
Free University of Bozen-Bolzano

Faculty of Computer Science

Data Indexing for the Interactive
Visualization of Genome-Wide

Association Studies

Master Thesis

Author:
Daniel Taliun

Faculty Supervisor:
Prof. Johann Gamper

Co-Supervisor:
Ph.D. Christian Fuchsberger

University of Michigan
Department of Biostatistics

2010

Abstract

Complex biological data sets are often explored in a visual way. In genetics,
for example, Manhattan plots are widely used to summarize the results of a
genome-wide association (GWA) study. In a typical GWA study millions of
genetic variants are tested for the association with a disease. The visualization of
these millions of points in an interactive manner is challenging. First, the massive
data sets introduce the overplotting. Second, the extremely fast processing of
user queries is required and must not take more than one second in general.

This thesis provides a solution for the time efficient interactive visual explo-
ration of data arising from GWA studies. In particular, it faces the following
problems: (i) complete or partial elimination of the overplotting; (ii) the fast
and effective access to the data, which is necessary to produce the plot on the
fly; (iii) the fast retrieval of additional and more detailed data on request; (iv)
the fast retrieval of data when the plot projection is changed and the plot needs
to be updated.

We propose a main memory based index structure, termed RDS tree, and
provide algorithms for three types of queries: selection query, window query,
top K query. Together they completely fulfill the mentioned requirements and
therefore allow the interactivity. Empirical evaluation with synthetic data shows
the high efficiency of RDS tree with large data sets containing tens of millions
of data items.

ii

Acknowledgements

I would like to express my deepest gratitude to supervisors Johann Gamper
and Christian Fuchsberger for their invaluable assistance and extremely helpful
guidance.

My special thanks is to Cristian Pattaro for his supervision of my work in
Institute of Genetic Medicine. I would also like to express my thankfulness for
all other members of Institute of Genetic Medicine for the provided opportunity
to work in such interesting field and learn from their great experience.

Finally, my sincere appreciation is to Aistė Ivonytė for her great support.

Contents

1 Introduction 1
1.1 Genome-Wide Association Studies 1

1.1.1 Genetic Background . 1
1.1.2 Data in GWA Studies . 3
1.1.3 Data Visualization in GWA Studies 3

1.2 Problem Description . 7
1.2.1 Interactive Visualization in GWA Studies 7
1.2.2 Challenges . 10
1.2.3 Contributions . 10

1.3 Organization of the Thesis . 11

2 Display Model 12
2.1 Model Description . 12
2.2 Data Visualization . 12

2.2.1 Association . 13
2.2.2 Mapping . 14

3 The RDS Tree 17
3.1 Data Reduction . 17
3.2 Tree Definition . 21
3.3 Tree Construction . 23

4 Querying the RDS Tree 26
4.1 Selection Query . 26
4.2 Window Query . 32
4.3 Top K Query . 37

5 Experiments 42
5.1 Setup and Data . 42
5.2 Tree Construction . 42
5.3 Selection Query . 43
5.4 Top K Query . 47
5.5 Summary of Experimental Results 49

iii

CONTENTS iv

6 Related Work 50
6.1 Data Set Partitioning . 50
6.2 Interactive Hierarchical Displays 51
6.3 The MRO tree . 51

7 Conclusions And Future Work 52

List of Figures

1.1 The Double Helix. 2
1.2 The Genotype Cluster Plots. 4
1.3 The Quantile-Quantile Plots. 5
1.4 The Chromosomal Region Plot. 6
1.5 The Manhattan Plot. 7
1.6 The Interactive Zoom In Task in Manhattan Plot. 8
1.7 The Details-On-Demand Task in Manhattan Plot. 9
1.8 The Relation Between SNPs in Manhattan Plot. 9

2.1 The Display Model of Resolution N ×M 13
2.2 Points Associated with SNPs in Cartesian Coordinate System. . 14
2.3 Mapping of Points in R2 Euclidian Space Associated with SNPs

to Pixels on a Display of Resolution 8× 6. 16

3.1 Reduction of Points in R2 Euclidean Space Associated with SNPs
and Mapping to Pixels on a Display of Resolution 8× 6. 20

3.2 RDS Tree . 22
3.3 RDS Tree of SNPs for Display Resolutions 1× 1, 2× 2, 4× 2 and

8× 6. 25

4.1 Representation of a Point in R2 Euclidean Space with 21 Pixels
on a Display of Resolution N ×M Approximating a Circle. . . . 27

4.2 Representation of Two Points in R2 Euclidean Space with 26
Pixels on a Display of Resolution N ×M Approximating Circles. 27

4.3 A Hypothetic Rectangular Area on R2 Euclidean Plane with
Occupied Pixels on a Display of Resolution N ×M 29

4.4 Display of Resolution 4 × 2 and Pixels Occupied with Areas in
RDS Tree Node v00. 30

4.5 Display of Resolution 4 × 2 and Pixels Occupied with Areas in
RDS Tree Node v10. 30

4.6 Display of Resolution 4 × 2 and Pixels Occupied with Areas in
RDS Tree Nodes v20, v21 and v22. 31

4.7 Mapping of Reduced Sets of Points in R2 Euclidean Space As-
sociated with Reduced Sets of SNPs to Pixels on Displays of
Resolutions 1× 1, 2× 2, 4× 2 and 8× 6. 32

v

LIST OF FIGURES vi

4.8 Two Cases in the Traversal of the RDS Tree for Window Query. 33
4.9 Mapping of the Reduced Set of Points in R2 Euclidean Space

Satisfying the Window Query and Associated with the Reduced
Set of SNPs to Pixels on a Display of Resolution 8× 6. 36

5.1 Time Efficiency of the RDS Tree Construction. 44
5.2 Size of the RDS Tree. 44
5.3 Time Efficiency of the RDS Tree Construction in Different Steps. 44
5.4 Number of Leaf and Inner Nodes in the RDS Tree. 45
5.5 Number of Retrieved Data Items for the Minimum Size Threshold

δ = 1. 45
5.6 Number of Retrieved Data Items for the Minimum Size Threshold

δ = 3. 46
5.7 Number of Retrieved Data Items for the Minimum Size Threshold

δ = 5. 46
5.8 Time Efficiency of the Selection Query for the Display Resolution

1024× 768. 47
5.9 Manhattan plot on Display of Resolution 256× 192. 47
5.10 Manhattan plot on Display of Resolution 384× 288. 47
5.11 Manhattan plot on Display of Resolution 512× 384. 48
5.12 Manhattan plot on Display of Resolution 768× 576. 48
5.13 Manhattan plot on Display of Resolution 1024× 768. 48
5.14 Time Efficiency of the Top K Query. 49

List of Tables

1.1 The GWA Study Data. 3

2.1 SNPs Assignment to Pixels on a Display of Resolution 8× 6. . . 14

3.1 Reduction of Points in R2 Euclidean Space and Mapping to Pixels
on a Display of Resolution 8× 6. 19

3.2 Reduction of SNPs According to Reduced Set of Associated Points
in R2 Euclidean Space. 20

4.1 Assignment of Reduced Sets of SNPs to Pixels on Displays of
Resolutions 1× 1, 2× 2, 4× 2 and 8× 6. 31

vii

Chapter 1
Introduction

Visual analytics is the science of analytical reasoning facilitated by interactive
visual interfaces [39]. This relatively new multidisciplinary field focuses on
handling massive, heterogeneous, and dynamic volumes of information through
integration of human judgment by means of visual representations and interaction
techniques in the analysis process. In particular, the main idea of visual analytics
is to visually represent information, allowing the human to directly interact with
it, to gain insight, to draw conclusions, and to ultimately make better decisions
[19, 1, 31]. The focus of the thesis is the interactive visualization of genome-wide
association studies. It tackles the problem of the fast data retrieval, which is
mandatory requirement of all interactive queries in the visualization.

In this chapter we provide the necessary genetic background and describe
the basic idea of genome-wide association studies. The most common data
visualizations in the field and their applications are considered. Afterward,
we introduce the interactive tasks, that must be supported to fulfill the basic
interactivity in visualization of genome-wide association studies. We identify the
problems in supporting the interactive tasks and present our contribution.

1.1 Genome-Wide Association Studies

1.1.1 Genetic Background

All the genetic information is carried by deoxyribonucleic acid (DNA) [2, 4, 12, 25].
The DNA is made up of two long helical strands that together form a spiral
staircase known as a double helix (see Figure 1.1a) [17]. Each strand consists
of a linear sequence of nucleotide bases: adenine (A), thymine (T), guanine
(G), and cytosine (C). The two strands are held together in the double helix
by weak bonds between their opposite bases. An adenine on one strand always
binds to a thymine on the opposite strand, while a guanine always binds to
a cytosine. Therefore, the DNA strands are complementary and oriented in
opposite directions.

The DNA molecules are organized into chromosomes, where one chromosome
corresponds to a single extremely long molecule (see Figure 1.1b). Every chro-
mosome contains many regions, portions of DNA, that are called genes. A single

1

CHAPTER 1. INTRODUCTION 2

(a) (b)

Figure 1.1: The Double Helix.

gene typically encodes the information for one protein. Every normal human
cell, with the exception of eggs and sperm, has two versions of each chromosome
and, therefore, gene. Hence, it contains 23 pairs of chromosomes where one pair
is the sex chromosomes that determine sex. The entire set of 46 chromosomes is
called genome.

The human genome contains 3.3 billion base pairs and 99% of it is identical
for any of two unrelated individuals. However, there are still millions of potential
variations of the DNA sequence. The differences in a gene structure that occur in
more than 1% of individuals in a population are called polymorphisms. Several
different forms of polymorphisms exist and the most common of them is the
single-nucleotide polymorphism (SNP). As the name suggests, this polymorphism
corresponds to a change of a nucleotide in a single base pair. It is expected,
that the whole human genome contains up to 15 millions of SNPs [40]. Every
different form that a polymorphism may obtain is called an allele. For example,
a particular SNP can have from two to four alleles, although the major part
of known SNPs has only two alleles. The different alleles of non-synonymous
SNPs, that are located in genes, may lead to the production of different forms
of proteins. However, even if a SNP is not located in a gene, then its alleles may
still affect a cell function. For example, they may alter the amount of a protein
that a cell builds. Thus, potentially, all types of SNPs can cause a disease or
can influence some specific characteristic – a trait.

The focus of a genetic association study is to find a proof that a specific
variation in a gene, measured across a study population, is causally associated
with an observed disease or a trait [2, 4, 30, 6, 40]. The basic idea is to compare
the allele frequencies in individuals with a trait of interest to a group of individuals
without the trait [30, 15]. The association study, which is known as a candidate
gene association, targets only a small set of specific genes. These genes are
defined based on already known biology, stated hypotheses or previous results.
Another approach is to screen the entire genome and to investigate hundreds
of thousands of SNPs for an association with a trait without considering any
of previous hypotheses. This type of study is called a genome-wide association
study. The typical stages of the GWA study are: (i) selection of thousands of case

CHAPTER 1. INTRODUCTION 3

subjects and control subjects; (ii) genotyping of SNPs across the entire genome;
(iii) applying a quality control and cleaning of the gathered SNPs data; (iv) all
the SNPs that pass the quality control and cleaning are tested for an association
with a trait; (v) a subset of SNPs is selected, based on a statistical significance
alone or a combination of statistical significance and biologic plausibility, for
replication in an independent sample set.

