = 1, the num-
ber of iterations becomes too large, introducing a significant computational
burden. We propose to set win = d(n− 1)(1− d)/2e, that corresponds to
1− d percent of all SNP pairs, which is the minimal fraction of SNP pairs
that must be considered before one can be sure that an n-SNP segment is
not a haplotype block.

36

The MIG++ performs at most λn(n− 1)/2 computations, where λ, 1−
d ≤ λ ≤ 1, depends on the data. However, the value of λ obtained with
the MIG++ algorithm is expected to be always smaller than that from the
MIG+ algorithm, because of the more precise estimation of w̄max(i, j).

4.5 Experimental Evaluation

The experimental evaluation was based on the phased CEPH geno-
types included in the HapMap phase II (HapMapII) [40] and the
1000 Genomes Project phase 1 release 3 (1000G) [24] databases. The
HapMapII dataset included 2,543,857 SNPs from 120 haplotypes (60 indi-
viduals) and the 1000G dataset included 10,858,788 SNPs from 170 haplo-
types (85 individuals).

To compare the new algorithms to the standard Haploview, in terms of
runtime and memory usage, the ideal solution would have been that of ran-
domly sampling regions with different characteristics from the HapMapII
or 1000G datasets. However, the Haploview algorithm was so computa-
tionally expensive that it prohibited to consider a sufficiently large number
of random regions and, therefore, to obtain a representative sample of all
possible scenarios over the whole genome. For this reason, we selected
the regions such that the most extreme scenarios, in terms of median SNP
minor allele frequency (MAF) and median inter-SNP distance, were cov-
ered. To identify such representative regions, we performed the systematic
scan of all SNPs in the genome using a sliding window of 1,000 SNPs, after
removing chromosomal centromeres and the HLA region. For each slid-
ing region, the median MAF and inter-SNP distance were recorded (Fig-
ure A.1). All regions were then represented in a two-dimensional Euclidean
space, where the normalized inter-SNP distance was plotted against the
normalized median MAF (Figure A.2). A total of nine regions were chosen
for the experiments: the eight regions located on the outermost boundaries
of the Euclidean space and the region closest to the center of the space.
These regions represent scenarios with extreme and moderate median MAF
and median inter-SNP distance. The procedure was repeated using larger
sliding windows of 5,000 to 30,000 SNPs. If not stated otherwise, in the ex-
perimental results we report median values over the nine regions for every
different window size.

The block partitions obtained with the WP and AV methods for |D′i,j|
CI estimation were compared in terms of total number of blocks, median
number of SNPs per block, proportion of SNPs clustered into blocks, and
median within block haplotype diversity. Haplotype diversity [1, 27] is de-
fined as the ratio between the number of common haplotypes and the to-
tal number of haplotypes within a block. Common haplotypes are those
occurring more than once. The haplotype diversity index ranges from 0

37

0

20

40

60

80

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

R
un

ti
m

e
(h

ou
rs

) Haploview
MIG
MIG+

MIG++

(a)

10 0

10 1

10 2

10 3

10 4

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

M
em

or
y

(M
B)

Haploview
MIG, MIG+

MIG++

(b)

Figure 4.5: Performance of the algorithms with the WP method, when ap-
plied to the 1000G dataset.

(complete diversity) to 1 (no diversity).
The three MIG algorithms were implemented in C++. To guarantee a

fair comparison, the original Java implementation of the Haploview algo-
rithm was rewritten in C++, too. By default, Haploview considers only
SNP pairs within a maximal distance of 500 Kbp. We removed this con-
straint because it could affect the block partitions of very wide regions. The
confidence intervals of |D′i,j| were estimated using the Wall and Pritchard
method [20] based on a likelihood function evaluated on a 1,000 points
grid (100 in the original Haploview implementation). We didn’t consider
the population specific two-, three-, and four-marker rules, proposed by
Gabriel et al. [13] when very short regions are processed, because they have
no impact on the computational efficiency of the algorithms. All experi-
ments were run on a machine with an Opteron 8356 Quad Core (2.3GHz)
CPU.

4.5.1 Runtime and Memory Usage with the WP Method

Figure 4.5 shows runtime and memory performance of Haploview and the
three MIG algorithms based on the WP method, when applied to the 1000G
dataset. Since both Haploview and MIG perform n(n−1)/2 computations,
it was expected to see identical runtime: both of them took 80 hours to
process regions of 30,000 SNPs. However, MIG used three orders of mag-
nitude less memory than Haploview (3 MB vs. 7 GB). The runtime was sig-
nificantly reduced with MIG+ (27 hours) and even further with MIG++

(14 hours). The runtime difference between algorithms increased with the
region size (number of SNPs). Memory usage was identical for MIG and
MIG+, whereas MIG++ required slightly more memory to store the compu-
tational status between iterative region scans. Similar results were obtained
on the HapMapII dataset (results not shown).

38

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

λ

MIG+

MIG++

(a) HapMapII

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

λ

MIG+

MIG++

(b) 1000G

Figure 4.6: The λ pruning coefficient for MIG+ and MIG++ with the WP
method.

Figure 4.7: LD heatmap of chr20:31,767,872-33,700,401 in the HapMapII
dataset, which contains 1,000 polymorphic SNPs.

The MIG++ omitted more unnecessary computations than MIG+,
which is reflected by the smaller λ coefficient in both HapMapII and 1000G
datasets (Figure 4.6). The λ values decreased with increasing number of
SNPs in the region. When increasing the region size, after a rapid decline
for small regions, λ reached stable values with both MIG+ and MIG++ al-
gorithms and in both datasets. This behavior relates to the LD decay with
distance. In regions of 30,000 SNPs in the 1000G dataset, the MIG++ al-
gorithm was able to omit ∼80% of the calculations (λ∼0.20), while MIG+

could omit ∼60% of the calculations (λ∼0.40). An example of the reduc-
tion of the number of calculations is given in Figure 4.7, where MIG+ and
MIG++ are compared to Haploview, which is represented by the entire tri-
angle.

39

0
1
2
3
4
5
6
7
8
9

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

R
un

ti
m

e
(h

ou
rs

) WP
AV

(a) MIG

0

100

200

300

400

500

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

R
un

ti
m

e
(h

ou
rs

) WP
AV

(b) Haploview

Figure 4.8: Impact of the WP and AV methods on runtime, when applied
to the 1000G dataset.

4.5.2 Runtime and Memory Usage with the AV Method

When we introduced the AV method to estimate the |D′i,j|CI, we observed a
drastic reduction of the computational time of the MIG algorithm. With the
AV approach, the median runtime needed to analyze sequences of 10,000
SNPs in the 1000G dataset was of 2 minutes. The same analysis took a me-
dian of 8.7 hours with the WP method (Figure 4.8(a)). Proportional time
reduction was observed for MIG+ and MIG++. Similar results were ob-
tained in the HapMapII dataset (results not shown).

We observed that the introduction of the AV method caused a slight in-
crease of the λ coefficient (Figure 4.9). This is because, with the AV method,
more SNP pairs are classified to be in strong LD. This causes an increase
of the number of possible configurations to be checked and results in a
larger set of candidate haplotype blocks. With the AV method, the MIG
algorithms identified tens of millions of candidate haplotype blocks (Fig-
ure 4.10). The number of candidate blocks was even larger when the AV
method was applied directly to Haploview, where candidate blocks need
to satisfy only Definition 2(a). This significantly larger number of candidate
blocks explains the increase in runtime of Haploview when using the AV
method: for regions of 5,000 SNPs in the 1000G dataset, the median run-
time was of 451 hours with the AV against the 2 hours with the WP method
(Figure 4.8(b)).

4.5.3 Block Partitions with the WP and AV Methods

The characteristics of the different block partitions obtained with the WP
and AV methods are summarized in Figure 4.11. The AV method produced
a smaller number of blocks than the WP method (top panels). The median
number of blocks per region increased along with the number of SNPs,

40

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

λ

WP
AV

(a) HapMapII

0.0

0.2

0.4

0.6

0.8

1.0

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

λ

WP
AV

(b) 1000G

Figure 4.9: The λ pruning coefficient for MIG++: comparison between WP
and AV methods.

0

5

10

1 5 10 15 20 25 30
Number of SNPs per region (×103)

N
um

be
r

of
C

an
di

da
te

Bl
oc

ks
(×

10
5)

WP
AV

(a) HapMapII

0

50

100

1 5 10 15 20 25 30
Number of SNPs per region (×103)

N
um

be
r

of
C

an
di

da
te

Bl
oc

ks
(×

10
5)

WP
AV

(b) 1000G

Figure 4.10: Number of candidate haplotype blocks detected by the MIG,
MIG+ and MIG++ algorithms with the WP and AV methods.

and it increased faster for the WP compared to the AV method. Consider-
ing the median number of SNPs per block, the AV method produced larger
blocks than the WP method (middle panels). For very short regions (e.g.,
1,000 SNPs) both methods generally induced larger blocks. This is because
such small regions might be completely covered by a single or very few
haplotype blocks. The median number of SNPs per block decreased along
with the increase of the length of the region considered. Overall, the AV
method assigned a higher percentage of SNPs to blocks compared to the
WP method, which left more singleton SNPs outside of any block (bot-
tom panels). In the analysis of the HapMapII dataset, 98.4% of the SNPs
were clustered within blocks with the AV method and 90.5% with the WP
method. In the analysis of the 1000G dataset, the percentages were of 99.7
and 86.8, respectively.

We observed that 100% of the blocks identified by the WP method were

41

0

1000

2000

3000

1 5 10 15 20 25 30

N
um

be
r

of
Bl

oc
ks

WP
AV

20

40

60

1 5 10 15 20 25 30

M
ed

ia
n

no
.o

fS
N

Ps
pe

r
bl

oc
k

WP
AV

70

80

90

100

1 5 10 15 20 25 30
Number of SNPs per region (×103)

%
of

SN
Ps

in
bl

oc
ks

WP
AV

(a) HapMapII

0

500

1000

1500

1 5 10 15 20 25 30

WP
AV

0

250

500

750

1000

1 5 10 15 20 25 30

WP
AV

20

40

60

80

100

1 5 10 15 20 25 30
Number of SNPs per region (×103)

WP
AV

(b) 1000G

Figure 4.11: Haplotype block characteristics of WP and AV methods.

overlapping blocks identified by the AV method. More specifically, 80%
to 90% of the blocks based on the WP method were completely included
within blocks based on the AV method (Figure 4.12). The remaining 10% to
20% of WP blocks whose borders were crossing borders of AV blocks, could
be entirely attributed to the selection mechanism in the step (2) of the algo-
rithm, when larger candidate blocks are prioritized over the shorter ones.
In fact, when, instead of looking at the final block partition, we focused
on the intermediate set of candidate blocks before the final pruning, we
observed that 100% of the candidates from the WP method were entirely
included within the candidate blocks from the AV method.

Consistently with the findings of larger AV blocks, we observed a gen-

42

60

70

80

90

100

1 5 10 15 20 25 30
Number of SNPs per region (×103)

%
of

W
P

bl
oc

ks
in

si
de

A
V

(a) HapMapII

60

70

80

90

100

1 5 10 15 20 25 30
Number of SNPs per region (×103)

%
of

W
P

bl
oc

ks
in

si
de

A
V

(b) 1000G

Figure 4.12: Number of blocks detected with the WP method that are com-
pletely inside blocks detected with the AV method.

0.900

0.925

0.950

0.975

1.000

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

D
iv

er
si

ty
in

Bl
oc

k

WP
AV

(a) HapMapII

0.00

0.25

0.50

0.75

1.00

1 5 10 15 20 25 30
Number of SNPs per region (×103)

M
ed

ia
n

D
iv

er
si

ty
in

Bl
oc

k

WP
AV

(b) 1000G

Figure 4.13: Within-block haplotype diversity with WP and AV methods.

erally higher haplotype diversity in the partitions obtained with the AV
method compared to the WP method (Figure 4.13). For instance, when con-
sidering regions of 30,000 SNPs in the 1000G dataset, we observed median
within-block haplotype diversity indices of 0.876 and 0.982 with the AV and
WP methods, respectively. Slightly higher diversity indices were observed
in the HapMapII dataset: 0.975 and 0.992 for the AV and WP methods, re-
spectively. The within-block diversity was more variable in short than in
long regions because, as observed above, when regions are too small, then
it might be difficult to identify more than one block.

4.5.4 Whole Genome Partition

The linear memory complexity and the significant reduction of the number
of computations allowed us to run MIG++ on a genome-wide scale. We
could run MIG++ on the full HapMapII dataset using both the WP and
AV methods for |D′i,j| CI derivation. Using the more efficient AV method,

43

10 -1

10 0

10 1

10 2

10 3

50 100 150 200
Number of SNPs per chromosome (×103)

R
un

ti
m

e
(h

ou
rs

)

WP
AV

(a) HapMapII

10 0

10 1

10 2

200 400 600 800 1000
Number of SNPs per chromosome (×103)

R
un

ti
m

e
(h

ou
rs

)

AV

(b) 1000G

Figure 4.14: Runtime of the MIG++ algorithm on whole-genome data.

we were also able to run a genome-wide haplotype block partition of the
complete 1000G dataset. The runtime for the two datasets is shown in Fig-
ure 4.14. For HapMapII, the maximal runtime was of 1 hour when using
the AV method and of 457 hours when using the WP method. In both
cases, the maximal runtime was observed for chromosome 2, which con-
tained 220,833 SNPs. The median λ value across all chromosomes was
0.129 (min=0.125, max=0.133) for the AV method and 0.103 (min=0.099,
max=0.110) for the WP method. For the 1000G dataset, the maximal run-
time using the AV method was of 44 hours on chromosome 2, which con-
tained 913,923 SNPs. The median λ value across all chromosomes was
0.216 (min=0.206, max=0.224). The maximal memory usage was very low
and didn’t exceed 151 MB and 3.6 GB for the HapMapII and 1000G datasets,
respectively.