1.1.2 Data in GWA Studies

A data in GWA study consists of a set of SNPs together with their attributes.
The number of SNPs depends on the genotyping platform that was used in
the study and varies from 100000 up to more than 1 million [7, 30, 28]. Since
individual GWA studies have only enough power to detect associated SNPs with
large effects, often the results from multiple studies are combined for a meta-
analysis, increasing the sample size and power [7, 26]. However, the genotyping
platform may differ from study to study and, therefore, the set of SNPs may
differ too. Thus, to make the set of SNPs uniform across all the combined studies,
the imputation is applied and the number of SNPs is increased up to 7 millions.
Genotype imputation is a technique to predict unmeasured SNPs based on an
external reference panel [23].

The set of SNP attributes may differ between studies. For the ease of
exchanging GWA results the minimum set of attributes, that is sufficient to
perform a meta-analysis, was proposed [7]: name, chromosome, position, coded
allele, noncoded allele, frequency of the coded allele, strand orientation of the
alleles, beta coefficient, standard error, p-value, call rate, imputation quality.
Table 1.1 shows an example of a typical GWA study data.

n
a
m

e

ch
ro

m
o
so

m
e

c
o
d
e
d

a
ll
e
le

n
o
n
c
o
d
e
d

a
ll

e
le

a
ll
e
le

fr
e
q
u
e
n
c
y

b
e
ta

st
a
n
d
a
rd

e
rr

o
r

im
p
u
ta

ti
o
n

q
u
a
li
ty

st
ra

n
d

o
ri

e
n
ta

ti
o
n

p
o
si

ti
o
n

P
-v

a
lu

e

rs10 7 C A 0.947 0.462 2.431 0.4042 + 92221824 0.8492
rs1000000 12 A G 0.22 -0.244 0.897 0.9454 + 125456933 0.7856
rs10000010 4 T C 0.485 -0.649 0.720 0.8413 + 21227772 0.368
rs10000012 4 C G 0.865 0.431 1.101 0.9753 + 1347325 0.6957
rs10000013 4 A C 0.746 -1.233 0.824 0.9825 + 36901464 0.1344
rs10000017 4 C T 0.772 0.045 0.890 0.9268 + 84997149 0.9595
rs1000002 3 T C 0.458 -0.080 0.753 0.9919 + 185118462 0.9154
rs10000023 4 G T 0.4 -0.625 0.735 0.6723 + 95952929 0.3946

Table 1.1: The GWA Study Data.

1.1.3 Data Visualization in GWA Studies

Several visualization techniques for GWA study data exists. These visualizations
help in validating and cleansing the data, localizing the most significant regions
for further and more deeper consideration, presentation and sharing of the results.
Sometimes, only a quick view on the visualization may determine the next crucial
investigational steps in a study. Below we provide a short description of the four

CHAPTER 1. INTRODUCTION 4

data visualization techniques, that are used in the previously identified stages of
GWA study (see Section 1.1.1).

Genotype (or signal intensity) cluster plot visualizes the assignment of every
SNP to one of the three possible genotypes. [30, 26, 45, 34]. Each of the two
axes represents the fluorescence signal intensity of one of the two possible SNP
alleles, that is obtained from a genotyping platform. Based on the allele signal
intensity a calling algorithm assigns the SNP to one of the genotypes. Therefore,
the SNPs of the same genotype are represented with the points of the same
color. Figure 1.2 shows the genotype cluster plots of hypothetical genotyping
data. The cluster of blue points corresponds to genotype B/B, the cluster of
green points corresponds to genotype A/B, and the red points correspond to
genotype A/A. On Figure 1.2a we observe three well defined clusters of genotypes,
which suggest the correct genotype calling. However, an inaccurate genotype
calling may produce the overlapping clusters as on Figure 1.2b. The SNPs with
ambiguous genotype assignment are usually excluded from studies, since may
lead to false-negative associations.

(a) (b)

Figure 1.2: The Genotype Cluster Plots.

A quantile-quantile (Q-Q) plot compares the distribution of observed associ-
ations between SNPs and trait in a GWA study to the expected distribution if
there is no association [26, 30]. The plot is constructed as follows: (i) the negative
base 10 logarithmic transformation (−log10) is applied for P values of every SNP;
(ii) the transformed values are ranked in order from smallest to largest on the
y-axis and plotted against the expected values on the x-axis. Figure 1.3 shows
several Q-Q plots with a hypothetical data from a GWA study. Each plot displays
two lines: the red identity line indicates the expected associations, while the
black line shows the observed associations. The almost complete correspondence
of the two lines on Figure 1.3a suggests little evidence of associations. However,
the strong deviation of the lines on Figure 1.3b indicates a potential population
stratification or cryptic relatedness, that may lead to misleading results [3]. The
Q-Q plot on Figure 1.3c shows little evidence of the population stratification
and suggests a number of large effect associations, which creates a deviation
between the top ends of the two lines.

The chromosomal region plot displays the observed associations in a specific

CHAPTER 1. INTRODUCTION 5

(a) (b)

(c)

Figure 1.3: The Quantile-Quantile Plots.

portion of a chromosome, that typically has several hundreds of thousands
base pairs width [30]. The P value of every SNP after the negative base 10
logarithmic transformation is plotted on the y-axis against the physical position
of the SNP on the chromosome represented with x-axis. Therefore, the strongest
associations with the lowest P values have bigger y-axis coordinates. Also, the
chromosomal region plot may be combined with the visual representation of
linkage disequilibrium (LD) information for every pair of SNPs in the region.
Thus, a pair of SNPs is associated with a colored rhomb, where the more intensive
color infers higher LD. This information allows an estimation of independence of
the observed associations and is crucial in establishing the real causal association
with a trait, since it is possible that some other SNP in LD with one under study
is the true causal variable [2]. Figure 1.4 shows an example of the chromosomal
region plot [29].

The Manhattan plot represents the observed associations in the whole genome
[26, 30, 15]. As in the chromosomal region plot, the negative logarithmically
transformed P values of SNPs are plotted against their physical genomic positions.
However, this time we do not focus on a particular genomic region, but instead

CHAPTER 1. INTRODUCTION 6

Figure 1.4: The Chromosomal Region Plot.

we visualize GWA data from the whole genome. Figure 1.5 shows the Manhattan
plot of a hypothetical data. It highlights associations of a particular interest by
displaying them on the top of the others. Also, the Manhattan plot enables to
see which associations and in which regions satisfy a particular P value threshold.
Only the SNPs satisfying the threshold are considered as genome-wide significant
[3]. Since in a GWA study the association tests are repeated for each of more
than several hundreds of thousands of SNPs, then it introduces the problem
of multiple comparisons. Indeed, if we consider the common P value threshold
of 0.05 and test only 1000 SNPs, then there is 99.99% of probability to find a
false-positive association. Exist several methods facing the problem of multiple
comparisons and one of them is Bonferroni method. According to this method,
the P value is divided by the number of tested SNPs.

CHAPTER 1. INTRODUCTION 7

Figure 1.5: The Manhattan Plot.

1.2 Problem Description

1.2.1 Interactive Visualization in GWA Studies

The previous section has introduced the four most widely known visualizations
of data in GWA studies and described their applicability [26, 15]. It confirms
the importance of the graphical representation of large data in the analysis, both
in the context of GWA studies and in general. Although the classic appearance
of the presented plots doesn’t imply any dynamic feedback to an analyst, the
support of interactivity may enable better and faster understanding of the
provided information.

Shneiderman [37, 38] emphasizes seven general tasks of information visualiza-
tion, that are followed by many applications: (i) provide an overview of the entire
data; (ii) zoom in on data of interest; (iii) filter out uninteresting items; (iv)
provide details on demand; (v) show relationships among data items; (vi) remem-
ber user actions to support undo, replay, and progressive refinement; (vii) allow
extraction of data subsets according to the query parameters. Certainly, more
tasks are being introduced and the existing are being refined, when implementing
visualization for a specific domain. This work considers the support of basic
interactivity in the visualizations of GWA studies. In particular, as a running
example we use the Manhattan plot. It doesn’t prioritize this visualization
within the three others, since all of them serve for different purposes and are
applied in different stages of analysis. Moreover, the discussed problems and
proposed solutions are relevant to all of these visualizations.

There is a number of interaction techniques, which solve the first two crucial
visualization tasks of providing an overview of all data with the capability to
zoom in on data subsets of interest. These techniques are oriented towards the
usually large amounts of data, that can’t be displayed on the screen completely
in a straightforward way. One example is the classic distortion-oriented FishEye
technique from the Focus+Context visualizations [8, 21]. It geometrically distorts
the view under the area of focus so that more space is available and more detailed
data is represented. The main benefit of this and other similar distortion-oriented
solutions is that the zoomed in area is seen in the context of the whole data.
Another well known method of preserving the overall context while drilling down
into the more details, is to represent two different views in the same or in two
separate windows – one for the overview of all data and another for the zoomed
in area of interest. For the simplicity of further discussion and implementation,

CHAPTER 1. INTRODUCTION 8

it is assumed simpler approach of providing these capabilities for the Manhattan
plot. Initially, the classic view of the Manhattan plot is provided – this is the
detailed overview of full data. Then, using a rectangular lasso selection tool, one
is able to differentiate an area of visualization and apply zoom in operation on
the selected area (see Figure 1.6) [41]. The drawback of this simplified technique
is that when drilling down into the details the context is not preserved. However,
it can be overcome by providing additional view of overall data.

(a) The Overview

(b) The Rectangular Lasso Selection Tool

(c) The Zoomed In Area

Figure 1.6: The Interactive Zoom In Task in Manhattan Plot.

The filtering task implies the possibility to control the contents of the visu-
alization by eliminating irrelevant data items. This operation is common and
sometimes is even necessary in the context of Manhattan plot. An analyst may
be interested in eliminating a SNP from visualization and from further analysis
if this SNP doesn’t satisfy one or more specified thresholds. One example is the
exclusion of low quality SNPs, that exceed thresholds for imputation quality,
allele frequency or lack some other essential attributes.

CHAPTER 1. INTRODUCTION 9

The details-on-demand task involves the retrieval of detailed information
about the selected data item or a subset of data items. User selects a single data
item by clicking on the representative point on display, or selects a subset of
data items using lasso or brush selection tool [41]. Then, the required details
about the selected data items are retrieved and displayed. The usual way of
representing the retrieved details is using a pop-up window [37]. The example of
details-on-demand task in Manhattan plot is the retrieval of all attributes for the
selected SNP (see Figure 1.7). The p-value, exact genomic position and name is
essential information about SNP, however it can’t be displayed for every SNP
in Manhattan plot simultaneously due to the large amount of data. Therefore,
the support for details-on-demand task is crucial at least regarding these three
attributes.

Figure 1.7: The Details-On-Demand Task in Manhattan Plot.

The most trivial relation between SNPs that may be a question of visualization
in Manhattan plot is their association with the same gene. This relationship
may be displayed by highlighting a subset of associated SNPs from the rest with
different color. Figure 1.8 shows an example of visualized relation between SNPs
in Manhattan plot, where SNPs highlighted with green color belong to the same
gene. Linkage disequilibrium between SNPs is the another relation that may be
visually expressed in the same way in Manhattan plot.

Figure 1.8: The Relation Between SNPs in Manhattan Plot.

The last two visualization task of keeping the history of user actions and
allowing the extraction of data subsets into the external files are important,
however aren’t in the focus of this work. This is mainly a matter of a concrete
implementation of software providing the interactive visualization.

CHAPTER 1. INTRODUCTION 10

1.2.2 Challenges

In the perfect scenario, all the interactive visualization tasks should produce and
display the desired query results instantaneously. Obviously, it is not achievable in
the reality due to technical limits. Although, the human perception abilities allow
delays in the displaying of the results. It is assumed, that the 10 Hz display refresh
rate is sufficient for instantaneous graphical changes [8, 10, 38]. Therefore, for
any instantaneous interactive query, the results should be produced and displayed
in no more than 100 msec. For a graphical transition, in the case of zoom in
task, the operation should be completed within 1 sec. Certainly, an analyst gains
actual benefit from the interactive tasks only if they are implemented in efficient
way and satisfy the mentioned execution time requirements. Large datasets
containing millions of items makes the fulfillment of these requirements a not
trivial task.

The large datasets often lead to high degree of overplotting and may occlude
a significant portion of the shown data items. The primary factor in this problem
is the limited amount of pixels of a display, which makes it impossible to fit
tens of millions data items without collisions [8, 10, 38, 19]. Indeed, even in the
extreme case, when every single data item is mapped to one pixel, then it is
possible to represent only around 2 million items on 1600 × 1200 display. One
route to solve the problem is to increase screen resolution by introducing very
large displays [43]. However, the size of display is limited by human perception
abilities, which vary around 10 million pixels and depend on the distance from
display. Another approach is to apply filtering, aggregation and compression
techniques to reduce the amount of data without losing significant information.
There are several recent works towards this direction, which focus on scatterplots,
parallel coordinates and visualization of large time-series data [13, 14, 18, 42].

Summarizing everything, it is obvious that the introduction of interactivity
to the visualization of GWA studies with up to 15 million visualized SNPs for a
single study brings out the following problems:

1. The overview task requires a fast retrieval of coordinates for all SNPs in
the database.

2. The details-on-demand task requires a fast identification of subset of SNPs
in the database and then needs a fast retrieval of all associated attributes.

3. The data overview and further visualization of large genomic regions suffer
from a high degree of overplotting and, therefore, the majority of the
visualized SNPs is occluded.

1.2.3 Contributions

In this thesis we provide a solution for the time efficient interactive visual
exploration of data arising from GWA studies. More specifically, the technical
contributions are:

• We propose a data reduction based on the defined screen resolution such,
that the visualization of the reduced data doesn’t suffer from overplotting
and is identical to the visualization of the full data.

• We present a novel index structure, termed RDS tree, which indexes data
with respect to the hierarchy of reduced data constructed for the predefined

CHAPTER 1. INTRODUCTION 11

list of screen resolutions. The RDS tree is a space partitioning tree, which
is constructed only once and then can be utilized during the visualizations
on displays with different resolutions.

• We introduce and provide algorithms for three queries over the RDS tree,
which support the basic interactive tasks: (i) selection query – ensures
the fast data retrieval for the overview task and reduces the overplotting;
(ii) window query – ensures the fast data retrieval for the visualization of
the data in the particular region and reduces the overplotting; (iii) top K
query – implements the details-on-demand task, that efficiently retrieves
top K data items occluded in the visualization.

• The evaluation with synthetic GWA study data confirms the high efficiency
of the RDS tree with tens of millions of SNPs, which ensures short response
times.

Throughout the discussion we use the example of RDS tree for the interactive
Manhattan plot. Nevertheless, our solution can be applied for other visualizations
in GWA studies like quantile-quantile plots or genotype cluster plots.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we formally
define the display model and the data visualization in it. Chapter 3 presents the
data reduction with respect to the display resolution and introduces the RDS
tree. The selection query, the window query and the top K query over the RDS
tree are defined and explained in Chapter 4. Chapter 5 describes the evaluation
of RDS tree. In Chapter 6 we provide the overview of the related work in the
field. Chapter 7 presents the conclusions and the future work.

Chapter 2
Display Model

In this chapter we introduce a display model and describe the data visualization
in it. The further discussion completely relies on this model and its assumptions.

2.1 Model Description

The display model consists of a two dimensional grid of regularly spaced elements
– pixels. A pixel is the smallest addressable element and is referenced with a
coordinate (i, j), where i ∈ N∗ and j ∈ N∗ are the horizontal and the vertical
positions respectively. Additionally, it is assumed, that all pixels are squares of
the same size. A display resolution is defined as the maximum number of pixels,
which the display is capable to represent. It is denoted as N ×M , where N ∈ N∗
and M ∈ N∗ are accordingly the number of pixels horizontally and vertically.
For instance, if the resolution is 1600 × 1200, then the display handles about
2 million pixels aligned in 1600 columns and 1200 rows. Continuing with the
example, the coordinate of the bottom left pixel is (1, 1), while the coordinate
of the top right pixel is (1600, 1200). Figure 2.1 depicts the display model of
resolution N ×M , and Definition 1 formally defines a set ∆ of all available
display pixels.

Definition 1 (Set of Display Pixels). Let N ×M be the display resolution.
Then, the finite set of all available display pixels is defined as ∆ = { (i, j) | 1 ≤
i ≤ N ∧ 1 ≤ j ≤M }. ♣

2.2 Data Visualization

When data is visualized in R2 Euclidean space, then every data item is assigned
to at least one display pixel. The assignment is done in two steps:

1. Association

2. Mapping

Next sections provide the detailed description of these steps.

12

CHAPTER 2. DISPLAY MODEL 13

(1, 1)

(1, 2)

(2, 1)

(N,M)(N − 1,M)

(N,M − 1)

i

j

Figure 2.1: The Display Model of Resolution N ×M .

2.2.1 Association

In this step a data item is associated with a single point in R2 Euclidean space.
We refer to this point as the associated point. Consider a finite data set D and a
single data item d ∈ D. Every data item has the same finite set of attributes
A = {A1, A2, . . . , An }, where n ∈ N∗. A particular attribute Ai (1 ≤ i ≤ n)
of data item d is denoted as d.Ai. Then, Definition 2 defines the association of
data item d with a point in R2 Euclidean space, and Definition 3 defines a set of
all associated points in R2 Euclidean space.

Definition 2 (Association). Let f : D → R and g : D → R be two functions
relating data item d ∈ D with a real number according to its attributes in set A.
Then, the data item d ∈ D is associated with point

(
f(d), g(d)

)
in R2 Euclidean

space, which is called the associated point. ♣

Definition 3 (Set of Associated Points). Let f : D → R and g : D → R
be two functions relating data item d ∈ D with a real number according to its
attributes in set A, and point

(
f(d), g(d)

)
be the associated point in R2 Euclidean

space. Then, the set of all points in R2 Euclidean space associated with data set
D is defined as P = { (x, y) | (x, y) ∈ R2 ∧ d ∈ D ∧ (x, y) =

(
f(d), g(d)

)
}. ♣

Example 1 To illustrate the association, assume the data set D in Table 2.1.
It contains ten data items, where each data item represents a SNP with the
attributes name, chr, pos and pval. Attribute name is the unique identifier of
SNP, while chr and pos correspond to the chromosome and the chromosomal
position of SNP respectively. Attribute pval denotes a hypothetical P value of
SNP in a GWA study. Then, to produce the Manhattan plot, the functions f
and g are defined as follows:

f(d) =

d.chr−1∑
i=1

(
e(i)− s(i) + 1

)
+
(
d.pos− s(d.chr)

)
(2.1)

and
g(d) = − log10 d.pval , (2.2)

CHAPTER 2. DISPLAY MODEL 14

where s(z) = min{ d.pos | d ∈ D ∧ d.chr = z } and e(z) = max{ d.pos | d ∈
D ∧ d.chr = z }. Functions s(z) and e(z) extract the smallest and the largest
chromosomal positions within all SNPs from the same chromosome z, respectively.
For example, s(2) extracts the smallest position within 60718, 62106 and 63495
positions of all SNPs from the chromosome 2, which is equal to 60718. Function
f transforms chr and pos attributes of SNP to the x coordinate of the associated
point, while function g transforms pval attribute of SNP to the y coordinate
of the associated point. The functions are applied to every of ten SNPs in
data set D. As a result, Table 2.1 lists set P of all associated points in R2

Euclidean space. Figure 2.2 depicts the points in Cartesian coordinate system
and, therefore, depicts the Manhattan plot too. The shape of a point corresponds
to the chromosome of SNP, which was associated with this point. In particular,
the rectangles refer to SNPs from the 1st chromosome, the diamonds refer to
SNPs from the 2nd chromosome, and the circles denote SNPs from the 3rd
chromosome. �

D
name chr pos pval

d1 rs987669 1 60160 0.5000
d2 rs10399597 1 62157 0.1500
d3 rs55858216 2 60718 0.1100
d4 rs73140430 2 62106 0.0050
d5 rs730038 2 63495 0.5500
d6 rs28729284 3 60202 0.0100
d7 rs13067307 3 60596 0.0110
d8 rs9755941 3 61044 0.0018
d9 rs9756992 3 61113 0.0015
d10 rs13081384 3 61466 0.0010

P
x y

d1 0 0.301
d2 1997 0.824
d3 1998 0.959
d4 3386 2.301
d5 4775 0.260
d6 4776 2.000
d7 5170 1.959
d8 5618 2.745
d9 5687 2.824
d10 6040 3.000

S
i j

d1 1 1
d2 3 2
d3 3 2
d4 5 5
d5 7 1
d6 7 4
d7 7 4
d8 8 6
d9 8 6
d10 8 6

Step 1 Step 2

Table 2.1: SNPs Assignment to Pixels on a Display of Resolution 8× 6.

1000 2000 3000 4000 5000 6000 7000

1

2

3

0
x

y

1st chromosome

2nd chromosome

3rd chromosome

Figure 2.2: Points Associated with SNPs in Cartesian Coordinate System.

2.2.2 Mapping

After the 1st step, when a data item was associated with a point in R2 Euclidean
space, the obtained point is mapped to a single display pixel. We refer to
this pixel as the occupied pixel. In this step we don’t consider any geometrical
transformations, but only the orthogonal projection to the two dimensional
display surface. The mapping concludes the transitive assignment of data item

CHAPTER 2. DISPLAY MODEL 15

to pixel and, therefore, the visualization in overall. Definition 4 formally defines
the mapping function.