Figure 4.15 shows the number of haplotype blocks per chromosome. In
the HapMapII dataset, the largest number of blocks occurred in chromo-
some 2: 14,164 blocks with the WP method and 7,482 blocks with the AV
method. The number of blocks detected with the WP method was always
exceeding the number of blocks detected with the AV method. For some
chromosomes, the partitions obtained by the WP method contained almost
twice as many blocks as the partitions obtained by the AV method. When
using the AV method, we detected a very similar number of blocks in the
HapMapII and 1000G datasets. Across all chromosomes, 100% of the blocks
detected with the WP method were overlapping blocks detected with the
AV method. The median percentage of the WP blocks completely covered
by the AV blocks was 0.797 (min=0.773, max=0.813).

The characteristics of the whole-genome block partitions obtained with
the AV and WP methods are summarized in Table 4.1. The results were sim-
ilar to the experiments on smaller regions. In the HapMapII dataset, fewer
and larger blocks were detected with the AV method than with the WP
method. With the AV method, a higher percentage of SNPs was assigned to

44

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Chromosome

N
um

be
r

of
Bl

oc
ks

(×
10

3)
WP,HapMapII
AV,HapMapII
AV,1000G

Figure 4.15: Number of haplotype blocks in the HapMapII and 1000G
datasets when the D′ CIs are estimated with the WP and AV methods.

WP AV
median min max median min max

HapMapII
No. of SNPs per Block 6 5 7 12 7 14
% of SNPs in Blocks 89.6 85.8 91.4 98.5 97.2 98.8
Diversity in Block 0.992 0.992 0.992 0.975 0.975 0.983

1000G
No. of SNPs per Block – – – 25 13 34
% of SNPs in Blocks – – – 99.4 99.1 99.6
Diversity in Block – – – 0.944 0.929 0.971

Table 4.1: Characteristics of the whole-genome haplotype block partitions
obtained with the WP and AV methods.

blocks and the within-block haplotype diversity index was slightly smaller.
However, the haplotype diversity was close to one for both methods, in-
dicating that in both cases the number of possible haplotypes should be
very limited. When applying the AV-based MIG++ algorithm to the 1000G
dataset, we observed a higher percentage of SNPs in blocks and a slightly
smaller diversity index, which is explained by the higher number of SNPs
per block.

For both HapMapII and 1000G datasets, the largest blocks were lo-
cated over the chromosomal centromeres and spanned tens of millions of
base-pairs (bp) (Figure 4.16). Some of these very large blocks were charac-
terized by very low and irregular SNP density. After filtering out these
exceptionally large blocks, the largest block identified by the WP-based
MIG++ algorithm in the HapMapII dataset was located in chromosome 1,
it was 1,017,844 bp long and included 398 SNPs (Figure 4.17). When us-
ing the AV method, the largest block was located in chromosome 12, it was

45

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0 2 4 6 8
Block Length (×106 bp)

C
hr

om
os

om
e

(a) WP, HapMapII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0 5 10 15 20
Block Length (×106 bp)

C
hr

om
os

om
e

(b) AV, HapMapII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0 5 10 15 20
Block Length (×106 bp)

C
hr

om
os

om
e

(c) AV, 1000G

Figure 4.16: Lengths of the blocks in base pairs (bp) estimated with the WP
and AV methods on the complete HapMapII and 1000G datasets.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0.00 0.25 0.50 0.75 1.00
Block Length (×106 bp)

C
hr

om
os

om
e

(a) WP, HapMapII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0.00 0.25 0.50 0.75 1.00
Block Length (×106 bp)

C
hr

om
os

om
e

(b) AV, HapMapII

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0.0 0.5 1.0
Block Length (×106 bp)

C
hr

om
os

om
e

(c) AV, 1000G

Figure 4.17: Lengths of the blocks in base pairs (bp) estimated with the
WP and AV methods on the complete HapMapII and 1000G datasets that
do not overlap centromeres and have a maximal distance between nearby
SNPs of at most 1/5 of the total block length.

1,190,412 bp long and included 335 SNPs. In the 1000G dataset, the largest
block detected by the AV-based MIG++ was located in chromosome 1, it
was 1,361,781 bp long and included 2,896 SNPs.

46

4.6 Summary

We propose an algorithm for haplotype block partitioning, termed MIG++,
which represents a scalable implementation of the Haploview algorithm
and produces the same results in a much shorter time and using a sub-
stantially smaller amount of main memory. MIG++ can process large DNA
regions using only a handful of megabytes of main memory. In such sit-
uations, Haploview would require gigabytes. In terms of runtime, the
MIG++ is several times faster than Haploview. We also demonstrated that
more than 80% of calculations were not necessary for the purpose of block
recognition and could be omitted, thus achieving a higher efficiency. The
improved performance of the algorithm makes it possible to process very
large chromosomal segments. When the approximated variance estimator,
proposed by Zapata et al. [21], is used to estimate the |D′i,j| CI, the MIG++

can be applied genome-wide and process high density datasets, such as the
1000G, in a very short time.

With its very small memory requirements, the MIG++ can process any
number of SNPs. This allowed us to avoid Haploview’s restrictions on the
maximal haplotype block length (the default limitation is 500Kbp) and to
consider the LD between SNPs at any distance. Our whole-genome exper-
iments showed that the haplotype blocks, based on the Gabriel et al. [13]
definition, can span more than 500Kbp and can extend over several mil-
lions of base pairs. This empirical result suggests that limiting the maximal
block length may alter the block partition. The alteration can be substantial
because the algorithm prioritizes the largest blocks. The smallest blocks are
retained only when they do not overlap with the largest ones. For this rea-
son, to constrain the block length within pre-specified limits may induce a
cascade of effects and may affect the final partition of very large segments.
This is relevant, for example, when assessing the LD pattern of loci selected
from GWAS, with the aim of identifying genes related to the lead SNP. In
such cases, different partitions could imply different genes to be selected
for follow-up.

With the MIG++ algorithm, we were able to run a haplotype block
recognition of the entire HapMapII dataset. However, it still required
an unacceptably long time to apply the algorithm to larger and denser
genomes, such as the 1000G dataset. This limitation is due to the use of
the Wall and Pritchard [20] method, which models the |D′i,j| likelihood and
derives the |D′i,j| CIs using an iterative procedure. In contrast, if the D′i,j
variance is estimated with the approximated formula suggested by Zap-
ata et al. [21], it is possible to derive the |D′i,j| CI with a single mathematical
calculation. Thanks to this computationally less demanding solution, we
could perform a complete block recognition of the HapMapII dataset in
1 hour and to process the entire 1000G dataset in 44 hours. To the best of

47

our knowledge, this is the first time that such a marker-dense genome has
been partitioned with a threshold-free approach. Previously, block parti-
tion of the whole genome could only be achieved by dividing chromosomes
into small chunks or by restricting computations using sliding window ap-
proaches. Such choices may introduce artificial breaks to the real haplotype
structure.

It is important to note that the block partition obtained with an algo-
rithm based on the AV method is not fully equivalent to a partition ob-
tained based on the WP method. For large sample sizes and for common
variants, the estimated variance of the D′i,j statistic is going to be similar,
whichever method is used. However, when crossing a common with a rare
SNP, it often happens that one of the four possible haplotypes is not present
in the sample. In such situations, it is very likely that the |D′i,j| CI shrinks
to 1 because the approximated variance is zero. In this way, the SNP pair is
systematically classified as a strong LD pair. As a result, SNPs with rare al-
leles are easily grouped together into very large blocks, boosting the region
coverage and the median number of SNPs per block. The WP method is
less sensitive to extreme D′i,j values, and the resulting blocks are generally
shorter. However, we observed that most (80%) of the haplotype blocks
obtained with the WP method were contained within the larger blocks ob-
tained with the AV method. That is, the use of the AV method produced
a coarser partition, where AV blocks entirely contained one or more WP
blocks. For this reason, the AV blocks showed a higher haplotype diversity,
in the terms described by Patil et al. [1] and Zhang et al. [27], than the WP
blocks.

The MIG algorithms are available in the LDExplorer R package at The
Comprehensive R Archive Network (CRAN) [41] together with usage in-
structions and examples. Also, they were adopted by the recent version
1.9.0 of PLINK [53], which is one of the most widely used software appli-
cations for genetic association studies worldwide.

48

Chapter 5

Sampling-based Computation
of Haplotype Blocks

Our general aim was to further improve performance of the MIG++ al-
gorithm in order to avoid the need to use an approximation of the D′i,j
variance. Actually, the approximation method by Zapata [21] works very
well asymptotically, but introduces substantial departures from the origi-
nal likelihood-based approach implemented in Haploview [14] for extreme
D′i,j values, such as those observed between common and rare SNPs. Since
such situations are going to become common due to the spread of data from
high-throughput sequencing technologies, the difference in estimations of
the D′i,j variance is going to produce largely different block partitions. Thus,
a runtime efficient algorithm that avoids the use of approximated D′i,j vari-
ance estimators in favor of the original likelihood-based method would be
desirable. In this chapter, we introduce a new algorithm, termed S-MIG++,
that significantly improves all previously proposed solutions in terms of
runtime.

5.1 Overview

The basic idea of our novel algorithm is the following. Imagine that we
want to verify that a given set of regions consists only of true haplotype
blocks. In order to do this, it is sufficient to compute the LD coefficients
only for those SNP pairs that are covered by these regions. Thus, a sig-
nificant part of irrelevant computations is omitted. Since the set of true
haplotype blocks is unknown, we use sampling to estimate a set of regions
that with a high probability include the true haplotype blocks. Then, only
the SNP pairs inside the estimated regions need to be considered to obtain
the true haplotype blocks. Hence, the algorithm works in two steps:

• Firstly, by sampling only a tiny fraction of all SNP pairs in a chromo-

49

1 1 1 1 ∞ 1 1 1 ∞ ∞

1 1 1 1 1 0 1 1 ∞ 0

1 1 1 1 1 1 1 0 ∞ 1

1 1 1 1 1 1 1 ∞ ∞ ∞

∞ 1 1 1 1 1 1 1 ∞ 1

1 0 1 1 1 1 1 1 ∞ 1

1 1 1 1 1 1 1 1 ∞ 1

1 1 0 ∞ 1 1 1 1 ∞ 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞

∞ 0 1 ∞ 1 1 1 1 ∞ 1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

R1,7

R5,10

R2,4

P1,7

P5,10

P2,4

(a)

1 1 1 1 ∞ 1 1 1 ∞ ∞

1 1 1 1 1 0 1 1 ∞ 0

1 1 1 1 1 1 1 0 ∞ 1

1 1 1 1 1 1 1 ∞ ∞ ∞

∞ 1 1 1 1 1 1 1 ∞ 1

1 0 1 1 1 1 1 1 ∞ 1

1 1 1 1 1 1 1 1 ∞ 1

1 1 0 ∞ 1 1 1 1 ∞ 1

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞

∞ 0 1 ∞ 1 1 1 1 ∞ 1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

P

P̂

(b)

Figure 5.1: The LD matrix, T10×10, of a chromosome S = 〈s1, . . . , s10〉 con-
sisting of ten SNPs.

some, correct upper limits of the haplotype block boundaries, which
we call haplotype block contour, are estimated with a very high proba-
bility.

• Secondly, within the estimated upper limits, the exact boundaries of
the haplotype blocks are computed; we refer to this step as haplotype
blocks refinement.

We represent the classified SNP pairs of a chromosome in an LD matrix.
Definition 5. (LD Matrix). Let S = 〈s1, . . . , sn〉 be a chromosome. The LD
matrix, Tn×n, of S is defined as

ti,j =


1 if si and sj is a strong LD pair,
0 if si and sj is a strong EHR pair,
∞ if si and sj is a non-informative pair.

Since the LD matrix is symmetric, we consider only the upper triangle
of the matrix, excluding the diagonal. An example is given in Figure 5.1.

To represent the set of all SNP pairs within a particular chromosomal
region, we introduce the concept of region profile.
Definition 6. (Region Profile). Let S = 〈s1, . . . , sn〉 be a chromosome and
Ri,j = 〈si, . . . , sj〉 be a region in S. The region profile of Ri,j is defined as the
set Pi,j = {(si′ , sj′) | i ≤ i′ < j′ ≤ j}.

The LD matrix elements that correspond to the SNP pairs in a region
profile form a triangle whose base lies on the matrix diagonal.