Definition 4 (Mapping Function). Let Ω be the bounded subset of R2 Eu-
clidean space such that |Ω| > 1, and ∆ be the set of all available display pixels.
Let Ωx = {x | (x, y) ∈ Ω } and Ωy = { y | (x, y) ∈ Ω } denote two sets corre-
sponding to all distinct x and all distinct y coordinates in set Ω, respectively. Let
∆i = { i | (i, j) ∈ ∆ } and ∆j = { j | (i, j) ∈ ∆ } denote two sets corresponding
to all distinct i and all distinct j coordinates in set ∆, respectively. Then, the
mapping function µ : Ω→ ∆ maps every point in Ω to exactly one pixel in ∆,
which is called the occupied pixel:

µ
(
(x, y)

)
= (i, j), (2.3)

where

i =


⌈
|∆i| ×

∣∣∣ x−inf Ωx

sup Ωx−inf Ωx

∣∣∣ ⌉ , inf Ωx < x ≤ sup Ωx

1 , x = inf Ωx

and

j =


⌈
|∆j | ×

∣∣∣ y−inf Ωy

sup Ωy−inf Ωy

∣∣∣ ⌉ , inf Ωy < y ≤ sup Ωy

1 , y = inf Ωy

♣

Taken together, the mapping function µ creates a tessellation of a bounded
rectangular area on R2 Euclidean plane (i.e., splits it into disjoint subsets) with
every tile (i.e., subset) assigned to a pixel. Thereby, all points belonging to the
same tile are mapped to the same pixel. Consequently, all data items associated
with points from the same tile are assigned to the same pixel. Definition 5 defines
a set of all occupied display pixels.

Definition 5 (Set of Occupied Display Pixels). Let P be the set of points
in R2 Euclidean space associated with data set D, and ∆ be the set of all
available display pixels. Then, we define the set S = { (i, j) | (i, j) ∈ ∆∧ (x, y) ∈
P ∧ (i, j) = µ

(
(x, y)

)
} to be the set of all occupied display pixels to which points

in set P are mapped. ♣

Example 2 For instance, consider SNPs in data set D and set P of all associated
points in R2 Euclidean space listed in Table 2.1. The associated points in P
constitute the bounded subset Ω of R2 Euclidean space. Therefore, inf Ωx = 0
and sup Ωx = 6040, while inf Ωy = 0.260 and sup Ωy = 3.000. If we assume, that
the display resolution is 8× 6, then |∆i| = 8 and |∆j | = 6. Consequently, the
mapping function µ is the following:

µ
(
(x, y)

)
= (i, j), (2.4)

where

i =


⌈
8× x

6040

⌉
, 0 < x ≤ 6040

1 , x = 0

CHAPTER 2. DISPLAY MODEL 16

and

j =


⌈
6× y−0.260

3.000−0.260

⌉
, 0.260 < y ≤ 3.000

1 , y = 0.260

When µ function is specified, then it is applied to every of ten points in set
P of all points in R2 Euclidean space associated with SNPs. As a result, Table
2.1 lists set S of occupied display pixels, to which points in set P are mapped
and, therefore, to which SNPs are assigned. Figure 2.3 depicts the mapping.
On the left are represented points in R2 Euclidean space and the tessellation of
space produced by the µ function. As before, the rectangles refer to SNPs from
the 1st chromosome, the diamonds refer to SNPs from the 2nd chromosome, and
the circles denote SNPs from the 3rd chromosome. On the right is represented
the display of resolution 8× 6 with highlighted occupied pixels. As reported in
the example, the mapping of points in R2 Euclidean space and, therefore, the
assignment of SNPs to pixels is not unique. For instance, pixel (8, 6) represents
three SNPs rs9755941, rs9756992 and rs13081384 from the 3rd chromosome at
the same time. �

0

755

1510

2265

3020

3775

4530

5285

6040

0.260

0.717

1.173

1.630

2.087

2.543

3.000

µ

1

2

3

4

5

6

1
1

2

3

4

5

6

21

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

4

5

6

5

1

2

3

4

5

6

6

1

2

3

4

5

6

7

1

2

3

4

5

6

8

Figure 2.3: Mapping of Points in R2 Euclidian Space Associated with SNPs to
Pixels on a Display of Resolution 8× 6.

Chapter 3
The RDS Tree

Naturally, the visualization requires to access the whole data. If data is stored
in a secondary storage and includes millions of items, then the retrieval and
processing of it consumes significant amount of time. This is a major bottleneck in
interactive visualization, where the response time to user actions is crucial. In this
chapter we introduce an index structure for data visualization on multiresolution
displays. It indexes data so, that only the data items, which contribute to the
perception, are accessed and processed during the visualization.

3.1 Data Reduction

As discussed earlier, the µ function may define mapping which results in the
assignment of more than one data item to the same display pixel. In this case we
say that data items overplot one another. Intuitively, the overplotting is most
probable when the display resolution is significantly smaller than the size of a
data set, or the extent of data set in R2 Euclidean space is significantly wider
than the extent of resolution. Obviously, the exclusion of all oveplotting items
doesn’t produce any difference in visualization, unless transparency or colour
intensity is used. Therefore, it is not necessary required to read the whole data
set to produce the visualization, instead it is possible to read only a part of the
data set and have the same visual result. In this section we introduce a data
set reduction with respect to N ×M display resolution such, that there is no
difference between the visual representation of the reduced data set and the full
data set.

Definition 6 defines a selection function. This function selects a point in a
subset of all points in R2 Euclidean space associated with data set such, that the
selected point is most suitable to be visualized if all other points in the subset
are excluded from the visualization. We refer to this point as the representative
point. The selection of the representative point can directly depend on the
attributes of the data item associated with this point, or on some other criteria.
For instance, a point can be selected as representative in the subset of associated
points if it is a medoid of this subset with respect to the x and y coordinates.

17

CHAPTER 3. THE RDS TREE 18

Definition 6 (Selection Function). Let P be the set of points in R2 Eu-
clidean space associated with data set D. Then, function σ : P(P) \ ∅ → P is
called a selection function and selects a representative point from a subset of set
P of all associated points. ♣

Example 3 To illustrate the selection of the representative point, consider SNPs
in data set D and set P of all associated points in R2 Euclidean space listed in
Table 2.1. Assume a point is defined as representative of a set of points if it is
associated with a SNP, which has the lowest P value between all SNPs associated
with the other points in the set. Thereby, set P is a totally ordered finite set such
that for any pair of points (x, y) and (x′, y′) in P , (x, y) < (x′, y′) if and only if
y < y′, or y = y and x < x′. Thus, the selection function σ : P(P) \ ∅ → P is
defined as the maximum function:

σ(P ′) = max(P ′), where P ′ ⊆ P (3.1)

For instance, consider set P ′ = { (1998, 0.959), (3386, 2.301), (4775, 0.260) } con-
taining points associated with SNPs rs55858216, rs73140430 and rs730038
respectively. Then σ(P ′) selects the point (3386, 2.301) associated with SNP
rs73140430, which has the lowest P value of 0.0050 comparing to the other two
SNPs. Thus, the point (3386, 2.301) is the representative point of all points in
set P ′. �

Definition 7 defines a reduction function, which reduces set P of all points in
R2 Euclidean space associated with data set with respect to the specified N ×M
display resolution and the mapping function µ.

Definition 7 (Reduction Function). Let P be the set of all points in R2

Euclidean space associated with data set D, and σ(P ′) be the selection function
with P ′ being a subset of set P . Let Ω be the bounded subset of R2 Euclidean
space such that P ⊆ Ω, ∆ be the set of all available display pixels, and µ : Ω→ ∆
be the mapping function. Then, function ρ : P → Pρ is a reduction function and
set Pρ ⊆ P is a reduced set of associated points:

ρ
(
(x, y)

)
= σ

(
{ (x′, y′) | (x′, y′) ∈ P ∧ µ

(
(x′, y′)

)
= µ

(
(x, y)

)
}
)

♣

In particular, the mapping function creates a tessellation of set P of all points in
R2 Euclidean space associated with data set. The number of created tiles equals
to the size of set ∆ of all available pixels on a display of resolution N ×M . Then,
for every tile the reduction function selects the representative point of all points
in the tile. The selection is done with the specified selection function σ. As a
result, the reduced set of points in R2 Euclidean space associated with data set
consists of the union of all selected representative points. Definition 8 defines a
reduced data set consisting only of data items, which are associated with the
reduced set of points in R2 Euclidean space.

Definition 8 (Reduced Data Set). Let f : D → R and g : D → R be two
functions relating data item d ∈ D with a real number according to its attributes
in set A, and point

(
f(d), g(d)

)
be the associated point in R2 Euclidean space. Let

Pρ be the reduced set of points in R2 Euclidean space associated with data set D.
Then, the reduced data set is defined as Dρ = { d | d ∈ D∧

(
f(d), g(d)

)
∈ Pρ }.♣

CHAPTER 3. THE RDS TREE 19

Example 4 For example, again consider SNPs in data set D and set P of
associated points in R2 Euclidean space listed in Table 2.1. Equation 3.1 defines
the selection function σ. As previously, suppose the display resolution is 8× 6
and points in set P constitute the bounded subset Ω of R2 Euclidean space.
Then, the mapping function µ is defined in Equation 2.4. Consequently, the
reduction function ρ is specified as follows:

ρ
(
(x, y)

)
= max

(
{ (x′, y′) | (x′, y′) ∈ P ∧ µ

(
(x′, y′)

)
= µ

(
(x, y)

)
}
)

(3.3)

The mapping function µ creates the tessellation of set P consisting of 24 tiles,
where only 6 of them actually include the points associated with SNPs. Table
3.1 lists the full set P , where rows corresponding to the points from the same
tile have the same color. The reduction function ρ is applied to every point
in set P . First, it picks all points which belong to the same tile as the input
point. Afterwards, the selection function σ selects the representative point of
all the picked points. Consider the input point (5687, 2.824), which belongs to
the tile { (x, y) | 5285 < x ≤ 6040 ∧ 2.543 < y ≤ 3.000 }. Then, ρ

(
(5687, 2.824)

)
picks three points (5618, 2.745), (5687, 2.824) and (6040, 3.000) from the same
tile including the input point. Since point (6040, 3.000) is the maximum point
between all three, then it is selected by the σ function as the representative
point and, therefore, ρ

(
(5687, 2.824)

)
= (6040, 3.000). Table 3.1 lists the reduced

set Pρ of the associated points. After the reduction, points in the reduced set
Pρ are mapped to display pixels using the same initial µ function. Table 3.1
lists set S of the occupied display pixels and Figure 3.1 depicts the mapping
together with the reduction of the associated points. As before, on the left are
represented initial points in R2 Euclidean space and the tessellation of space
produced by the µ function. The different shapes of points indicate the different
chromosomes of the associated SNPs. In the middle are represented points from
the reduced set and the same tessellation of space. On the right is depicted the
display of resolution 8× 6 with highlighted occupied pixels. The reduced data

P
x y

d1 0 0.301
d2 1997 0.824
d3 1998 0.959
d4 3386 2.301
d5 4775 0.260
d6 4776 2.000
d7 5170 1.959
d8 5618 2.745
d9 5687 2.824
d10 6040 3.000

Pρ
x y

d1 0 0.301
d3 1998 0.959
d4 3386 2.301
d5 4775 0.260
d6 4776 2.000
d10 6040 3.000

S
i j

d1 1 1
d3 3 2
d4 5 5
d5 7 1
d6 7 4
d10 8 6

ρ Step 2

Table 3.1: Reduction of Points in R2 Euclidean Space and Mapping to Pixels on
a Display of Resolution 8× 6.

set Dρ is defined with respect to the reduced set Pρ of points in R2 Euclidean
space associated with data set D. Thus, a SNP is included in Dρ if and only if
there exists the corresponding associated point in the reduced set Pρ. On the
left Table 3.2 lists the full data set D of SNPs, where rows have the same color
if they correspond to the SNPs associated with points in the same space tile. On
the right Table 3.2 lists the reduced data set Dρ of SNPs associated with points
in the reduced set Pρ. �

CHAPTER 3. THE RDS TREE 20

0

755

1510

2265

3020

3775

4530

5285

6040

0.260

0.717

1.173

1.630

2.087

2.543

3.000

0

755

1510

2265

3020

3775

4530

5285

6040

0.260

0.717

1.173

1.630

2.087

2.543

3.000

ρ

µ

1

2

3

4

5

6

1
1

2

3

4

5

6

21

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

4

5

6

5

1

2

3

4

5

6

6

1

2

3

4

5

6

7

1

2

3

4

5

6

8

Figure 3.1: Reduction of Points in R2 Euclidean Space Associated with SNPs
and Mapping to Pixels on a Display of Resolution 8× 6.