50

Example 2. The gray areas in Figure 5.1(a) illustrate the profiles of three
regions (out of a total of 45 regions for a chromosome of length ten). For
instance, the region R2,4 = 〈s2, . . . , s4〉 is a subsequence of three consecutive
SNPs. The corresponding profile is P2,4 = {(s2, s3), (s2, s4), (s3, s4)}.
Definition 7. (LD/I Ratio). Let Tn×n be the LD matrix of a chromosome
S = 〈s1, . . . , sn〉 and Ri,j be a region with profile Pi,j. We define the ratio of
strong LD to informative SNP pairs (LD/I ratio) as

ρi,j =
|{(si′ , sj′) ∈ Pi,j | ti′,j′ = 1}|
|{(si′ , sj′) ∈ Pi,j | ti′,j′ ∈ {0, 1}}| .

Thus, ρi,j is the proportion of strong LD SNP pairs in the region Ri,j with
respect only to the informative SNP pairs in this region. Using the above
concepts, Definition 2 of a haplotype block can be reformulated as follows.
Definition 8. (Haplotype Block). A region Ri,j = 〈si, . . . , sj〉 in a chromosome
S = 〈s1, . . . , sn〉 is a haplotype block if

(a) ti,j = 1 and

(b) ρi,j ≥ 0.95.

Example 3. The R1,7 region in Figure 5.1(a) is a haplotype block since t1,7 = 1
and ρ1,7 = 19/20 = 0.95. Similarly, regions R5,10 and R2,4 are haplotype
blocks. R1,7 and R5,10 are overlapping, whereas R2,4 is completely contained
in R1,7. An example of a region that is contained in a haplotype block but
does not form itself a haplotype block is R2,6, since t2,6 = 0. In total, the LD
matrix in Figure 5.1(a) contains 24 haplotype blocks.

Imagine that the true haplotype blocks in a chromosome would be
known in advance. Then, we can define the set of SNP pairs that are in-
side all region profiles corresponding to these haplotype blocks. We call
this set the haplotype block contour.
Definition 9. (Haplotype Block Contour). Let Ri1,j1 , . . . , Rik ,jk be the list
of all haplotype blocks in a chromosome S with corresponding profiles
Pi1,j1 , . . . , Pik ,jk . The set P = Pi1,j1 ∪ · · · ∪ Pik ,jk is termed the haplotype block
contour of chromosome S.

Example 4. In Figure 5.1(b), the regions R1,7 and R5,10 are the two longest
haplotype blocks, and together they completely cover the remaining 22
haplotype blocks. Hence, the haplotype block contour is P = P1,7 ∪ P5,10 =
{(s1, s2), (s1, s3), . . . , (s9, s10)}, containing a total of 33 SNP pairs.

From Definition 9 follows that no SNP pair outside the contour can form
a haplotype block. Therefore, an ideal haplotype blocks recognition algo-
rithm would compute at most |P| LD coefficients, i.e., for all SNP pairs in

51

P. The Haploview algorithm always computes all n · (n− 1)/2 LD coeffi-
cients, i.e., the entire LD matrix. The MIG++ algorithm computes signifi-
cantly less, though still many more than an ideal solution would. In gen-
eral, the runtime efficiency depends on how close the number of actually
computed LD coefficients is to |P|. Based on this observation, we propose
an improved algorithm that has two steps:

1. haplotype block contour estimation,

2. haplotype blocks refinement.

The first step computes an estimation of the true haplotype block con-
tour, that is a set of SNP pairs that with a very high probability completely
cover the true haplotype block contour. In Figure 5.1(b), the dashed line
outlines the estimated haplotype block contour, P̂. It completely covers the
true contour P, but contains seven additional SNP pairs. During the hap-
lotype blocks refinement in the second step, the estimated contour is used
as an effective way to prune the search space. That is, for the computation
of the exact haplotype blocks, only SNP pairs in the estimated contour P̂

are considered. Thus, the number of LD computations is upper bounded
by the cardinality of the estimated contour, |P̂|, which yields significant
improvements with respect to MIG++.

The following sections describe the two steps in detail. The pseudocode
of the new algorithm, S-MIG++, is given in Algorithm 4.

5.2 Haplotype Block Contour Estimation

5.2.1 Overview

The computation of the estimated haplotype block contour, P̂, works in
three steps:

1. Chromosome splitting. A chromosome is split into k segments, induc-
ing a grid of k× k cells in the LD matrix Tn×n.

2. SNP pairs sampling. In each cell, a fraction σ ∈ (0, 1) of SNP pairs
is sampled and their LD coefficients are computed. The number of
sampled strong LD, strong EHR and non-informative pairs is counted
for every cell.

3. Haplotype block contour estimation. Based on the sampled data, the
LD/I ratio is estimated for those regions that are composed of a whole
number of consecutive segments. If the estimated LD/I ratio satisfies
Definition 8(b) of a haplotype block, the SNP pairs in the correspond-
ing profile are added to the estimated contour.

52

Algorithm 4: S-MIG++

Data: S = 〈s1, . . . sn〉
Input: p, k, σ
Result: H = ∅

l← n/k;
α← 1− p2/(k(k+1));
P̂← ∅;

/* Step 1: Haplotype block contour estimation. */
/* Sub-step 1.1: Chromosome splitting. Tn×n is never stored, we store only

cell dimensions. */
for x = 1 to k do

for y = x to k do
rows← {(x− 1) · l + 1, . . . , x · l} ;
columns← {(y− 1) · l + 1, . . . , y · l} ;
Cx,y ← Tn×n[rows, columns];

/* Sub-step 1.2: SNP pairs sampling. */
for x = 1 to k do

for y = x to k do
mx,y ← sample(cell = Cx,y, samples = σ · sizeof (Cx,y)) ;

/* Sub-step 1.3: Haplotype block contour estimation. We traverse sampling
matrix along its diagonal, so we are sure that for any coordinate (i, j)
previous results at coordinate (i + l, j− l) were already computed and can be
aggregated. */

for z = 0 to k− 1 do
for x = z + 1 to k do

y← x− z;
i← (x− 1) · l + 1;
j← y · l;
mi,j ← (m1 = 0, m2 = 0, m3 = 0);
for x′ = x to y do

for y′ = x′ to y do
mi,j ← mi,j + mx′ ,y′ ;

m← mi,j[1] + mi,j[2] + mi,j[3];

ub(1)i,j ← compute_ci(strongLD = mi,j[1], samples = m, typeI = α);

lb(2)i,j ← compute_ci(strongEHR = mi,j[2], samples = m, typeI = α);

ρ̂i,j ← estimate_LD_I_ratio(ub(1)i,j , lb(2)i+l,j−l , |Pi,j|, Pi+l,j−l);
if ρ̂i,j ≥ 0.95 then

P̂← P̂∪ Pi,j;

/* Step 2: Refinement. Pass P̂ to MIG++ and restrict its search space to
elements from P̂. */

H← S-MIG++(P̂)

return H;

53

s1 s80

s1

s80

C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8

C2,2 C2,3 C2,4 C2,5 C2,6 C2,7 C2,8

C3,3 C3,4 C3,5 C3,6 C3,7 C3,8

C4,4 C4,5 C4,6 C4,7 C4,8

C5,5 C5,6 C5,7 C5,8

C6,6 C6,7 C6,8

C7,7 C7,8

C8,8

s11 s20

s1

s10

Figure 5.2: The uniform 8 × 8 grid of cells in T80×80 LD matrix after the
chromosome was split into 8 segments of 10 SNPs each.

The basic idea of this approach is (1) to reduce the dimensionality from
n SNPs to k segments, thereby approximating the contour at the granularity
of segments rather than SNPs, and (2) to use an efficient sampling-based
method to compute an estimated haplotype block contour that completely
covers the true contour; we refer to this also as correctly estimated haplotype
block contour. We will show in the following how to guarantee that the
probability of a correctly estimated contour is so high to give, practically,
always identical results to the true contour.

The number of segments, k, and the sampling fraction, σ, control the
precision of the estimated contour P̂. A larger k implies a finer granularity
and, therefore, smoother borders of P̂. A larger σ results in more accurate
LD information being captured and so in more precise estimates of the con-
tour, with the drawback of increasing the runtime. The effect of different
values of k and σ on runtime and precision of the estimated contour are
analyzed experimentally in Section 5.4.

5.2.2 Chromosome Splitting

Without loss of generality, we assume that a chromosome is split into k
equal-sized segments, each containing l = n

k SNPs. In doing so, a grid of
k× k cells is imposed on the LD matrix. Let’s denote a cell by Cx,y, where
1 ≤ x ≤ y ≤ k. Each cell represents a sub-matrix of the LD matrix. Since
we consider only the upper triangle of the matrix, there is a total of k(k +
1)/2 cells. Each cell contains l2 elements, except the diagonal cells, which
contain l(l + 1)/2 elements each.
Example 5. Figure 5.2 shows the split of the chromo-
some S = 〈s1, . . . , s80〉 into k = 8 consecutive segments,

54

s1 s80

s1

s80

s11 s20

s1

s10

(a)

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
s80

3, 0, 1

0, 4, 0

4, 0, 0

2, 0, 2

0, 3, 1

1, 0, 3

3, 1, 0

0, 0, 4

2, 7, 1

0, 8, 2

3, 3, 4

1, 4, 5

0, 7, 3

5, 1, 4

3, 0, 7

0, 10, 0

0, 7, 3

1, 4, 5

0, 8, 2

0, 10, 0

4, 0, 6

0, 10, 0

0, 6, 4

0, 9, 1

0, 8, 2

0, 2, 8

0, 10, 0

0, 10, 0

0, 10, 0

0, 8, 2

0, 10, 0

0, 10, 0

0, 6, 4

0, 10, 0

0, 9, 1

0, 8, 2

R11,30

m1,2 = (2, 7, 1)

(b)

Figure 5.3: Sampling SNP pairs.

〈s1, . . . , s10〉, 〈s11, . . . , s20〉, . . . , 〈s71, . . . , s80〉, each consisting of l = 10
SNPs. This segmentation in turn splits the LD matrix into a uniform grid
of 36 cells. Each non-diagonal cell Cx,y, x < y, represents 100 SNP pairs,
whereas each diagonal cell, Cx,x, represents 45 SNP pairs.

5.2.3 Sampling SNP Pairs

In each cell, a fraction σ of SNP pairs, where 0 < σ < 1, is randomly
sampled and the LD coefficients between these pairs are computed. The
results of the sampling over each cell are stored in the so-called sampling
matrix.
Definition 10. (Sampling Matrix). Let Tn×n be an LD matrix that is split
into a uniform grid of k × k, 1 < k < n, cells. The results of the sam-
pling step are stored in a sampling matrix, Mk×k. Each entry stores a vector
mx,y = (m1, m2, m3), where m1, m2, and m3 are, respectively, the numbers
of sampled strong LD, strong EHR, and non-informative SNP pairs.

Example 6. Figure 5.3(a) shows the sampling of SNP pairs in the LD ma-
trix. In each cell, the LD coefficients of 1% (σ = 0.01) of all SNP pairs are
computed and classified (i.e., ten SNP pairs in each non-diagonal cell and
four SNP pairs in each diagonal cell). For example, in cell C1,2, two of the
sampled SNP pairs are strong LD (dark circles), seven are strong EHR (white
circles), and one is non-informative (triangle). The numbers of the sampled
SNP pairs are stored in the sampling matrix in Figure 5.3(b).

55

5.2.4 Estimating the Haplotype Block Contour

Given that the haplotype block contour is defined as the union of all haplo-
type block profiles, if we follow a naïve approach to compute the estimated
contour P̂, we would need to estimate the LD/I ratio for all n(n − 1)/2
region profiles, which is simply unfeasible. Instead, we consider only re-
gion profiles at the granularity of cells (i.e., regions that correspond to a
sequence of adjacent segments) and estimate for each such region the LD/I
ratio. The estimated contour, P̂, is constructed from those region profiles
for which the estimated LD/I ratio is ≥0.95. Given that k � n, the number
of region profiles to consider is significantly smaller, namely k(k− 1)/2.

To obtain the numbers of sampled SNP pairs in a region, we have to
aggregate the numbers over all cells that make up the corresponding region
profile. Let Ri,j be a region that is composed of a sequence of consecutive
segments, starting with segment x and ending with segment y, and let Mk×k
be the sampling matrix. The aggregated results of the sampling over the
region profile Pi,j is computed as

mi,j = (m1, m2, m3) = ∑
x≤x′≤y′≤y

mx′,y′ .

Example 7. Consider Figure 5.4(a), where a chromosome of 80 SNPs was
split into k = 8 segments of l = 10 SNPs each. The region R11,30 =
〈s11, . . . , s30〉 is at the granularity of segments since it starts with segment
x = 2 and ends with segment y = 3. The corresponding profile, P11,30, cov-
ers the cells C2,2, C2,3 and C3,3. The aggregated sampling results in region
R11,30 are computed as m11,30 = (0, 4, 0) + (0, 8, 2) + (4, 0, 0) = (4, 12, 2),
i.e., 4 strong LD, 12 strong EHR and 2 non-informative pairs (cf. Figure 5.3(b)
for the sampling results).

The aggregated numbers of sampled SNP pairs, mi,j = (m1, m2, m3), in
a region Ri,j follow a multinomial distribution with the following parame-
ters: the number of samples, m = m1 + m2 + m3, and the true proportions
of strong LD, strong EHR, and non-informative SNP pairs, (π(1)

i,j , π
(2)
i,j , π

(3)
i,j),

which are given as

π
(1)
i,j =

|{(si′ , sj′) ∈ Pi,j | ti′,j′ = 1}|
|Pi,j|

,

π
(2)
i,j =

|{(si′ , sj′) ∈ Pi,j | ti′,j′ = 0}|
|Pi,j|

,

π
(3)
i,j =

|{(si′ , sj′) ∈ Pi,j | ti′,j′ = ∞}|
|Pi,j|

.

Since these (true) proportions are not known, the multinomial distribu-
tion has three unknown parameters, for which we estimate their confi-
dence intervals. Given the maximum likelihood estimators π̂

(1)
i,j = m1/m,

56

s1 s80

s1

s80

R11,30

R1,40

P11,30
m11,30 = (4, 12, 2)

ub(1)11,30 = 0.63

lb(2)11,30 = 0.26

P1,40
m1,40 = (14, 49, 13)

ub(1)1,40 = 0.38

lb(2)1,40 = 0.45

(a)

s1 s80

s1

s80

R11,30

R1,40

P11,30
ρ̂11,30 = 1.0

P1,40
ρ̂11,30 = 780·0.38

780·0.38+190·0.26 = 0.86

P̂

(b)

Figure 5.4: Estimating the haplotype block contour.

π̂
(2)
i,j = m2/m, and π̂

(3)
i,j = m3/m, the simultaneous 100(1−α)% confidence

intervals [lb(v)i,j , ub(v)i,j] ⊆ [0, 1], where v ∈ {1, 2, 3}, for every proportion π
(v)
i,j

can be obtained using the Fitzpatrick and Scott method [42]:

lb(v)i,j = π̂
(v)
i,j −

zα/2

2
√

m
,

ub(v)i,j = π̂
(v)
i,j +

zα/2

2
√

m
,

where zα/2 is the 100(1 − α/2)% percentile of the standard normal dis-
tribution and α is the probability of a type I error. The Quesenberry and
Hurst (QH) [43] with Sison and Glaz (SG) [44] methods for computing si-
multaneous confidence intervals were also considered in the experiments.
However, they failed to support the nominal confidence level for extreme
proportions and very small samples (cf. Section 5.4).
Example 8. In Figure 5.4(a), the aggregated sampling result over the pro-
file P11,30 is m11,30 = (4, 12, 2), i.e., 4 strong LD, 12 strong EHR and 2
non-informative pairs. Thus, the total number of samples in the region is
m = 4 + 12 + 2 = 18, and the maximum likelihood estimator for strong LD
pairs is π̂

(1)
i,j = 4/18. Assume α = 0.00056, corresponding to a ≈99.9% con-

fidence interval. Given that z0.00028 = 3.45, the upper bound of the 99.9%
confidence interval for the proportion π

(1)
11,33 of strong LD pairs is

ub(1)11,30 =
4
18

+
3.45

2
√

18
≈ 0.63.

The lower bound as well as the bounds for the strong EHR pairs are com-
puted in a similar way.

57

Using the above confidence intervals, we can estimate the LD/I ratio of
strong LD to non-informative pairs in a given region.
Definition 11. (Estimated LD/I Ratio). Let Ri,j be a region at the
level of segments with profile Pi,j, α be the type I error probability,

[lb(1)i,j , ub(1)i,j] be the 100(1−2α)% confidence interval of the proportion π
(1)
i,j ,

and [lb(2)i+l,j−l , ub(2)i+l,j−l] be the 100(1−2α)% confidence interval of the pro-

portion π
(2)
i+l,j−l . The estimated LD/I ratio, ρ̂i,j, is defined as

ρ̂i,j =


1 j− i ≤ 2l,

|Pi,j|·ub(1)i,j

|Pi,j|·ub(1)i,j +|Pi+l,j−l |·lb(2)i+l,j−l

otherwise.

For regions that are constituted only of one segment or two segments,
i.e., j− i ≤ 2l, we set the estimated LD/I ratio to 1. This is to avoid that very
short haplotype blocks formed by nearby SNPs are missed. Indeed, even
if a very low proportion of strong LD pairs is sampled in a near-diagonal
cell, their concentration near the diagonal could still be sufficient to form
short haplotype blocks, since nearby SNPs are more likely to be highly as-
sociated. In all other cases, we compute a very conservative estimator of
the LD/I ratio, by assuming the maximal number of strong LD pairs (i.e.,
the upper bound of the corresponding confidence interval) and the min-
imal number of strong EHR pairs (i.e., lower bound of the corresponding
confidence interval).
Definition 12. (Estimated Haplotype Block Contour). Let chromosome S =
〈s1, . . . , sn〉 be split into k, 1 < k < n, adjacent segments of l = n

k SNPs
each. The estimated haplotype block contour is defined as

P̂ =
⋃

1≤i<j≤n: i mod l=1∧
j mod l=0∧
ρ̂i,j≥0.95

Pi,j.

For the estimated haplotype block contour we consider only regions
at the granularity of segments, i.e., regions that start with a segment (i
mod l = 1) and end with a segment (j mod l = 0). If the estimated LD/I
ratio is ≥0.95, all SNP pairs in the corresponding region profile, Pi,j, are
added to the contour.
Example 9. Consider the regions R11,30 and R1,40 in Figure 5.4(b). The num-
ber of SNP pairs in the corresponding region profiles are |P11,30| = 190
and |P1,40| = 780. Since 30 − 11 ≤ 2 · 10, the P11,30 profile is constituted
only from near-diagonal cells and the estimated LD/I ratio in the corre-
sponding R11,30 region is set to ρ̂11,30 = 1.0. For the R1,40, the estimated

58

R
i+l,j−l

R
i ′,j ′R

i,j

Pi+l,j−l

Pi′ ,j′

Pi,j

Figure 5.5: Inner region Ri+l,i−l and outer region Ri,j.

LD/I ratio is computed as ρ̂1,40 = 780·0.38
780·0.38+190·0.26 = 0.86. The P11,30 profile

with ρ̂11,30 = 1 > 0.95 is added to the estimated haplotype block contour,
whereas P1,40 with ρ̂1,40 = 0.86 < 0.95 is not. The grey color in Figure 5.4(b)
marks the estimated haplotype block contour.

5.2.5 Properties

Definition 11 requires to specify a priori for every region profile the type I
error probability, α, for the simultaneous confidence intervals of the pro-
portions π(1) and π(2). Typically, the probability of type I error is set to
1%, i.e., allowing 1 incorrect result in 100. In our case, α is controlled
through the pre-specified probability p of obtaining an estimated contour
that covers the true contour. Precisely, α is derived from p by adjusting
it for the multiple tests according to the Šidák correction method [45], i.e.,
α = 1 − p2/(k(k+1)). This multiple testing correction is known to be con-
servative. Such conservative behavior is essential, since it guarantees the
pre-specified probability p, which is typically set to 0.95 or 0.99.

We use the estimated LD/I ratio in Definition 11 to decide if a region
profile should be included in the estimated haplotype block contour or not.
We can prove that, if the estimated LD/I ratio is <0.95, the inclusion of the
region profile to the estimated haplotype block contour will most likely not
cover any new haplotype blocks.

Theorem 2 Let Ri,j be a region with ρ̂i,j < 0.95 and i − j > 2l. Then, with
probability ≥100(1 − α)% there exists no haplotype block Ri′,j′ = 〈si′ , . . . , sj′〉
with profile Pi′,j′ such that Pi+l, j−l ⊂ Pi′,j′ ⊆ Pi,j.

Proof. We do a proof by contradiction and assume that there exists a hap-
lotype block Ri′,j′ = 〈si′ , . . . , sj′〉 such that Pi+l, j−l ⊂ Pi′,j′ ⊆ Pi,j (cf. Fig-
ure 5.5). By Definition 8, ρi′,j′ = n1/(n1 + n2) ≥ 0.95, where n1 and n2

59

are, respectively, the number of strong LD and strong EHR pairs in Ri′,j′ .
Let n′2 be the number of strong EHR pairs in region Ri+l, i−l . Since the re-
gion profile Pi′,j′ completely covers Pi+l, i−l , we have n′2 ≤ n2. Let n′1 be
the number of strong LD pairs in Ri,j. Since the region profile Pi′,j′ is com-
pletely covered by Pi,j, we get n′1 ≥ n1. Provided that the estimation of

the simultaneous confidence interval bounds ub(1)i,j and lb(2)i+l,j−l is correct,

the inequalities |Pi,j| · ub(1)i,j ≥ n′1 ≥ n1 and |Pi+l, j−l | · lb(2)i+l,j−l ≤ n′2 ≤ n2

hold. From this we can derive ρi′,j′ = n1/(n1 + n2) ≤ n′1/(n′1 + n′2) ≤
|Pi,j| · ub(1)i,j /(|Pi,j| · ub(1)i,j + |Pi+l, j−l | · lb(2)i+l,j−l), and further ρi′,j′ ≤ ρ̂i,j < 0.95,
which is a contradiction to our initial assumption ρi′,j′ ≥ 0.95. This con-
tradiction holds under the assumption of correctly estimated simultaneous
confidence interval bounds, ub(1)i,j and lb(2)i+l,j−l , which is the case with prob-
ability ≥ 100(1− α)%. Note, that in some cases the contradiction may hold
even for incorrectly estimated ub(1)i,j and lb(2)i+l,j−l , e.g., when the error in the
estimate is too low to significantly affect the value of the estimated LD/I
ratio ρ̂i,j. This proves the theorem. �

Theorem 2 uses two nested regions at the granularity of segments: an
outer region Ri,j and an inner region Ri+l,i−l . If the estimated LD/I ratio
in the outer region is less than 0.95, the probability to find a region that
forms a haplotype block and is longer than Ri+l,j−l = 〈si+l , . . . , sj−l〉 and
shorter than Ri,j = 〈si, . . . , sj〉 is very low. For this reason, the profile of the
outer region is not included into P̂, as it doesn’t help to identify additional
haplotype blocks.

Using the result from Theorem 2 and the Šidák correction method, we
can prove that the estimated haplotype block contour P̂ contains all haplo-
type blocks with probability ≥p.

Theorem 3 Let S = 〈s1, . . . , sn〉 be a chromosome with true haplotype block con-
tour P. For the estimated haplotype block contour, P̂, and a pre-specified probabil-
ity p, 0 < p < 1, the following holds:

P(P ⊆ P̂) ≥ p.

Proof. Suppose that P * P̂. Then, at the granularity of segments, there
must exist at least one region Ri,j with i − j > 2l and ρ̂i,j < 0.95 and one
region Ri′,j′ with ρi′,j′ ≥ 0.95 such that Pi+l, j−l ⊂ Pi′,j′ ⊆ Pi,j ∧ Pi+l, j−l ⊂
P̂ ∧ Pi,j 6⊂ P̂ (cf. Figure 5.5). From Theorem 2 we have that the probability
that there exists at least one such region Ri,j out of all k(k + 1)/2 regions is
less than 1− (1− α)k(k+1)/2. Given that α = 1− p2/k(k+1) after the Šidák cor-
rection, we obtain 1− (1− α)k(k+1)/2 = 1− (1− (1− p2/k(k+1)))k(k+1)/2 =

60

s1 sn

s1

sn

si sj

si

sj

A
∗

Ri,j

Assumed strong LD pairs

Computed

ti,j
(breakpoint)

(a) Original MIG++

s1 sn

s1

sn

si sj

si

sj

∗
A

Ri,j

P̂

Assumed strong LD pairs

Computed

ti,j
(breakpoint)

(b) Modified MIG++

Figure 5.6: Schematic representations of the original and modified MIG++

algorithms.

1− (p2/k(k+1)))k(k+1)/2 = 1− p. Thus, the probability of P * P̂ is less than
1− p, from which we get that the probability of P ⊆ P̂ must be greater or
equal to p. �

By setting the probability p to 0.99, Theorem 3 provides a strong theo-
retical support that all true haplotype blocks will be recognized in at least
99% of the runs.

5.3 Haplotype Blocks Refinement

The haplotype blocks refinement step uses the estimated contour for search
space pruning. More specifically, during the refinement of the exact haplo-
type blocks, only the LD matrix elements inside the estimated contour are
considered, whereas the rest of the LD matrix is omitted. For the refinement
step, either the Haploview algorithm or the MIG++ algorithm can be used.
Since the latter significantly outperforms the Haploview algorithm both in
terms of runtime and memory usage, we adopt the MIG++ algorithm to
account for the estimated haplotype block contour.

Figure 5.6(a) illustrates the MIG++ algorithm1. It computes the LD
matrix starting from the near-diagonal elements towards the top-right el-
ement. The gray area denotes the LD matrix elements computed so far.
After computing a matrix element ti,j, the algorithm checks if the corre-
sponding region Ri,j satisfies the haplotype block definition. If this is the
case, the region is added to the result. Additionally, the algorithm checks
if any of the extended regions, Ri,j+1, . . . , Ri,n, may possibly be a haplotype

1For the more detailed description of MIG++ see Chapter 4, Section 4.4.

61

s1

s1

s1000

s1000

(a) Original MIG++

s1

s1

s1000

s1000

(b) Modified MIG++

Figure 5.7: The LD matrix of chr20:14,759,169-15,028,962 in the 1000
Genomes Project data computed by the original and modified MIG++ al-
gorithms.

block. For this it is assumed that all SNP pairs inside these extended re-
gions for which the LD coefficient is not yet computed are strong LD pairs.
In Figure 5.6(a), the hatched area A marks all LD matrix elements that are
assumed to be strong LD pairs. If under such a conservative assumption
there is no evidence of a possible haplotype block, a breakpoint is set at
ti,j, and the elements ti,j+1, . . . , ti,n are omitted from the next computational
steps.