D
name chr pos pval

d1 rs987669 1 60160 0.5000
d2 rs10399597 1 62157 0.1500
d3 rs55858216 2 60718 0.1100
d4 rs73140430 2 62106 0.0050
d5 rs730038 2 63495 0.5500
d6 rs28729284 3 60202 0.0100
d7 rs13067307 3 60596 0.0110
d8 rs9755941 3 61044 0.0018
d9 rs9756992 3 61113 0.0015
d10 rs13081384 3 61466 0.0010

Dρ

name chr pos pval
d1 rs987669 1 60160 0.5000
d3 rs55858216 2 60718 0.1100
d4 rs73140430 2 62106 0.0050
d5 rs730038 2 63495 0.5500
d6 rs28729284 3 60202 0.0100
d10 rs13081384 3 61466 0.0010

Pρ

Data Reduction

Table 3.2: Reduction of SNPs According to Reduced Set of Associated Points in
R2 Euclidean Space.

To conclude, comparing Figure 2.3 and Table 2.1 with Figure 3.1 and Table 3.1
we can see, that the set S of occupied display pixels is the same using both the
reduced and the full sets of points associated with data items. Therefore, the
visualizations of the reduced data set Dρ and the full data set D using the same
initial µ function, without modifying the display resolution and the bounded
subset Ω in R2 Euclidean space, are identical. Although, the reduced data set
may contain less data items than the full initial data set.

Lemma 1 (Equivalency of Visualizations): Let P be the set of all points
in R2 Euclidean space associated with data set D, and Pρ ⊆ P be the reduced
set of points in R2 Euclidean space associated with the reduced data set Dρ ⊆ D.
Let Ω be the bounded subset of R2 Euclidean space such that P ⊆ Ω, ∆ be the
set of all available display pixels, and µ : Ω→ ∆ be the mapping function. If S
and Sρ are two sets of occupied display pixels obtained with the same mapping
function µ and sets P and Pρ respectively, then S = Sρ. ♦

CHAPTER 3. THE RDS TREE 21

Proof Consider the two following cases:

a.) Pixel s = (i, j) belongs to Sρ and doesn’t belong to S.

If pixel s belongs to Sρ, then exists point (x, y) in the reduced set Pρ of
points in R2 Euclidean space associated with the reduced data set Dρ such
that µ

(
(x, y)

)
= s. Therefore, in the reduced data set Dρ exists such data

item d, that f(d) = x and g(d) = y. Since the reduced data set Dρ is
the subset of the full data set D according to Definition 8 and data item
d belongs to Dρ, then data item d belongs to D too. When functions f ,
g and µ are the same, then point (x, y) belongs to set P of points in R2

Euclidean space associated with the full data set D and pixel s belongs to
set S of occupied display pixels. This is a contradiction and, therefore, the
assumption is wrong.

b.) Pixel s = (i, j) belongs to S and doesn’t belong to Sρ.

If pixel s belongs to S, then exists point (x, y) in set P of points in R2

Euclidean space associated with the full data set D such that µ
(
(x, y)

)
= s.

Therefore, in the full data set D exists such data item d, that f(d) = x
and g(d) = y. If data item d also belongs to the reduced data set Dρ and
functions f , g and µ are the same, then point (x, y) belongs to the reduced
set Pρ of points in R2 Euclidean space associated with the reduced data
set Dρ and pixel s belongs to set Sρ of occupied display pixels. This is a
contradiction and, therefore, the assumption is wrong if the data item d
belongs to D and Dρ at the same time. If data item d doesn’t belong to
the reduced data set Dρ and functions f , g and µ are the same, then point
(x, y) doesn’t belong to the reduced set Pρ of points in R2 Euclidean space
associated with the reduced data set Dρ. Since point (x, y) doesn’t belong
to Pρ and pixel s doesn’t belong to Sρ, then following from Definition
7 there is no point (x′, y′) in P such that µ

(
(x′, y′)

)
= µ

(
(x, y)

)
and,

therefore, pixel s doesn’t belong to set S of occupied display pixels. This
is a contradiction and, therefore, the assumption is wrong if the data item
d belongs to D and doesn’t belong to Dρ also.

3.2 Tree Definition

A single reduced data set is not sufficient for visualization since it is constructed
for the constant display resolution, which usually is a variable value. Our goal is
to have an index data structure supporting visualizations in different resolutions.
Thus, further we consider a multiple reduced data sets constructed for a finite
set of predefined resolutions. They can be stored and queried in a hierarchical
tree structure. We refer to this structure as the tree of reduced data sets or the
RDS tree.

Definition 9 (RDS Tree). Let D be the data set and P be the set of all
points in R2 Euclidean space associated with data items in D. Let R = {N1 ×
M1, . . . , Nk ×Mk } be the finite set of display resolutions, where k ∈ N∗. Then,
the RDS tree T of reduced data sets is the space-partitioning hierarchical data
structure for storing reduced data sets Dρ1, . . . , Dρk, where Dρi corresponds to
the resolution Ni ×Mi with 1 ≤ i ≤ k.

CHAPTER 3. THE RDS TREE 22

The inner node of RDS tree T contains the set of elements
(areai, itemi, childi), where 1 ≤ i ≤ |D|. The areai is the rectangular area
on R2 Euclidean plane. The itemi is the data item in data set D associated with
a point p ∈ P such, that p is the representative point of all points in areai. The
childi is the pointer to a child node.

The leaf node of RDS tree T contains the set of elements (areai, itemi, datai),
where 1 ≤ i ≤ |D|. The areai is the rectangular area on R2 Euclidean plane.
The itemi is the data item in data set D associated with a point p ∈ P such,
that p is the representative point of all points in areai. The datai is the pointer
to all data items in D associated with points in P , that belong to the areai. ♣

Definition 9 defines the RDS tree T together with the inner and the leaf
nodes of the tree. A particular element entry areai, itemi, or childi of an inner
node v is accordingly denoted as v.areai, v.itemi, or v.childi. Any two inner
nodes can have different number of elements and, therefore, different number
of children. The same notation is applied for element entries of a leaf node.
Also, as inner nodes, any two leaf nodes can have different number of elements
and, therefore, can reference to different number of data subsets. Although,
the number of elements in a single inner or a single leaf node can’t exceed the
number of data items in data set. Taken together, the set of inner and leaf
nodes forms such hierarchy, that all rectangular areas on R2 Euclidean plane in
the child node childi are enclosed by the rectangular area areai in the parent
node. Figure 3.2 depicts the RDS tree consisting of one inner node v00 and three

D1 ⊂ D D2 ⊂ D D3 ⊂ D D4 ⊂ D D5 ⊂ D D6 ⊂ D

v10
area1 area2

item1 item2

data1 data2

v11
area1 area2 area3

item1 item2 item3

data1 data2 data3

v12
area1

item1

data1

v00
area1 area2 area3

item1 item2 item3

child1 child2 child3

Figure 3.2: RDS Tree

leaf nodes v10, v11 and v12. It splits a data set D into six subsets D1, . . . , D6

such, that D = D1 ∪ · · · ∪ D6 and D1 ∩ · · · ∩ D6 = ∅. If we consider the leaf
node v10, then the area v10.area1 encloses all points associated with data items
in D1, while v10.area2 encloses all points associated with data items in D2.
The v10.item1 ∈ D1 is associated with the representative point of all points in
v10.area1, which are associated with data items in D1. The v10.item2 ∈ D2 is
associated with the representative point of all points in v10.area2, which are
associated with data items in D2. Furthermore, v10.area1∪v10.area1 ⊆ v00.area1

and v00.item1 ∈ D1 ∪D2. Thus, v00.item1 is associated with the representative
point of all points in v10.area1 ∪ v10.area2, which are associated with data items
in D1 ∪D2.

CHAPTER 3. THE RDS TREE 23

3.3 Tree Construction

Consider the finite set R = {N1 ×M1, . . . , Nk ×Mk } of display resolutions,
where k ∈ N∗. Assume, we need to construct the RDS tree T to support the
display resolutions in R. In particular, the tree must store the reduced data sets
Dρ1, . . . , Dρk, where Dρi corresponds to the resolution Ni ×Mi with 1 ≤ i ≤ k.

Since the RDS tree T represents the hierarchy of nested rectangular areas
on R2 Euclidean plane, then we introduce the following restriction on set R of
display resolutions:

Ni+1

Ni
+
Mi+1

Mi
−
(⌊Ni+1

Ni

⌋
+
⌊Mi+1

Mi

⌋)
= 0, where 1 ≤ i < k. (3.4)

The restriction ensures, that the areas in all inner and all leaf nodes don’t
intersect and, therefore, the data subsets in all leaf nodes don’t intersect too.
For instance, set R = { 2× 2, 4× 2 } is an example of the valid set of display
resolutions, while set R = { 2× 2, 3× 2 } of display resolutions is not allowed.