Figure 5.6(b) illustrates the modified MIG++ algorithm that accounts
for the estimated haplotype block contour. The area A of assumed
strong LD pairs is now bounded by the estimated haplotype block contour
P̂ and is therefore significantly smaller. As a consequence, breakpoints are
recognized much earlier than in the original version, hence more computa-
tions are pruned.

Figures 5.7(a) and 5.7(b) show an example of the LD matrix for a chro-
mosomal region of 1,000 SNPs computed by the original and the modified
MIG++ algorithms, respectively. The colors red, green and blue correspond
to strong, moderate and weak LD, respectively. The black line indicates the
true haplotypes block contour, P. The dashed line indicates the estimated
contour, P̂, which was used by the modified MIG++ algorithm. The use of
the estimated haplotype block contour in Figure 5.7(b) allowed a more ef-
fective search space pruning without affecting the correctness of the result.
Note that the difference between the two algorithms is much more evident
for longer chromosomal regions.

Since MIG++ always computes a correct result, the new sampling-
based algorithm S-MIG++ computes a correct result if and only if the es-

62

Region Start (bp) End (bp) ρ |P| η

1 225,444 1,223,234 0.005 51,609 0.004
2 17,706,656 18,706,804 0.019 120,088 0.010
3 24,520,185 25,828,521 0.056 363,643 0.029

Table 5.1: The three regions of 5,000 SNPs selected for the experiments in
chromosome 20 from the 1000 Genomes Project data. ρ is the LD/I ratio in a
region, |P| is the number of SNP pairs inside the haplotype block contour,
and η is the proportion of the LD matrix elements covered by the contour.

timated haplotype block contour covers the true haplotype block contour,
which happens with a very high probability (cf. Theorem 3).

5.4 Experiments

Experiments were performed on the phased CEPH genotypes in chromo-
some 20 from the 1000 Genomes Project phase 1 release 3 dataset [24]. The
data included 243,080 non-monomorphic SNPs from 170 haplotypes (85 in-
dividuals).

The confidence intervals of |D′| were estimated using the Wall and
Pritchard method [20] based on a likelihood function evaluated on a 1,000
points grid. If not stated otherwise, the probability to obtain all true haplo-
type blocks is set to p = 0.99.

We assessed the error rate of S-MIG++ and the influence of differ-
ent choices for k and σ on genomic regions with different characteristics.
Specifically, we scanned the entire chromosome 20 with a sliding window
of 5,000 consecutive SNPs. For each sequence of 5,000 SNPs, the LD/I ratio
was computed. Then, we selected three non-overlapping regions such that
the LD/I ratio was minimal, average and maximal. For each of the selected
regions, the true haplotype block contour P was computed. Table 5.1 lists
the three selected regions.

To assess runtime and memory usage depending on the number of
SNPs, we selected a region in the middle of chromosome 20. Then, we
gradually expanded the region by adding a fixed number of SNPs to the
left and to the right each time, until the entire chromosome was covered.

All experiments were run on a machine with an Intel Xeon E5-4640 (2.4
GHz) CPU. The C++ sources of S-MIG++ were compiled using version 4.9.1
of the GNU Compiler Collection (GCC). We also implemented a parallel
version of S-MIG++ using Open MPI 1.6.5. The runtime of the parallelized
S-MIG++ was evaluated with disabled hyper-threading in a single CPU
core.

63

5.4.1 Error Rate

The most crucial part of the haplotype block contour estimation is the com-
putation of the simultaneous confidence intervals for the proportions of
strong LD and strong EHR SNP pairs within the region profiles. The incor-
rect estimation of these proportions may lead to the incorrect estimation of
the LD/I ratio. We assessed three methods for the computation of simul-
taneous confidence intervals for multinomial proportions: (i) Quesenberry
and Hurst (QH) [43]; (ii) Fitzpatrick and Scott (FS) [42]; (iii) Sison and Glaz
(SG) [44]. The empirical coverage probability of each method was com-
puted by counting how often in 10,000 simulations the true proportion π(1)

of strong LD pairs was below its estimated upper bound ub(1) and how of-
ten the true proportion π(2) of strong EHR pairs was above its estimated
lower bound lb(2).

Figure 5.8 shows the minimal empirical coverage probability for the
three methods when the nominal coverage probability was set to p = 0.99.
All possible regions of 15, 45 and 90 SNPs with their corresponding pro-
files containing 105, 990 and 4,005 SNP pairs were considered. The x-
axis shows the product π(1) · π(2) · π(3) between the true proportions of
strong LD, strong EHR and non-informative SNP pairs inside a region profile
P. This product was close to 0 if at least one proportion was very low, and
was close to its maximum of 0.037 when all three proportions were close
to each other (i.e., close to 1/3). For the simplicity and better readability of
the plot, we subdivided the product π(1) · π(2) · π(3) into categories. The y-
axis shows the minimal empirical coverage probability for every different
category of the product π(1) · π(2) · π(3). The minimal empirical coverage
probability improved for all methods along with the increase of the sam-
pling proportion σ and the size of the region profile |P|. However, in cases
of extreme proportions (i.e., when π(1) · π(2) · π(3) was close to 0), the QH
and SG methods had an empirical coverage probability that is much below
the nominal level, even for large σ or large |P|. In contrast, the FS method
showed a stable behavior over all scenarios.

Figure 5.9 shows the empirical probability of all correctly estimated
simultaneous confidence intervals when running the S-MIG++ algorithm
with nominal probability p = 0.99. The x-axis represents the number of
segments k, while the y-axis represents the empirical probability of all cor-
rectly estimated simultaneous confidence intervals. We run the algorithm
1,000 times for every combination of k and σ. Under the multiple-testing
correction, we would expect that the empirical probability p never falls
below 0.99. However, the failure of the QH and SG methods to support
the nominal coverage probability of simultaneous confidence intervals re-
sulted in a failure to support the nominal probability p. The nominal prob-
ability was not reached with the QH and SG methods, even when the num-
ber of segments k was relatively small and the sampling fraction σ was

64

σ = 0.01 σ = 0.05 σ = 0.10

0.80

0.90

0.99

0.80

0.90

0.99

0.80

0.90

0.99

|P|
=

105
|P|

=
990

|P|
=

4005

[0.
00

0,
0.0

05
)

[0.
00

5,
0.0

10
)

[0.
01

0,
0.0

15
)

[0.
01

5,
0.0

20
)

[0.
02

0,
0.0

25
)

[0.
02

5,
0.3

00
)

[0.
03

0,
0.0

37
]

[0.
00

0,
0.0

05
)

[0.
00

5,
0.0

10
)

[0.
01

0,
0.0

15
)

[0.
01

5,
0.0

20
)

[0.
02

0,
0.0

25
)

[0.
02

5,
0.3

00
)

[0.
03

0,
0.0

37
]

[0.
00

0,
0.0

05
)

[0.
00

5,
0.0

10
)

[0.
01

0,
0.0

15
)

[0.
01

5,
0.0

20
)

[0.
02

0,
0.0

25
)

[0.
02

5,
0.3

00
)

[0.
03

0,
0.0

37
]

π(1) · π(2) · π(3)

M
in

im
al

C
ov

er
ag

e
Pr

ob
ab

ili
ty

FS QH SG

Figure 5.8: The minimal coverage probability for the QH, FS and SG meth-
ods in region profiles of different size |P| and using different sampling frac-
tions σ at the nominal coverage probability level of 0.99.

relatively large. In contrast, for the FS method the empirical probability
was always above the nominal p = 0.99.

Based on the results of these experiments, the S-MIG++ was imple-
mented with the FS method, since it better guarantees the validity of Theo-
rems 2 and 3.

5.4.2 Precision of the Estimated Haplotype Block Contour

Figure 5.10 shows the dependency of the size of the estimated haplotype
block contour on the number of segments k and the sampling fraction σ.
The x-axis represents the number of segments k, while the y-axis represents
the proportion η̂ of LD matrix elements that are covered by the estimated

65

σ = 0.01 σ = 0.05 σ = 0.10

0.50

0.90
0.99

0.50

0.90
0.99

0.50

0.90
0.99

R
egion

1
R

egion
2

R
egion

3

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

k

p
FS QH SG

Figure 5.9: The empirical probability of all correctly estimated simultane-
ous confidence interval bounds when running the S-MIG++ algorithm with
a nominal probability p = 0.99 and using different sampling fraction σ.

haplotype block contour. An estimated haplotype block contour which
covers lowest proportion η̂ of LD matrix elements is considered more pre-
cise. With all three different true haplotype block contours, the smallest η̂
was achieved with the highest number of segments k = 500 and the highest
sampling fraction σ = 0.20.

Figure 5.11 illustrates the effect of varying k and σ on the estimated
haplotype block contour. The true haplotype block contour is colored in
black. Figure 5.11(a) shows the estimated haplotype block contours with
different numbers of segments k for a fixed sampling fraction σ = 0.20,
while Figure 5.11(b) shows the estimated haplotype block contours with
different sampling fractions σ for a fixed number of segments k = 500.
By increasing the sampling fraction σ, the available LD information grows.
This yields a more accurate estimated contour, even when k is small. On

66

η = 0.004 η = 0.010 η = 0.029

0.0

0.1

0.2

0.3

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
k

η̂
σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.15 σ = 0.20

Figure 5.10: Size of the estimated haplotype block contour for different val-
ues of k, σ and η.

k = 25
k = 50
k = 100
k = 250
k = 500

s1
s1

s5000

s5000

(a) Fixed sampling fraction σ = 0.20

σ = 0.01
σ = 0.05
σ = 0.10
σ = 0.15
σ = 0.20

s1
s1

s5000

s5000

(b) Fixed number of segments k = 500

Figure 5.11: The estimated haplotype block contours in chr20:24,520,185-
25,828,521 with 5,000 SNPs at different values of k and σ.

the other hand, the larger the number of segments k, the finer the partition,
and so redundant LD matrix elements can more easily be omitted.

Relying on the empirical results that for a fixed sampling fraction σ the
most precise contour is obtained with the largest number of segments k, we
propose to determine k as follows:

k = min
{

k′ | 1 ≤
⌊ n

k′
⌋2
· σ < 2∧ k′ ≤ n

}
(5.1)

This formula guarantees the minimal cell size that is sufficient to sample at
least one LD matrix element. As the sampling fraction increases, the cell
size decreases. The number of samples for the computation of simultane-

67

0.0

0.1

0.2

0.3

0.01 0.05 0.10 0.15 0.20 0.25
σ

σ
+

η̂

η = 0.004
η = 0.010
η = 0.029

Figure 5.12: The sum of sampled SNP pairs and SNP pairs covered by the
estimated haplotype block contour.

ous confidence intervals is always increasing when more cells are aggre-
gated together into profiles. Minimizing the cell size increases the number
of computations of simultaneous confidence intervals with the FS method.
Since the FS method is computationally very cheap and has constant run-
time complexity with respect to the number of samples, we assume its cost
to be equal to 0.

Although an increase of the sampling fraction σ improves the precision
of the estimated contour, it also increases the number of expensive compu-
tations of LD coefficients between sampled SNP pairs. To obtain the best
runtime performance, it is important to minimize the sum of sampled SNP
pairs and SNP pairs covered by the estimated haplotype block contour.
Figure 5.12 shows the dependency of this sum on the sampling fraction.
The x-axis represents the sampling fraction σ, while the y-axis represents
the sum of σ and the proportion η̂ of the LD matrix elements covered by
the estimated haplotype block contour. For the three different regions in
Table 5.1 of 5,000 SNPs each, the optimal σ was between 0.01 and 0.05.

5.4.3 Runtime and Memory Usage

The S-MIG++ algorithm significantly outperformed MIG++ in terms of
runtime. For 250,000 SNPs, the total calculation time was 34.8 hours with
S-MIG++ and 466.2 hours with MIG++ (Figure 5.13(a)). Due to the main-
tenance of the estimated block contour, S-MIG++ requires slightly more
memory than MIG++ (Figure 5.13(b)). However, thanks to an incremen-
tal computation of the Mk×k sampling matrix, the memory complexity of
S-MIG++ is linear in the size of the data. By breaking down the runtime
complexity of S-MIG++, we noticed a quadratic runtime for the haplotype
block contour estimation and a linear runtime for the refinement step (Fig-
ure 5.13(c)). The quadratic complexity of the estimation step is due to the
quadratically growing number of sampled SNP pairs. More specifically,

68

0

100

200

300

400

500

50 100 150 200 250
Number of SNPs (×103)

R
un

ti
m

e
(h

ou
rs

)
MIG++

S-MIG++

(a) Runtime of S-MIG++ and MIG++

10

20

30

40

50 100 150 200 250
Number of SNPs (×103)

M
em

or
y

(M
B)

MIG++

S-MIG++

(b) Memory usage of S-MIG++ and
MIG++

0

10

20

30

50 100 150 200 250
Number of SNPs (×103)

R
un

ti
m

e
(h

ou
rs

)

P̂ computation
Refinement
Total

(c) Runtime of S-MIG++ by steps

10

20

30

1 2 4 8 16 32
Number of Processes

R
un

ti
m

e
(h

ou
rs

)

Real Total
Refinement
Theoretical Total

(d) Runtime of the parallelized S-MIG++

Figure 5.13: Performance of the S-MIG++ algorithm.

the runtime complexity of the estimation step is equal to O(n2+ log10 σ
log10 n). As-

suming a sampling fraction σ = 0.01, the complexity would be equal to

O(n2(1− 1
log10 n)). If we further assume that the longest haplotype block has

h SNPs, the size of the haplotype block contour is bounded by h · n from
above. Thus, the refinement step has O(ĥ · n) runtime complexity, where ĥ
is the estimated number of SNPs in the longest haplotype block.