Algorithm 1: RDS Tree Construction

function BuildTree(D, R)
P ← { (x, y) | d ∈ D ∧ f(d) = x ∧ g(d) = y }
Ω ← P
root ← TreeNode(D, P, Ω, R, 1)
return root

function BuildTreeNode(D, P , Ω, R, l)
node ← ∅
if l > 1 then

N ×M ← Nl

Nl−1
× Ml

Ml−1

else
N ×M ← Nl ×Ml

∆ ← { (i, j) | 1 ≤ i ≤ N ∧ 1 ≤ j ≤M }
foreach (i, j) ∈ ∆ do

Ω′ ← { (x, y) | (x, y) ∈ Ω ∧ µ
(
(x, y)

)
= (i, j) }

P ′ ← { (x, y) | (x, y) ∈ P ∧ (x, y) ∈ Ω′ }
if P ′ 6= ∅ then

D′ ← { d | d ∈ D ∧
(
f(d), g(d)

)
∈ P ′ }

d′ ← d : d ∈ D′ ∧ (f(d), g(d)) = σ(P ′)
if l < k then

child ← BuildTreeNode(D′, P ′, Ω′, R, l + 1)
if node = ∅ then node ← new InnerNode
node ← node ∪ (Ω′, d′, child)

else
if node = ∅ then node ← new LeafNode
node ← node ∪ (Ω′, d′, D′)

return node

Algorithm 1 lists a pseudocode of the function BuildTree(D, R), which
constructs the RDS tree containing the reduced data sets for data set D and

CHAPTER 3. THE RDS TREE 24

display resolutions in set R. It relies on the invocation of the recursive function
BuildTreeNode(D, P, Ω, R, l), where l indicates the ordinal position of resolu-
tion in set R and Ω is the rectangular area on R2 Euclidean plane enclosing all
points in set P , which are associated with data items in data set D. First, the
function estimates the resolution N ×M , which is used to produce the required
Nl ×Ml resolution from the previous Nl−1 ×Ml−1 resolution. Second, it defines
the set ∆ of available display pixels and, consequently, defines the mapping
function µ for the estimated resolution N ×M and rectangular area Ω. Then,
it loops through all pixels in set ∆. For every pixel (i, j) it estimates two sets
Ω′ and P ′. The former is the rectangular space tile on R2 Euclidean plane,
which corresponds to the pixel (i, j) and is the result of the tessellation of area Ω
produced with the mapping function µ. The latter is the set of all points falling
into the area Ω′ and associated with data items in set D. If set P ′ is empty, then
no data items are assigned to the pixel (i, j) and, therefore, the corresponding
tree node is not created. Otherwise, the function estimates the data subset D′ of
all data items, which have associated points in set P ′ only. Then, it selects such
data item d′ in set D′, that it is associated with the representative point in set
P ′. Afterwards, if not all resolutions in set R were covered, then the function is
recursively invoked with the input arguments D′, P ′, Ω′ and incremented l value.
As a result of the recursive invocation, the child pointer is obtained. Finally,
with respect to the current l value, a new element (Ω′, d′, child) or (Ω′, d′, D′)
is appended to the inner or to the leaf node respectively.

Example 5 For instance, consider SNPs in data set D listed in Table 2.1. The
functions f and g are defined in Equation 2.1 and Equation 2.2 respectively.
Equation 3.1 defines the selection function σ. Assume, we need to construct
the RDS tree containing the reduced sets of SNPs for display resolutions in
R = { 1× 1, 2× 2, 4× 2, 8× 6 }. Then, Figure 3.3 depicts the constructed tree.
�

CHAPTER 3. THE RDS TREE 25

{ d1 } { d2, d3 } { d5 } { d4 } { d6, d7 } { d8, d9, d10 }

v30

d1

[0, 755]
×

[0.26, 0.717]

data1

v31

d3

(1510, 2265]
×

(1.173, 1.63]

data1

v32

d5

(4530, 5285]
×

[0.26, 0.717]

data1

v33

d4

(3020, 3775]
×

(2.087, 2.543]

data1

v34

d6 d10

(4530, 5285]
×

(1.63, 2.087]

(5285, 6040]
×

(2.543, 3]

data1 data2

v20

d1 d3

[0, 1510]
×

[0.260, 1.630]

(1510, 3020]
×

[0.260, 1.630]

child1 child2

v21

d5

(4530, 6040]
×

[0.260, 1.630]

child1

v22

d4 d10

(3020, 4530]
×

(1.630, 3.000]

(4530, 6040]
×

(1.630, 3.000]

child1 child2

v10

d3 d5 d10

[0, 3020]
×

[0.260, 1.630]

(3020, 6040]
×

[0.260, 1.630]

(3020, 6040]
×

(1.630, 3.000]

child1 child2 child3

v00

d10

[0, 6040]
×

[0.260, 3.000]

child1

Figure 3.3: RDS Tree of SNPs for Display Resolutions 1× 1, 2× 2, 4× 2 and
8× 6.

Chapter 4
Querying the RDS Tree

In this chapter the three essential queries over the RDS tree are introduced. The
selection query allows the fast visualization of the whole data set. The window
query supports the zoom in interactive operation. While the top K query allows
the fast retrieval of additional information on demand.

4.1 Selection Query

The most essential query over the RDS tree is a selection of the reduced data
set, which corresponds to the display resolution of interest. In particular, if
we want to visualize a data set D on displays of multiple resolutions, then we
construct the RDS tree T containing the reduced data sets for the finite set R
of the predefined display resolutions. During the visualization, when the exact
display resolution N ×M is defined, we query the RDS tree T for the reduced
data set Dρ corresponding to the defined resolution N ×M . However, since the
RDS tree T is constructed for the finite number of predefined display resolutions,
then it may not contain the reduced data set Dρ, which exactly corresponds to
the display resolution of interest. If so, such reduced data set Dρ

′ is extracted
from the RDS tree T, that Dρ is the subset of Dρ

′ and Dρ
′ is the subset of D.

The selection query is based on the depth-first preorder traversal of the
RDS tree T. The traversal termination condition depends on the extent of the
rectangular area on R2 Euclidean plane stored in a tree node element, which
encloses all points associated with data items in a child node. In particular, the
traversal terminates when the rectangular area falls into a single tile in the space
tessellation produced by the mapping function µ to satisfy the current display
resolution N ×M . Indeed, if the rectangular area falls into a single tile, then all
other subareas in a child node fall into the same tile as well and, therefore, all
points in these areas are mapped to the same display pixel. Hence, alternatively
we can state, that the traversal terminates if the rectangular area is mapped to
a single pixel. However, this termination condition is very conservative. Since
the major part of visualizations use more than one display pixel to represent a
point in R2 Euclidean space, then this allows the rectangular area to fall into
more than one consecutive tiles both horizontally and vertically without the
significant influence on the final visualization. For instance, assume a display

26

CHAPTER 4. QUERYING THE RDS TREE 27

of resolution N ×M and a point in R2 Euclidean space mapped to the pixel
(i′, j′). Then, Figure 4.1 depicts the representation of this point with 21 pixels,
which approximate a circle. Next, assume a second point in R2 Euclidean space

1

1

N

M

i′

j′

i

j

Figure 4.1: Representation of a Point in R2 Euclidean Space with 21 Pixels on a
Display of Resolution N ×M Approximating a Circle.

mapped to the neighbour pixel (i′ + 1, j′) on the same display of resolution
N ×M . Then, Figure 4.2 depicts the simultaneous representation of both points
on the display. The former point is represented with pixels coloured in red,
while the latter point is represented with pixels coloured in semitransparent blue.
Although the points are mapped to two different consecutive display pixels, their
representations still uses 16 common pixels. As a result, the visualized data
items associated with these two points partially overplot one another and are
undistinguishable on displays of relatively wide resolution. For that reason, in

1

1

N

M

i

j

i′

j′

i′ + 1

Figure 4.2: Representation of Two Points in R2 Euclidean Space with 26 Pixels
on a Display of Resolution N ×M Approximating Circles.

the tree traversal termination condition we introduce a threshold for the number
of tiles to which the rectangular area falls and, therefore, for the number of
pixels to which the area is mapped. We refer to this threshold as the minimum
size of a point on a display. For example, if a point in R2 Euclidean space is
represented with only one display pixel (i.e., only with pixel to which is directly
mapped), then the minimum size threshold is the most conservative and is equal
to 1. If the minimum size threshold is 3, then the point is represented with 3
pixels horizontally and 3 pixels vertically, which in total is 9 pixels.

CHAPTER 4. QUERYING THE RDS TREE 28

Algorithm 2: Selection Query

function SelectReducedDataSet(T, N ×M , δ)
Dρ ← ∅
node ← root(T)
for i ← 1 to size(node) do

Ω ← Ω ∪ node.areai
∆ ← { (i, j) | 1 ≤ i ≤ N ∧ 1 ≤ j ≤M }
Select(node, Ω, ∆, δ, Dρ)
return Dρ

function Select(node, Ω, ∆, δ, Dρ)
for i ← 1 to size(node) do

areax ← {x | (x, y) ∈ node.areai }
areay ← { y | (x, y) ∈ node.areai }
(ibottom, jbottom) ← µ

(
(inf areax, inf areay)

)
if inf areax 6= inf Ωx then ibottom ← ibottom + 1
if inf areay 6= inf Ωy then jbottom ← jbottom + 1

(itop, jtop) ← µ
(
(sup areax, sup areay)

)
if itop − ibottom + 1 ≤ δ ∧ jtop − jbottom + 1 ≤ δ then

Dρ ← Dρ ∪ node.itemi

else if node is LeafNode then
Dρ ← Dρ ∪ node.datai

else if node is InnerNode then
Select(node.childi, Ω, ∆, δ, Dρ)

Algorithm 2 lists a pseudocode of the function SelectReducedDataSet(T, N×
M, δ). It selects the reduced data set Dρ in the RDS tree T according to the
display resolution N ×M and the threshold δ, which denotes the minimum
size of a point on the display. The function starts with the estimation of the
rectangular area Ω on R2 Euclidean plane, which encloses all points associated
with data items in data set D. All rectangular areas stored in the root node
of the RDS tree T constitute the whole area Ω. After the Ω is known, the set
∆ of available display pixels is estimated according to the resolution N ×M
and, consequently, the mapping function µ is defined and ready to use in all
further steps. Then, the recursive function Select(node, Ω, ∆, δ, Dρ) is invoked.
It implements the depth-first preorder traversal of the RDS tree T, which always
starts with the root node and, therefore, the node input argument is specified
accordingly. The Dρ input argument is the reduced data set of interest, which
initially is empty.

For every element in the node function Select(node, Ω, ∆, δ, Dρ) tests the
traversal termination condition. In particular, first it estimates areax and areay
of the rectangular area node.areai on the R2 Euclidean plane, where the former
corresponds the horizontal extent and the latter corresponds to the vertical
extent of the area. Second, by the means of the mapping function µ it estimates
the number of tiles occupied with node.areai. Every tile corresponds to the
pixel (i, j) in set ∆ of available display pixels. Therefore, the left bottom

CHAPTER 4. QUERYING THE RDS TREE 29

point (inf areax, inf areay) of the extent of node.areai is mapped to the pixel
(ibottom, jbottom), while the right top point (sup areax, sup areay) of the extent
of node.areai is mapped to the pixel (itop, jtop). Figure 4.3 depicts an example
of a hypothetic node.areai with occupied pixels on a display of resolution N×M .
The coordinates of two pixels (ibottom, jbottom) and (itop, jtop) describe the total

node.areai

(inf areax, inf areay)(inf areax, inf areay)

(sup areax, sup areay)(sup areax, sup areay)

1

1

N

M

ibottom

jbottom

itop

jtop

i

j

Figure 4.3: A Hypothetic Rectangular Area on R2 Euclidean Plane with Occupied
Pixels on a Display of Resolution N ×M .

number of display pixels and, therefore, the total number of tiles occupied with
node.areai. The number of occupied tiles horizontally is equal to itop−ibottom+1,
while the number of occupied tiles vertically is equal to jtop− jbottom+ 1. If both
numbers are smaller than the threshold δ, then the corresponding data item
node.itemi is appended to the reduced data setDρ and the further traversal to the
node.childi is omitted. Otherwise, if node is a leaf node, then the corresponding
set of data items node.datai is appended to the reduced data set Dρ. Or, if
node is an inner node, then the function is invoked on the corresponding child
node node.childi and, therefore, the tree traversal continues by going one level
in depth.