5.4.4 Parallelized Contour Estimation

Experiments showed that the contour estimation is the most expensive step
in the S-MIG++ algorithm. The runtime of this step can be further reduced
by parallelization. Since the sampling within a cell is totally independent
from the sampling in any other cell, the cells can be processed in parallel.

The main process distributes the coordinates x and y of the cell Cx,y be-
tween all the processes (including itself). Once a process receives the coor-
dinates x and y, it samples from the cell Cx,y and sends the sampling results
mx,y back to the main process. The main process received all the sampling
results and estimates the LD/I ratio for the corresponding regions and their

69

profiles. The cells are repeatedly distributed between all the processes in
consecutive chunks of equal size until no unprocessed cell remains.

Figure 5.13(d) shows the runtime of the parallelized S-MIG++ algo-
rithm when applied to the entire chromosome 20 (243,080 SNPs). The
non-parallel refinement step took 3.6 hours in average. With 32 parallel
processes, the haplotype blocks recognition took only 5.1 hours, while with
only one process it took 34.8 hours. The experimental speedup was slightly
lower than the theoretically expected, which we attribute to the cost of
data exchange between processes and their management. Note that the
efficiency of the parallelization may be affected by the specific hardware
configuration. Our main aim in this experiment was to demonstrate the
feasibility of S-MIG++ parallelization with the potential for further run-
time improvements.

5.5 Summary

The S-MIG++ algorithm is significantly faster than the MIG++ algorithm
and the original Haploview [14] algorithm, reducing runtime requirements
at the chromosome level from weeks to hours. Precisely, 2.8 weeks using
MIG++ vs. 34.8 hours using S-MIG++ for chromosome 20 with 243,080
SNPs. This speed-up is achieved by randomly sampling SNP pairs to ob-
tain an estimate of upper limits for haplotype blocks boundaries, which are
then refined in a second step. We showed that we can apply sampling the-
ory to dramatically reduce the number of computations while keeping the
probability of error nearly absent (<1%). This was demonstrated through
both a theoretical proof and empirical simulations.

By extensive experiments, we observed that in order to estimate reli-
able upper limits of the true haplotype blocks boundaries in step one, it is
sufficient to sample only 1% of all SNP pairs from the entire chromosome.
We demonstrate also how the sampling, which is the most demanding task,
can be further improved by parallelization (≈5 hours for chromosome 20).

The constantly improving technologies will allow genetic studies to
genotype millions of SNPs in hundred thousands of samples. The most
recent example is the initiative of UK Biobank to genotype ≈850, 000 ge-
netic markers in 500,000 recruited participants [46]. The significantly im-
proved scalability of the S-MIG++ algorithm over state-of-the-art solutions
makes it possible to mine LD patterns in such huge datasets, which was
previously infeasible.

70

Chapter 6

Real Data Application

The runtime efficiency and low memory usage of our algorithms allow us
to run the haplotype block partitioning on the entire human genome while
considering even long range LD between SNPs. One of many possible ap-
plications of the whole-genome haplotype block partition is the haplotype
block association scan. In this chapter, we use MIG++ on real dataset from
North American Rheumatoid Arthritis Consortium (NARAC) to perform
haplotype block association scan in a very short time. We assess the dif-
ference between haplotype block association and single-SNP association
results, and discuss the impact of the WP and AV methods for |D′i,j| CI
computation.

6.1 The NARAC Dataset

The NARAC data consisted of 868 cases and 1,194 controls. The samples
were genotyped at 544,917 autosomal and sex chromosome SNPs. Quality
check was performed with PLINK 1.07 [15]: we excluded 5,422 SNPs with
a call rate of <90%, 11,327 SNPs with a minor allele frequency of <0.001,
and 898 SNPs because of significant deviation from Hardy-Weinberg equi-
librium in controls (p-value ≤ 10−6). No samples were excluded because
of low call rate (<90%); 2 cases and 5 controls were removed because of
sex mismatch; 1 case and 8 controls were additionally excluded after popu-
lation stratification test based on principal component analysis performed
with EIGENSOFT 5.0.1 [47]. After the quality control, 514,539 autosomal
SNPs and 2,046 samples were available for analyses.

Haplotypes were phased using SHAPEIT version 2 [48]. To achieve
good accuracy, we set 400 conditioning states per SNP. Recombination rates
were taken from HapMap phase II build 36 and effective population size
was set to 11,418 (as suggested for CEU populations). The estimated haplo-
types were submitted to MIG++ and processed with the WP and AV meth-
ods. We obtained 98,979 WP blocks, covering 445,832 SNPs, with 68,707

71

singleton SNPs outside of any block. The AV method identified 97,816
blocks, covering 446,170 SNPs, and 68,369 singleton SNPs.

The genome-wide association scan was based on a logistic regression
model adjusted for sex and the top 10 eigenvectors obtained from EIGEN-
SOFT 5.0.1 [47]. The association between disease status and individual
SNPs or haplotype blocks was tested with a likelihood ratio test using
PLINK 1.0.7 [15] with the logistic-genotypic and omnibus options, respec-
tively. Within each block, haplotypes with frequency of <0.01 were col-
lapsed together to preserve power. Singleton SNPs outside blocks were
treated as in the SNP-based analysis, therefore producing analogous re-
sults. Genomic control (GC) correction was applied to both SNP- and
block-based GWAS results. Bonferroni-corrected significance thresholds
were set to 2.98 × 10−7 for analysis based on the WP block partition (i.e.
0.05 divided by the sum of 98,979 WP blocks and 68,707 singleton SNPs),
3.01× 10−7 for the analysis based on the AV method (i.e. 0.05 divided by
97,816 AV blocks plus 68,369 singleton SNPs), and 9.17× 10−8 (i.e. 0.05 /
514,539) for the individual SNP analysis.

6.2 GWAS Results

After the GWAS, we observed a genomic inflation factor λ of 1.015 for the
SNP-based analysis, 1.082 for the AV block-based analysis, and 1.077 for the
WP block-based analysis. After GC correction, in the SNP-based analysis,
116 SNPs were genome-wide significant. Of them, 106 were located inside
25 AV blocks and 110 inside 27 WP blocks. From the AV and WP block-
based analyses, we observed 29 and 33 genome-wide significant blocks,
respectively. Twenty-three of such blocks were the same between the two
methods.

The results from the SNP- and block-based analyses are compared in
Table 6.1. The first part of the table shows the 20 genome-wide significant
loci detected by both SNP- and block-based analyses. In most cases, the AV
and WP methods brought to identical results. One exception was the 4th

locus, where two adjacent AV blocks including 6 and 14 SNPs, respectively,
corresponded to two adjacent WP blocks of 7 and 13 SNPs, respectively.
That is, one SNP shifted from one block to another. In terms of significance,
results were practically unchanged. A second exception was locus 13, were
a block was detected only with the WP but not with the AV method. The
last two exceptions were loci number 15 and 19. In both cases, an AV block
was split into two WP blocks. The second part of Table 6.1 shows a num-
ber of loci that wouldn’t have been detected with a SNP-based GWAS, but
were uncovered by at least one of the two block partition methods. The AV
and WP methods produced similar results. We didn’t observe any clear ad-
vantage of one method compared to the other. The last section of the table

72

shows that there was a small number of loci uncovered only by the SNP-
based analysis. For these loci, the p-values from the block-based analyses
were often close to the significance level, with the exception of the last two
loci.

6.3 Summary

To provide an application of a whole-genome haplotype block partition, we
analyzed the data from the North American Rheumatoid Arthritis Consor-
tium (NARAC) dataset using both block partitions: the one obtained with
the standard WP method and the one obtained with the AV approach. As
observed in previous studies [49,50], the GWAS results were dominated by
the HLA locus on chromosome 6. However, other loci were identified in
other chromosomes. For what concerns the two block partition methods,
the results were very similar, suggesting that the AV approach might be a
convenient way to run a fast recognition of the haplotype blocks. How-
ever, we recognize that ours was an empirical application based on half
a million genotyped SNPs. Results might be different in a larger context,
such as that of a GWAS based on the 1000 Genomes Project [24] dataset,
where the number of AV blocks is expected to be much smaller than the
number of WP blocks, and the AV blocks are expected to be much larger
than the WP ones.

Our empirical analysis of the NARAC data also confirmed previous ob-
servations that SNP- and block-based analyses are complementary to each
other [49, 51]. In fact, in our analysis some loci were identified only by the
single-SNP analysis, other loci were identified only by the haplotype-block
analysis, and others by both methods. Thus, genome-wide haplotype as-
sociation scans are not in competition with standard GWAS. Genome-wide
haplotype association scans should be considered as complementary tools
that may help to identify loci that could be overlooked by methods based
on single-SNP analysis.

We also observed that haplotype blocks may simplify gene annotation.
While only one gene, the HLA-DRA [52], which was reported by previous
GWASs, was directly implied by a genome-wide significant SNP, four addi-
tional previously reported genes were implied by genome-wide significant
blocks: the APOM, HLA-DQA1, HLA-DRB1, and HLA-DQA2 genes [52].

73

Block Top SNP

Locus Partition method Chr:start-end Sign. SNPs # SNPs # P-value Name P-value

Genome-wide significant blocks that include genome-wide significant SNPs

1 AV & WP 6:32,055,439-32,182,782 2 15 2.71× 10−12 rs2239689 1.55× 10−8

2 AV & WP 6:32,204,222-32,259,421 1 14 1.32× 10−16 rs3134943 5.41× 10−8

3 AV & WP 6:32,317,005-32,319,063 2 3 1.25× 10−8 rs412657 2.17× 10−10

4 AV 6:32,323,166-32,328,663 4 6 1.99× 10−15 rs9267992 1.14× 10−11

AV 6:32,331,236-32,390,832 4 14 2.34× 10−33 rs6910071 1.92× 10−32

WP 6:32,323,166-32,331,236 5 7 1.32× 10−17 rs3130320 7.50× 10−17

WP 6:32,332,366-32,390,832 3 13 1.38× 10−33 rs6910071 1.92× 10−32

5 AV & WP 6:32,397,296-32,445,664 13 24 3.00× 10−24 rs547077 2.60× 10−18

6 AV & WP 6:32,454,772-32,471,794 7 9 4.88× 10−27 rs3817973 5.48× 10−26

7 AV & WP 6:32,474,399-32,476,065 1 3 2.00× 10−23 rs3817963 8.55× 10−23

8 AV & WP 6:32,477,466-32,481,676 1 3 7.75× 10−21 rs3806156 9.43× 10−14

9 AV & WP 6:32,483,951-32,491,086 5 8 7.93× 10−38 rs3763312 7.00× 10−34

10 AV & WP 6:32,491,201-32,509,057 6 8 5.10× 10−41 rs2395163 6.14× 10−37

11 AV & WP 6:32,509,195-32,514,320 6 8 1.80× 10−37 rs2395175 1.83× 10−39

12 AV & WP 6:32,519,501-32,521,295 3 3 1.79× 10−27 rs7192 2.64× 10−26

13 WP 6:32,522,251-32,535,767 2 2 1.10× 10−28 rs9268832 4.07× 10−25

14 AV & WP 6:32,541,145-32,713,862 7 12 2.23× 10−47 rs660895 2.60× 10−45

15 AV 6:32,760,295-32,766,057 2 5 4.99× 10−26 rs9275184 1.49× 10−18

WP 6:32,735,692-32,762,692 3 4 8.33× 10−35 rs9275184 1.49× 10−18

WP 6:32,763,196-32,766,057 1 3 3.33× 10−23 rs7774434 5.43× 10−10

16 AV & WP 6:32,766,602-32,785,130 26 37 1.71× 10−40 rs9275224 1.31× 10−37

17 AV & WP 6:32,786,977-32,790,115 6 10 9.32× 10−50 rs9275595 1.97× 10−28

18 AV & WP 6:32,792,235-32,827,644 2 23 2.94× 10−19 rs3916765 2.72× 10−9

19 AV 6:32.912,776-32,912,887 1 2 1.46× 10−8 rs3819721 5.74× 10−9

WP 6:32,912,392-32,912,776 1 2 9.89× 10−10 rs3819721 5.74× 10−9

WP 6:32,912,887-32,912,912 0 2 7.18× 10−11 rs241425 7.53× 10−4

20 AV & WP 9:81,662,684-81,666,969 1 2 2.72× 10−8 rs7854383 3.23× 10−8

Table 6.1: Results from the rheumatoid arthritis GWAS: comparison between AV and WP haplotype blocks and single-SNP
analyses (continued on the next page).