Example 6 To illustrate the selection query, consider data set D of ten SNPs
listed in Table 2.1 and the corresponding RDS tree T containing the reduced
data sets for the display resolutions in R = { 1 × 1, 2 × 2, 4 × 2, 8 × 6 } and
depicted in Figure 3.3. Assume, the current display resolution is 4 × 2 and a
point in R2 Euclidean space is represented with the exactly one display pixel.
Consequently, we need to query the RDS tree T for the reduced data set Dρ4×2
of SNPs, which corresponds to the display resolution 4 × 2 and satisfies the
threshold δ = 1 for the minimum size of a point on the display.

In the first step, the rectangular area Ω on R2 Euclidean plane is esti-
mated and is equal to [0, 6040] × [0.260, 3.000]. Then, the set ∆ of available
display pixels is defined according to the resolution 4 × 2 and is equal to
{ (1, 1), . . . , (4, 1), (1, 2), . . . , (4, 2) }. Therefore, the mapping function µ is de-
fined so, that it maps all points in Ω = [0, 6040] × [0.260, 3.000] to the pixels
in set ∆. After the mapping function is defined, the recursive tree traversal
function is invoked with the arguments Select(v00, Ω, ∆, 1, Dρ4×2).

First, the root node v00 is considered. The left bottom point (0, 0.260) of
the extent of v00.area1 is mapped to the pixel (1, 1), while the right top point
(6040, 3.000) of the extent of v00.area1 is mapped to the pixel (4, 2). Thus,
v00.area1 occupies 4 display pixels horizontally and 2 display pixels vertically,

CHAPTER 4. QUERYING THE RDS TREE 30

which satisfy the minimum size threshold δ = 1. Figure 4.4 depicts the v00.area1

and the occupied display pixels. As a result, the function goes one level in depth
to the node v10 and considers three areas v10.area1, v10.area2 and v10.area3.

v00.area1

i

j

1 2 3 4

1

2

Figure 4.4: Display of Resolution 4× 2 and Pixels Occupied with Areas in RDS
Tree Node v00.

Again, the left bottom point (0, 0.260) of the extent of v10.area1 is mapped
to the pixel (1, 1), while the right top point (3020, 1.630) of this extent is mapped
to the pixel (2, 1). Therefore, v10.area1 satisfies the minimum size threshold
δ = 1, since it occupies 2 display pixels horizontally. The according extreme
points (3020, 0.260) and (6040, 1.630) of the extent of v10.area2 are mapped
to the pixels (3, 1) and (4, 1), respectively. Hence, v10.area2 occupies 2 pixels
horizontally and, therefore, satisfies the minimum size threshold δ = 1. Finally,
the left bottom point (3020, 1.630) and the right top point (6040, 3.000) of the
extent of v10.area3 are mapped to the according pixels (3, 2) and (4, 2). Thus,
v10.area3 occupies 2 pixels horizontally and satisfies the threshold δ = 1 as well
as the previous two areas. Figure 4.5 depicts the areas v10.area1, v10.area2

and v10.area3 with the corresponding occupied display pixels. Since all three
considered areas satisfy the necessary conditions, then the tree traversal continues
with the corresponding children nodes v20, v21 and v22.

v10.area1 v10.area2

v10.area3

i

j

1 2 3 4

1

2

Figure 4.5: Display of Resolution 4× 2 and Pixels Occupied with Areas in RDS
Tree Node v10.

Let start with the node v20 containing two areas v20.area1 and v20.area2.
The left bottom point (0, 0.260) and the right top point (1510, 1.630) of the
extent of v20.area1 are mapped to the same display pixel (1, 1). Obviously,
v20.area1 doesn’t satisfy the minimum size threshold δ = 1, since it occupies
exactly one pixel. Therefore, corresponding data item d1 is appended to the
reduced data set Dρ4×2 of SNPs and the child node v20.child1 is not considered
in the further traversal. The analogous situation is with the v20.area2, since
the according extreme points (1510, 0.260) and (3020, 1.630) of the extent of
this area are mapped to the same display pixel (2, 1). Thus, the data item d3 is

CHAPTER 4. QUERYING THE RDS TREE 31

appended to the reduced data set Dρ4×2 of SNPs and v20.child2 is omitted from
the further tree traversal. The two other nodes v21 and v22 of the tree T are
processed in the same way. Figure 4.6 depicts the areas in nodes v20, v21 and v22

with the corresponding occupied display pixels. As a result, data items d5, d4

and d10 are appended to the reduced data set Dρ4×2 of SNPs and corresponding
child nodes v21.child1, v22.child1 and v21.child2 are not considered.

v20.area1 v20.area2 v21.area1

v22.area1 v22.area2

i

j

1 2 3 4

1

2

Figure 4.6: Display of Resolution 4× 2 and Pixels Occupied with Areas in RDS
Tree Nodes v20, v21 and v22.

(a) Display Resolution 1× 1

Dρ1×1

name chr pos pval
d10 rs13081384 3 61466 0.0010

Pρ1×1

x y
d10 6040 3.000

S1×1

i j
d10 1 1

Step 1 Step 2

(b) Display Resolution 2× 2

Dρ2×2

name chr pos pval
d3 rs55858216 2 60718 0.1100
d5 rs730038 2 63495 0.5500
d10 rs13081384 3 61466 0.0010

Pρ2×2

x y
d3 1998 0.959
d5 4775 0.260
d10 6040 3.000

S2×2

i j
d3 1 1
d5 2 1
d10 2 2

Step 1 Step 2

(c) Display Resolution 4× 2

Dρ4×2

name chr pos pval
d1 rs987669 1 60160 0.5000
d3 rs55858216 2 60718 0.1100
d4 rs73140430 2 62106 0.0050
d5 rs730038 2 63495 0.5500
d10 rs13081384 3 61466 0.0010

Pρ4×2

x y
d1 0 0.301
d3 1998 0.959
d4 3386 2.301
d5 4775 0.260
d10 6040 3.000

S4×2

i j
d1 1 1
d3 2 1
d4 3 2
d5 4 1
d10 4 2

Step 1 Step 2

(d) Display Resolution 8× 6

Dρ8×6

name chr pos pval
d1 rs987669 1 60160 0.5000
d3 rs55858216 2 60718 0.1100
d4 rs73140430 2 62106 0.0050
d5 rs730038 2 63495 0.5500
d6 rs28729284 3 60202 0.0100
d10 rs13081384 3 61466 0.0010

Pρ8×6

x y
d1 0 0.301
d3 1998 0.959
d4 3386 2.301
d5 4775 0.260
d6 4776 2.000
d10 6040 3.000

S8×6

i j
d1 1 1
d3 3 2
d4 5 5
d5 7 1
d6 7 4
d10 8 6

Step 1 Step 2

Table 4.1: Assignment of Reduced Sets of SNPs to Pixels on Displays of Resolu-
tions 1× 1, 2× 2, 4× 2 and 8× 6.

Table 4.1c lists the reduced data set Dρ4×2 of SNPs for the display resolution

CHAPTER 4. QUERYING THE RDS TREE 32

Pρ1×1

0

6040

0.260

3.000

Pρ2×2

0

3020

6040

0.260

1.630

3.000

Pρ4×2

0

1510

3020

4530

6040

0.260

1.630

3.000

Pρ8×6

0
755

1510
2265

3020
3775

4530
5285

6040

0.260
0.717
1.173
1.630
2.087
2.543
3.000

1× 1

1 1

2× 2

1
2

11
2

2

4× 2

1
2

11
2

21
2 3
1
2 4

8× 6

1
2
3
4
5
6

11
2
3
4
5
6

21
2
3
4
5
6

3
1
2
3
4
5
6

4

1
2
3
4
5
6

5

1
2
3
4
5
6

6

1
2
3
4
5
6

7

1
2
3
4
5
6

8

Figure 4.7: Mapping of Reduced Sets of Points in R2 Euclidean Space Associated
with Reduced Sets of SNPs to Pixels on Displays of Resolutions 1 × 1, 2 × 2,
4× 2 and 8× 6.

4× 2. Along with the reduced data set of SNPs, the table lists the reduced set
Pρ4×2 of points in R2 Euclidean space associated with SNPs, and set S4×2 of all
occupied display pixels. Tables 4.1a, 4.1b and 4.1d list corresponding sets for
display resolutions 1× 1, 2× 2 and 8× 6 respectively. Finally, Figure 4.7 depicts
the reduced sets of associated points in R2 Euclidean space and the mapping
of these points to pixels. The rectangular points refer to SNPs from the 1st
chromosome, the circular points refer to SNPs from the 2nd chromosome, and
the points of the shape of a diamond denote SNPs from the 3rd chromosome.�

4.2 Window Query

A window query allows to define the rectangular area on R2 Euclidean plane and
retrieve such data items, that they are associated with points in the defined area
only. The query is made after the whole data set is visualized in R2 Euclidean
space, since only then the smaller subregions of interest can be observed and
identified. After the subregion of interest is defined, then all available display
pixels are dedicated to the visualization of this region particularly. As a result,
more pixels are available to visualize the same or the smaller number of data
items and, therefore, more fine-grained visualization is produced. Thereby,
we refer to the window query as the zoom in operation, or as the drill down
operation.

Obviously, the data subset retrieved with window query may still contain
millions of data items and a part of them may be assigned to the same display
pixels. To reduce the number of retrieved points we define the window query

CHAPTER 4. QUERYING THE RDS TREE 33

over the RDS tree T. In this case, the query retrieves data items considering the
region of interest, the display resolution and the minimum size of a point on the
display. It attempts to retrieve only non-overplotting data items, which produce
the actual difference in visualization.

Assume the window query is specified with the rectangular area W = { (x, y) |
x ∈ R ∧ y ∈ R } on R2 Euclidean plane. Further, we refer to this area as the
window area. Then, all pixels on a display of resolution N ×M are dedicated
to visualize only the data items associated with the points belonging to the
specified window area. Therefore, the mapping function µ is defined only over
the window area and produces the tessellation of it with respect to the display
resolution N ×M . Consequently, such reduced data set Dρ is selected in the
RDS tree T, that it contains only data items associated with points in W and
corresponds to the resolution N ×M . Also, the minimum size of a point on the
display is taken into account when constructing the reduced data set Dρ.

The two cases are considered during the traversal of the RDS tree T: (i) the
rectangular area stored in the tree node is completely enclosed with the window
area W ; (ii) the rectangular area stored in the tree node only partially intersects
with the window area W and, therefore, is on the border of the region of interest.
On the left side of Figure 4.8 is depicted a hypothetical space tessellation stored
in the tree node and the two cases. The rectangular areas colored in light blue
correspond to the first case, while the areas colored in red correspond to the
second case. In the first case, the depth-first tree traversal terminates if the
rectangular area in a tree node doesn’t satisfy the minimum size threshold.
Specifically, it terminates when the number of pixels occupied with the area
is smaller than the minimum size of a point on the display, and the data item
associated with the representative point of all points in the area is appended
to the reduced data set Dρ. In the second case, the tree traversal continues
until the leaf node of the RDS tree T is reached. When the leaf node is reached,
then all data items referenced by the leaf node and associated with points in
window area W are appended to the reduced data set Dρ. As a result, more
fine-grained tessellation of space is considered near the borders of the window
area W and, therefore, more data items may be selected in this areas. On the
right side of Figure 4.8 is depicted a hypothetical example of the second case
with more fine-grained space tessellation near the borders of W .