74

Block Top SNP

Locus Partition method Chr:start-end Sign. SNPs # SNPs # P-value Name P-value

Genome-wide significant blocks with no corresponding genome-wide significant SNPs

21 AV & WP 2:219,728,763-219,836,597 0 17 1.57× 10−7 rs1052483 2.02× 10−4

22 AV 6:31,723,146-31,726,740 0 3 3.17× 10−7 rs3130050 5.27× 10−5

WP 6:31,723,146-31,726,740 0 3 2.98× 10−7 rs3130050 5.27× 10−5

23 AV & WP 6:31,728,499-31,777,475 0 10 4.11× 10−8 rs2280800 1.28× 10−4

24 AV 6:31,910,520-31,953,964 0 10 8.66× 10−8 rs9267658 1.22× 10−5

WP 6:31,885,925-31,945,256 0 8 1.08× 10−5 rs2075800 3.58× 10−5

WP 6:31,946,420-31,953,964 0 5 1.73× 10−6 rs9267658 1.22× 10−5

25 AV 6:31,958,311-31,959,213 0 2 6.00× 10−1 rs652888 1.48× 10−2

AV 6:31,968,316-32,026,839 0 10 1.53× 10−5 rs1042663 7.47× 10−7

WP 6:31,959,213-32,026,839 0 11 4.59× 10−8 rs1042663 7.47× 10−7

26 AV & WP 6:32,027,809-32,038,441 0 5 1.43× 10−9 rs437179 2.20× 10−5

27 AV & WP 6:32,262,976-32,263,559 0 2 8.89× 10−9 rs204994 1.83× 10−4

28 AV & WP 6:32,296,361-32,298,006 0 4 1.47× 10−10 rs3132946 1.51× 10−7

29 AV & WP 6:32,300,538-32,303,337 0 5 6.87× 10−10 rs499691 5.62× 10−4

30 AV 6:32,870,369-32,889,502 0 12 4.33× 10−10 rs7767167 2.61× 10−4

WP 6:32,871,088-32,889,502 0 11 3.77× 10−10 rs7767167 2.61× 10−4

31 AV 6:32,912,776-32,912,887 1 2 1.46× 10−8 rs3819721 5.74× 10−9

WP 6:32,912,392-32,912,776 1 2 9.89× 10−10 rs3819721 5.74× 10−9

WP 6:32,912,887-32,912,912 0 2 7.18× 10−11 rs241425 7.53× 10−4

32 AV & WP 6:33,012,959-33,069,082 0 21 8.10× 10−8 rs3135034 5.13× 10−5

Genome-wide significant SNPs with no corresponding genome-wide significant blocks

33 AV & WP 1:18,189,820-18,200,270 1 8 1.81× 10−5 rs16861613 5.08× 10−8

34 AV & WP 6:32,307,122-32,313,088 2 5 2.04× 10−6 rs9267873 3.98× 10−8

35 AV 10:112,614,407-112,822,215 1 23 5.73× 10−7 rs3750619 8.29× 10−10

WP 10:112,614,407-112,749,598 0 18 3.37× 10−7 rs3750619 8.29× 10−10

Table 6.1: Results from the rheumatoid arthritis GWAS: comparison between AV and WP haplotype blocks and single-SNP
analyses (continued on the next page).

75

Block Top SNP

Locus Partition method Chr:start-end Sign. SNPs # SNPs # P-value Name P-value

WP 10:112,754,584-112,822,215 0 5 1.89× 10−1 rs10787298 1.10× 10−1

36 AV & WP 17:34,570,514-34,575,487 1 5 1.40× 10−1 rs593772 5.50× 10−9

37 AV & WP 17:63,271,780-63,418,511 1 8 3.26× 10−1 rs7502707 2.02× 10−8

Table 6.1: Results from the rheumatoid arthritis GWAS: comparison between AV and WP haplotype blocks and single-SNP
analyses.

76

Chapter 7

Conclusions and Future Work

7.1 Summary

The main contribution of this thesis is a series of novel runtime and mem-
ory efficient algorithms for the recognition of haplotype blocks based on
the most commonly used Gabriel et al. [13] definition. The proposed novel
idea of incremental construction of haplotype blocks in the MIG algorithm
improves the memory complexity from quadratic to linear. Meanwhile, the
sophisticated search space pruning developed in the MIG+ and MIG++ al-
gorithms reduces the runtime by >80% compared to the original algorithm
implemented in Haploview [14]. In the S-MIG++ algorithm, we introduced
a novel sampling-based approach which improves the runtime by another
order of magnitude compared to MIG++. The use of an approximated D′i,j
variance estimator was assessed as an alternative way to improve the run-
time.

The efficiency of the introduced algorithms allows running haplotype
block recognition on entire human genome without any constraints on the
maximal haplotype block size and considering LD between SNPs at any
distance, which was impossible previously. The entire HapMap II [40]
CEPH dataset was processed by MIG++ in 457 hours, while the entire
1000 Genomes Project [24] CEPH dataset was processed in 44 hours us-
ing MIG++ with the approximated D′i,j variance estimator. The approxi-
mated estimator introduced larger haplotypes blocks and coarser partition.
The S-MIG++ algorithm avoids approximations and processed entire chro-
mosome 20 from 1000 Genomes Project [24] CEPH dataset with 243,080
SNPs in 34.8 hours, while MIG++ required 2.8 weeks. The parallel ver-
sion of S-MIG++ further reduced this runtime up to 5.1 hours when using
32 CPUs. Very recently, an optimization to the standard likelihood-based
|D′i,j| CI estimation was introduced that may further improve the runtime
of MIG++ and S-MIG++ [53].

The performed haplotype blocks recognition over the entire human

77

genome using the thresholds-free MIG++ algorithm showed that LD-based
haplotype blocks can span more than 500 Kbp and extend over several mil-
lions of base pairs. Such large haplotype blocks are not detected when ex-
ploring small regions separately or limiting long range LD between SNPs
(e.g., with sliding window approach) to improve runtime.

Recently, the MIG++ algorithm was adopted by PLINK [53], which is
one of the most widely used software applications for genetic association
studies worldwide.

7.2 Future Work

This work was focused only on the runtime and memory efficiency of the
first, most computationally expensive, step of Gabriel’s method, where
all possible haplotype blocks are constructed. In the second step of the
algorithm, a greedy approach is applied in order to select a set of non-
overlapping blocks that maximize the coverage of the genome. A possible
direction of the future research activities is the development and assess-
ment of more sophisticated techniques to ensure the optimality of the block
partition.

The high runtime and memory efficiency of the developed S-MIG++

algorithm allows us to run genome-wide haplotype block partitioning in
a reasonably short time. This opens a possibility to apply our introduced
sampling-based approach as a preliminary step in other partitioning meth-
ods that use more sophisticated haplotype block definitions but are more
computationally intensive (Chapter 3). The investigation of such possible
applications is the second possible future work direction.

The third possible research direction includes applications of haplotype
block partitions in whole-genome association scans such as interactive vi-
sualization of LD patterns for interpretation of association results, haplo-
type association tests, or SNP set-based analyses.

78

Appendix A

(a) HapMapII

(b) 1000G

Figure A.1: Median MAF and median inter-SNP distance in sliding regions
of 1,000 SNPs on chromosome 16 with no centromere. Similar figures were
obtained from all the rest of autosomal chromosomes.

79

Nr Genomic Coordinates Median MAF Median
Inter-SNP

Distance (bp)
1 chr8:16110095-16887851 0.0750000 348
2 chr15:40771215-43225829 0.0666667 1207
3 chr16:29576305-34968118 0.1333330 1888
4 chr11:5183617-5559739 0.2291670 163
5 chr20:31767872-33700401 0.2291670 1195
6 chr16:29171648-34806365 0.2000000 1871
7 chr2:15048665-15822444 0.3750000 381
8 chr2:192944318-195085355 0.3916670 1033
9 chr346957741-50137295 0.3458330 2271

(a) HapMapII

Nr Genomic Coordinates Median MAF Median
Inter-SNP

Distance (bp)
1 chr2:89153688-89307566 0.01176470 42
2 chr16:33617236-34357869 0.00588235 237
3 chr8:48335240-48987674 0.01764710 452
4 chr16:12647838-12700632 0.23529400 35
5 chr13:82569406-82944099 0.24117600 237
6 chr9:66847609-69229598 0.07647060 414
7 chr3:97879829-97981482 0.46470600 57
8 chr13:64621522-64855566 0.43529400 156
9 chr13:64601186-64844532 0.41176500 165

(b) 1000G

Figure A.2: Sampled regions of 1,000 SNPs. The same sampling method
was used for regions of 5,000, 10,000, 15,000, 20,000, 25,000 and 30,000
SNPs. Gray points correspond to all generated regions, while blue points
correspond to sampled regions.

80

Bibliography

[1] Nila Patil, Anthony J. Berno, David A. Hinds, Wade A. Barrett,
Jigna M. Doshi, Coleen R. Hacker, Curtis R. Kautzer, Danny H.
Lee, Claire Marjoribanks, David P. McDonough, Bich T. N. Nguyen,
Michael C. Norris, John B. Sheehan, Naiping Shen, David Stern, Re-
nee P. Stokowski, Daryl J. Thomas, Mark O. Trulson, Kanan R. Vyas,
Kelly A. Frazer, Stephen P. A. Fodor, and David R. Cox. Blocks of
Limited Haplotype Diversity Revealed by High-Resolution scanning
of Human Chromosome 21. Science, 294(5547):1719–1723, 2001.

[2] Kui Zhang, Zhaohui Qin, Ting Chen, Jun S. Liu, Michael S. Water-
man, and Fengzhu Sun. HapBlock: haplotype block partitioning and
tag SNP selection software using a set of dynamic programming algo-
rithms. Bioinformatics, 21(1):131–134, 2005.

[3] Jane Gibson, William Tapper, Sarah Ennis, and Andrew Collins.
Exome-based linkage disequilibrium maps of individual genes: func-
tional clustering and relationship to disease. Human Genetics,
132(2):233–243, 2013.

[4] David-Alexandre Tregouet, Inke R Konig, Jeanette Erdmann, Alexan-
dru Munteanu, Peter S Braund, Alistair S Hall, Anika Groszhennig,
Patrick Linsel-Nitschke, Claire Perret, Maylis DeSuremain, Thomas
Meitinger, Ben J Wright, Michael Preuss, Anthony J Balmforth,
Stephen G Ball, Christa Meisinger, Cecile Germain, Alun Evans, Do-
minique Arveiler, Gerald Luc, Jean-Bernard Ruidavets, Caroline Mor-
rison, Pim van der Harst, Stefan Schreiber, Katharina Neureuther,
Arne Schafer, Peter Bugert, Nour E El Mokhtari, Jurgen Schrezen-
meir, Klaus Stark, Diana Rubin, H-Erich Wichmann, Christian Heng-
stenberg, Willem Ouwehand, Andreas Ziegler, Laurence Tiret, John R
Thompson, Francois Cambien, Heribert Schunkert, and Nilesh J
Samani. Genome-wide haplotype association study identifies the
SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery
disease. Nature Genetics, 41(3):283–285, 2009.

81

[5] J-C Lambert, B Grenier-Boley, D Harold, D Zelenika, V Chouraki,
Y Kamatani, K Sleegers, M A Ikram, M Hiltunen, C Reitz, I Mateo,
T Feulner, M Bullido, D Galimberti, L Concari, V Alvarez, R Sims,
A Gerrish, J Chapman, C Deniz-Naranjo, V Solfrizzi, S Sorbi, B Aro-
sio, G Spalletta, G Siciliano, J Epelbaum, D Hannequin, J-F Dartigues,
C Tzourio, C Berr, E M C Schrijvers, R Rogers, G Tosto, F Pasquier,
K Bettens, C Van Cauwenberghe, L Fratiglioni, C Graff, M Delepine,
R Ferri, C A Reynolds, L Lannfelt, M Ingelsson, J A Prince, C Chillotti,
A Pilotto, D Seripa, A Boland, M Mancuso, P Bossu, G Annoni,
B Nacmias, P Bosco, F Panza, F Sanchez-Garcia, M Del Zompo, E Coto,
M Owen, M O’Donovan, F Valdivieso, P Caffara, E Scarpini, O Com-
barros, L Buee, D Campion, H Soininen, M Breteler, M Riemenschnei-
der, C Van Broeckhoven, A Alperovitch, M Lathrop, D-A Tregouet,
J Williams, and P Amouyel. Genome-wide haplotype association
study identifies the FRMD4A gene as a risk locus for Alzheimer’s dis-
ease. Molecular Psychiatry, 18(4):461–470, 2012.

[6] Chi Song, Gary K. Chen, Robert C. Millikan, Christine B. Ambrosone,
Esther M. John, Leslie Bernstein, Wei Zheng, Jennifer J. Hu, Regina G.
Ziegler, Sarah Nyante, Elisa V. Bandera, Sue A. Ingles, Michael F.
Press, Sandra L. Deming, Jorge L. Rodriguez-Gil, Stephen J. Chanock,
Peggy Wan, Xin Sheng, Loreall C. Pooler, David J. Van Den Berg,
Loic Le Marchand, Laurence N. Kolonel, Brian E. Henderson, Chris A.
Haiman, and Daniel O. Stram. A Genome-Wide Scan for Breast Can-
cer Risk Haplotypes among African American Women. PLoS ONE,
8(2):e57298, 2013.

[7] Carmen Dering, Claudia Hemmelmann, Elizabeth Pugh, and Andreas
Ziegler. Statistical analysis of rare sequence variants: an overview of
collapsing methods. Genetic Epidemiology, 35(S1):S12–S17, 2011.

[8] Kai Wang, Mingyao Li, and Maja Bucan. Pathway-Based Approaches
for Analysis of Genomewide Association Studies. American journal of
human genetics, 81(6):1278–1283, 12 2007.

[9] Ashley Petersen, Carolina Alvarez, Scott DeClaire, and Nathan L. Tin-
tle. Assessing Methods for Assigning SNPs to Genes in Gene-Based
Tests of Association Using Common Variants. PLoS ONE, 8(5):e62161,
05 2013.

[10] Andrea Christoforou, Michael Dondrup, Morten Mattingsdal, Manuel
Mattheisen, Sudheer Giddaluru, Markus M. Nöthen, Marcella Ri-
etschel, Sven Cichon, Srdjan Djurovic, Ole A. Andreassen, Inge
Jonassen, Vidar M. Steen, Pål Puntervoll, and Stéphanie Le Hellard.
Linkage-Disequilibrium-Based Binning Affects the interpretation of
GWASs. The American Journal of Human Genetics, 90(4):727 – 733, 2012.

82

[11] Paul Flicek, Ikhlak Ahmed, M. Ridwan Amode, Daniel Barrell,
Kathryn Beal, Simon Brent, Denise Carvalho-Silva, Peter Clapham,
Guy Coates, Susan Fairley, Stephen Fitzgerald, Laurent Gil, Car-
los García-Girón, Leo Gordon, Thibaut Hourlier, Sarah Hunt,
Thomas Juettemann, Andreas K. Kähäri, Stephen Keenan, Monika
Komorowska, Eugene Kulesha, Ian Longden, Thomas Maurel,
William M. McLaren, Matthieu Muffato, Rishi Nag, Bert Overduin,
Miguel Pignatelli, Bethan Pritchard, Emily Pritchard, Harpreet Singh
Riat, Graham R. S. Ritchie, Magali Ruffier, Michael Schuster, Daniel
Sheppard, Daniel Sobral, Kieron Taylor, Anja Thormann, Stephen
Trevanion, Simon White, Steven P. Wilder, Bronwen L. Aken, Ewan
Birney, Fiona Cunningham, Ian Dunham, Jennifer Harrow, Javier
Herrero, Tim J. P. Hubbard, Nathan Johnson, Rhoda Kinsella, Anne
Parker, Giulietta Spudich, Andy Yates, Amonida Zadissa, and Stephen
M. J. Searle. Ensembl 2013. Nucleic Acids Research, 41(D1):D48–D55,
2013.

[12] W. James Kent, Charles W. Sugnet, Terrence S. Furey, Krishna M.
Roskin, Tom H. Pringle, Alan M. Zahler, and David Haussler. The
Human Genome Browser at UCSC. Genome Research, 12(6):996–1006,
2002.

[13] Stacey B. Gabriel, Stephen F. Schaffner, Huy Nguyen, Jamie M. Moore,
Jessica Roy, Brendan Blumenstiel, John Higgins, Matthew DeFelice,
Amy Lochner, Maura Faggart, Shau Neen Liu-Cordero, Charles Ro-
timi, Adebowale Adeyemo, Richard Cooper, Ryk Ward, Eric S. Lan-
der, Mark J. Daly, and David Altshuler. The Structure of Haplotype
Blocks in the Human Genome. Science, 296(5576):2225–2229, 2002.

[14] J. C. Barrett, B. Fry, J. Maller, and M. J. Daly. Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics, 21(2):263–265,
2005.

[15] Shaun Purcell, Benjamin Neale, Kathe Todd-Brown, Lori Thomas,
Manuel A.R. Ferreira, David Bender, Julian Maller, Pamela Sklar,
Paul I.W. de Bakker, Mark J. Daly, and Pak C. Sham. PLINK: A Tool Set
for Whole-Genome Association and Population-Based Linkage Anal-
yses. The American Journal of Human Genetics, 81(3):559 – 575, 2007.

[16] R. C. Lewontin and Ken-ichi Kojima. The Evolutionary Dynamics of
Complex Polymorphisms. Evolution, 14(4):458–472, 1960.

[17] R. C. Lewontin. The Interaction of Selection and Linkage. I. General
Considerations; Heterotic Models. Genetics, 49(1):49–67, 1964.

[18] W.G. Hill and Alan Robertson. Linkage disequilibrium in finite popu-
lations. Theoretical and Applied Genetics, 38(6):226–231, 1968.

83

[19] C. Zapata. On the Uses and Applications of the Most Commonly Used
Measures of Linkage Disequilibrium from the Comparative Analysis
of Their Statistical Properties. Human Heredity, 71(3):186–195, 2011.

[20] Jeffrey D. Wall and Jonathan K. Pritchard. Assessing the Performance
of the Haplotype Block Model of Linkage Disequilibrium. The Ameri-
can Journal of Human Genetics, 73(3):502–515, 2003.

[21] Carlos Zapata, Gonzalo Alvarez, and Carmen Carollo. Approximate
Variance of the Standardized Measure of Gametic Disequilibrium D’.
The American Journal of Human Genetics, 61(3):771 – 774, 1997.

[22] Mark J. Daly, John D. Rioux, Stephen F. Schaffner, Thomas J. Hudson,
and Eric S. Lander. High-resolution haplotype structure in the human
genome. Nature Genetics, 29(2):229–232, 2001.

[23] Elisabeth Dawson, Goncalo R Abecasis, Suzannah Bumpstead, Yuan
Chen, Sarah Hunt, David M Beare, Jagjit Pabial, Thomas Dibling,
Emma Tinsley, Susan Kirby, David Carter, Marianna Papaspyridonos,
Simon Livingstone, Rocky Ganske, Elin Lohmussaar, Jana Zernant,
Neeme Tonisson, Maido Remm, Reedik Magi, Tarmo Puurand, Jaak
Vilo, Ants Kurg, Kate Rice, Panos Deloukas, Richard Mott, Andres
Metspalu, David R Bentley, Lon R Cardon, and Ian Dunham. A first-
generation linkage disequilibrium map of human chromosome 22. Na-
ture, 418(6897):544–548, 2002.

[24] Goncalo R Abecasis, David Altshuler, Adam Auton, Lisa D Brooks,
Richard M Durbin, Richard A Gibbs, Matt E Hurles, and Gil A
McVean. A map of human genome variation from population-scale
sequencing. Nature, 467(7319):1061–1073, Oct 2010.

[25] David E. Reich, Michele Cargill, Stacey Bolk, James Ireland, Pardis C.
Sabeti, Daniel J. Richter, Thomas Lavery, Rose Kouyoumjian, Shelli F.
Farhadian, Ryk Ward, and Eric S. Lander. Linkage disequilibrium in
the human genome. Nature, 411(6834):199–204, 2001.

[26] Ning Wang, Joshua M. Akey, Kun Zhang, Ranajit Chakraborty, and
Li Jin. Distribution of Recombination Crossovers and the Origin
of Haplotype Blocks: The Interplay of Population History, Recom-
bination, and Mutation. The American Journal of Human Genetics,
71(5):1227–1234, 2002.

[27] Kui Zhang, Minghua Deng, Ting Chen, Michael S. Waterman, and
Fengzhu Sun. A dynamic programming algorithm for haplotype
block partitioning. Proceedings of the National Academy of Sciences,
99(11):7335–7339, 2002.

84

[28] Kui Zhang, Fengzhu Sun, Michael S. Waterman, and Ting Chen. Hap-
lotype Block Partition with Limited Resources and Applications to
Human Chromosome 21 Haplotype Data. The American Journal of Hu-
man Genetics, 73(1):63–73, 2003.

[29] Wen-Pei Chen, Che-Lun Hung, and Yaw-Ling Lin. Efficient Haplotype
Block Partitioning and Tag SNP Selection Algorithms under Various
Constraints. BioMed Research International, 2013:13, 2013.

[30] Eric C. Anderson and John Novembre. Finding Haplotype Block
Boundaries by Using the Minimum-Description-Length Principle. The
American Journal of Human Genetics, 73(2):336–354, 2003.

[31] H Mannila, M Koivisto, M Perola, T Varilo, W Hennah, J Ekelund,
M Lukk, L Peltonen, and E Ukkonen. Minimum description length
block finder, a method to identify haplotype blocks and to compare the
strength of block boundaries. The American Journal of Human Genetics,
73(1):86–94, 2003.

[32] Gideon Greenspan and Dan Geiger. Model-based inference of haplo-
type block variation. Journal of Computational Biology, 11(2-3):493–504,
2004.

[33] Cristian Pattaro, Ingo Ruczinski, Daniele Fallin, and Giovanni Parmi-
giani. Haplotype block partitioning as a tool for dimensionality reduc-
tion in SNP association studies. BMC Genomics, 9(1):405, 2008.

[34] Raphaël Mourad, Christine Sinoquet, and Philippe Leray. Probabilistic
graphical models for genetic association studies. Briefings in Bioinfor-
matics, 13(1):20–33, 2012.

[35] Raphael Mourad, Christine Sinoquet, and Philippe Leray. A hierarchi-
cal Bayesian network approach for linkage disequilibrium modeling
and data-dimensionality reduction prior to genome-wide association
studies. BMC Bioinformatics, 12(1):16, 2011.

[36] Russell Schwartz, Bjarni V Halldorsson, Vineet Bafna, Andrew G
Clark, and Sorin Istrail. Robustness of inference of haplotype block
structure. Journal of Computational Biology, 10(1):13–19, 2003.

[37] Thomas G Schulze, Kui Zhang, Yu-Sheng Chen, Nirmala Akula,
Fengzhu Sun, and Francis J McMahon. Defining haplotype blocks and
tag single-nucleotide polymorphisms in the human genome. Human
Molecular Genetics, 13(3):335–342, 2004.

[38] Keyue Ding, Kaixin Zhou, Jing Zhang, Joanne Knight, Xuegong
Zhang, and Yan Shen. The effect of haplotype-block definitions on

85

inference of haplotype-block structure and htSNPs selection. Molecu-
lar Biology and Evolution, 22(1):148–159, 2005.

[39] Amit Indap, Gabor Marth, Craig Struble, Peter Tonellato, and Michael
Olivier. Analysis of concordance of different haplotype block parti-
tioning algorithms. BMC Bioinformatics, 6(1):303, 2005.

[40] Consortium International HapMap. The International Hapmap
Project. Nature, 426(6968):789–796, Dec 2003.

[41] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014.

[42] S. Fitzpatrick and A. Scott. Quick simultaneous confidence intervals
for multinomial proportions. Journal of the American Statistical Associa-
tion, 1987.

[43] C. P. Quesenberry and D. C. Hurst. Large Sample Simultaneous Con-
fidence Intervals for Multinomial Proportions. Technometrics, 6(2):191–
195, 1964.

[44] Cristina P. Sison and Joseph Glaz. Simultaneous Confidence Intervals
and Sample Size Determination for Multinomial Proportions. Journal
of the American Statistical Association, (429):366 – 369, 1995.

[45] Zbyněk Šidák. Rectangular Confidence Regions for the Means of Mul-
tivariate Normal Distributions. Journal of the American Statistical Asso-
ciation, 62(318):626–633, 1967.

[46] Naomi E Allen, Cathie Sudlow, Tim Peakman, and Rory Collins. UK
Biobank Data: Come and Get It. Science Translational Medicine, 6(224),
Feb 2014.

[47] Alkes L. Price, Nick J. Patterson, Robert M. Plenge, Michael E. Wein-
blatt, Nancy A. Shadick, and David Reich. Principal components anal-
ysis corrects for stratification in genome-wide association studies. Na-
ture Genetics, 38:904–909, 2006.

[48] Olivier Delaneau, Jonathan Marchini, and Jean-François Zagury. A
linear complexity phasing method for thousands of genomes. Nature
Methods, 9(2):179–181, 2011.

[49] Heejung Shim, Hyonho Chun, Corinne Engelman, and Bret Payseur.
Genome-wide association studies using single-nucleotide polymor-
phisms versus haplotypes: an empirical comparison with data from
the North American Rheumatoid Arthritis Consortium. BMC Proceed-
ings, 3(Suppl 7):S35, 2009.

86

[50] Jungsun Park, Junghyun Namkung, Mina Jhun, and Taesung Park.
Genome-wide analysis of haplotype interaction for the data from the
North American Rheumatoid Arthritis Consortium. BMC Proceedings,
3(Suppl 7):S34, 2009.

[51] Aaron J. Lorenz, Martha T. Hamblin, and Jean-Luc Jannink. Per-
formance of Single Nucleotide Polymorphisms versus Haplotypes
for Genome-Wide Association Analysis in Barley. PLoS ONE,
5(11):e14079, 2010.

[52] Lucia A Hindorff, Jacqueline MacArthur, Joannella Morales,
Heather A Junkins, P N Hall, A K Klemm, and Teri A Mano-
lio. A Catalog of Published Genome-Wide Association Studies.
www.genome.gov/gwastudies. Accessed December 7, 2013.

[53] Shaun Purcell and Christopher Chang. PLINK 1.9.0.
https://www.cog-genomics.org/plink2. Accessed November 20,
2014.

87