W W

Figure 4.8: Two Cases in the Traversal of the RDS Tree for Window Query.

Algorithm 3 lists a pseudocode of the function
SelectWindowRDS(W, T, N × M, δ), where W is the rectangular area
on R2 Euclidean plane denoting the window query, T is the RDS tree, N ×M is
the current display resolution, and δ is the minimum size of point on the display.
The function selects the reduced data set Dρ in the RDS tree T satisfying the

CHAPTER 4. QUERYING THE RDS TREE 34

Algorithm 3: Window Query

function SelectWindowRDS(W , T, N ×M , δ)
Dρ ← ∅
node ← root(T)
Ω ← W
∆ ← { (i, j) | 1 ≤ i ≤ N ∧ 1 ≤ j ≤M }
SelectWindow(node, Ω, ∆, δ, Dρ)
return Dρ

function SelectWindow(node, Ω, ∆, δ, Dρ)
for i ← 1 to size(node) do

overlap ← Ω ∩ node.areai
if overlap = node.areai then

areax ← {x | (x, y) ∈ node.areai }
areay ← { y | (x, y) ∈ node.areai }
(ibottom, jbottom) ← µ

(
(inf areax, inf areay)

)
if inf areax 6= inf Ωx then ibottom ← ibottom + 1
if inf areay 6= inf Ωy then jbottom ← jbottom + 1

(itop, jtop) ← µ
(
(sup areax, sup areay)

)
if itop − ibottom + 1 ≤ δ ∧ jtop − jbottom + 1 ≤ δ then

Dρ ← Dρ ∪ node.itemi

else if node is LeafNode then
Dρ ← Dρ ∪ node.datai

else if node is InnerNode then
SelectWindow(node.childi, Ω, ∆, δ, Dρ)

else if overlap 6= ∅ then
if node is LeafNode then

foreach item ∈ node.datai do
if
(
f(item), g(item)

)
∈ overlap then

Dρ ← Dρ ∪ item

else if node is InnerNode then
SelectWindow(node.childi, Ω, ∆, δ, Dρ)

current display resolution, the minimum size threshold, and containing only
the data items associated with points in window area W . It starts with the
initialization of set Dρ to the empty set and specifying the root node of the
RDS tree T as the start node for the tree traversal. The bounded rectangular
subset Ω of R2 Euclidean space is initialized with the window area W . The
set ∆ of available display pixels is defined according to the display resolution
N ×M . Finally, the recursive function SelectWindow(node, Ω, ∆, δ, Dρ) is
invoked, which implements the depth-first preorder traversal of the RDS tree.
As a result, the reduced data set Dρ satisfying the window query, the display
resolution N ×M and the minimum size threshold is returned.

Function SelectWindow(node, Ω, ∆, δ, Dρ) checks every element in the node.
In particular, it estimates intersection between window area W and the rectangu-

CHAPTER 4. QUERYING THE RDS TREE 35

lar area node.areai. If intersection uquals to the whole node.areai and, therefore,
W completely contains node.areai, then the function calculates the number of
display pixels occupied with node.areai. If it doesn’t satisfy the minimum size
threshold δ, then the corresponding data item node.itemi is appended to the
reduced data set Dρ. Otherwise, if node is a leaf node, then the corresponding
set of data items node.datai is appended to the reduced data set Dρ. Or, if
node is an inner node, then the function is invoked on the corresponding child
node node.childi and, therefore, the tree traversal continues by going one level
in depth. If intersection between W and node.areai is not equal to the whole
node.areai and is not the empty set, then the function traverse the RDS tree T
until the leaf node is reached. Then, every data item in node.datai associated
with points in intersection between W and node.areai is appended to the reduced
data set Dρ.

Example 7 Consider data set D of ten SNPs and set P of points in R2 Euclidean
space associated with SNPs listed in Table 2.1. Figure 3.3 depicts the RDS
tree T containing the reduced data sets for the display resolutions in R =
{ 1× 1, 2× 2, 4× 2, 8× 6 }. Assume, the whole data set is initially visualized
on the display of resolution 8 × 6 and every point in R2 Euclidean space is
represented with single display pixel. Also, the initial visualization utilized the
corresponding reduced data set in the RDS tree T. Suppose the window query
W = [5000, 2.000] × [6040, 3.000] is executed. Then, the bounded rectangular
subset Ω of R2 Euclidean space is equal to the window area W and set ∆ of
available display pixels is specified according to the resolution 8× 6. Therefore,
the corresponding mapping function µ is defined as follows:

µ
(
(x, y)

)
= (i, j), (4.1)

where

i =


⌈
8× x−5000

6040−5000

⌉
, 5000 < x ≤ 6040

1 , x = 5000

and

j =


⌈
6× y−2.000

3.000−2.000

⌉
, 2.000 < y ≤ 3.000

1 , y = 2.000

The depth-first preorder traversal of the RDS tree T starts at the root node
v00 with the initially empty reduced data set Dρ and with the minimum size
threshold δ = 1. Since the v00.area1 partially intersects with the window area W ,
then the traversal continues with the inner node v10 containing three areas. The
first two areas v10.area1 and v10.area2 don’t intersect with W and, therefore, the
corresponding child nodes v10.child1 and v10.child2 are not considered further.
Although, the last area v10.area3 with the extent [3020, 6040] × [1.630, 3.000]
partially intersects with W . Since the intersection is only partial, then the
minimum size threshold is not considered and the traversal goes one level in
depth to the node v22. Again, in the inner node v22 only one area, v22.area2,
partially intersects with the window query W and, therefore, directs the further
traversal to the child node v34. Since v34 is the leaf node and v34.area1 partially
intersects with W , then we consider all data items in v34.data1. The data item
d6 is associated with point (4776, 2.000), while the data item d7 is associated

CHAPTER 4. QUERYING THE RDS TREE 36

with point (5170, 1.959). Both points are outside of the window area and the
corresponding data items don’t contribute to the reduced data set Dρ. The
next area v34.area1 completely intersects with the window area W . The left
bottom point (5285, 2.543) of the extent of v34.area1 is mapped to the display
pixel (3, 4), while the right top point (6040, 3.000) of this extent is mapped to
the display pixel (8, 6). Therefore, the area satisfies the minimum size threshold
δ = 1 both horizontally and vertically. As a result, all data items in v34.data2

(i.e., d8, d9 and d10) are appended to the reduced data set Dρ.

W

Pρ8×6

0

755

1510

2265

3020

3775

4530

5285

6040

0.260

0.717

1.173

1.630

2.087

2.543

3.000

Pρ
′
8×6

5000

5130

5260

5390

5520

5650

5780

5910

6040

2.000

2.167

2.333

2.499

2.667

2.833

3.000

8× 6

1

2

3

4

5

6

1
1

2

3

4

5

6

21

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

4

5

6

5

1

2

3

4

5

6

6

1

2

3

4

5

6

7

1

2

3

4

5

6

8

8× 6

1

2

3

4

5

6

1
1

2

3

4

5

6

21

2

3

4

5

6

3

1

2

3

4

5

6

4

1

2

3

4

5

6

5

1

2

3

4

5

6

6

1

2

3

4

5

6

7

1

2

3

4

5

6

8

Figure 4.9: Mapping of the Reduced Set of Points in R2 Euclidean Space
Satisfying the Window Query and Associated with the Reduced Set of SNPs to
Pixels on a Display of Resolution 8× 6.

Figure 4.9 depicts the reduced sets of associated points in R2 Euclidean space
and the mapping of these points to pixels on a display of resolution 8× 6 with
respect to the window area W . On the left side is depicted the complete reduced
set Pρ8×6 of all associated points for the resolution 8×6 and the mapping of these
points to the display pixels. The rectangular area W = [5000, 2.000]×[6040, 3.000]
corresponding to the window query is highlighted with gray color. At the same
time, on the right side of Figure 4.9 is depicted the reduced set P ′ρ8×6

of all

associated points satisfying the window area W and the mapping of these points
to the display pixels. In the latter mapping, the three data items d8, d9 and
d10 are clearly distinguishable, since all display pixels are dedicated for the

CHAPTER 4. QUERYING THE RDS TREE 37

visualization of the relatively small area W .

4.3 Top K Query

As was discussed before, the visualization of the reduced data set produces the
same perceptional information as the visualization of the full data set. However,
to have a complete and a comprehensive view of the whole data, the information
about the data items which were eliminated and, therefore, are not directly
represented in the visualization is necessary. In this section is introduced an
algorithm extracting K data items from an arbitrary node in the RDS tree T.
The extracted data items are not visualized in R2 Euclidean space, although
they constitute highly important auxiliary information about the data set. For
instance, if an analyst knows what data items are assigned to the same display
pixel, then he or she can decide to zoom in to the particular area and, therefore,
have more fine-grained visualization of the area of interest.

Since only K data items are selected in the RDS tree T, then we need to
prioritize all data items according to their significance in the data set and select
only top K of them. The exact selection procedure depends on the way the RDS
tree T is constructed. In particular, it is important which associated point is
selected as the representative point of all points in the rectangular area on R2

Euclidean plane stored in the tree node. The two cases are considered:

Case 1:

The selection of the representative point of all points in a rectangular area on
R2 Euclidean plane stored in the tree node is done without any consideration to
the associated data items. In this case, no prior information is known about the
data item stored in the tree node. With the same probability, it can be the most
significant data item between all other items referenced in the whole subtree, or
can be the most unimportant item. Therefore, the traversal of the RDS tree T
starts with an arbitrary node of interest and the termination condition is not
known in advance. As a result, the traversal continues until the leaf nodes are
reached. Then, for every data item in every data subset referenced with the leaf
node three cases are considered: (i) the result data set already contains K data
items and the data item in subset is less significant than any of them; (ii) the
result data set already contains K data items and the data item in subset is
more significant than some of them; (iii) the result data set contains less than K
data items. In the first case, the data item in subset is not considered, since it
doesn’t have influence on the final result data set. In the second case, the data
item in subset is appended to the result data set, while the least significant data
item in the result data set is removed to keep only K items. In the last case, the
data item in subset is appended to the result data set without any additional
checks.

Algorithm 4 lists a pseudocode of the function SelectTopK(node, K), which
selects top K data items in the RDS tree T starting with the specified node.
The function initializes a data set Dtop of top K data items to the empty set.
Then, it invokes the recursive function NodeK(node, K, Dtop) implementing the
depth-first recursive traversal of the RDS tree T. After the recursion terminates,
the set Dtop contains top K data items of interest ordered in descending order
according to their significance.

CHAPTER 4. QUERYING THE RDS TREE 38

Algorithm 4: Top K Query

function SelectTopK(node, K)
Dtop ← ∅
NodeK(node, K, Dtop)
return Dtop

function NodeK(node, K, Dtop)
for i ← 1 to size(node) do

if node is InnerNode then
NodeK(node.childi, K, Dtop)

else if node is LeafNode then
foreach item ∈ node.datai do

if size(Dtop) ≥ K then
if item < Dtop[K] then

Dtop ← Dtop \Dtop[K]
Dtop ← Dtop ∪ item
Dtop ← order(Dtop)

else
Dtop ← Dtop ∪ item
Dtop ← order(Dtop)

The recursive function NodeK(node, K, Dtop) considers every element in the
current node of the RDS tree T. If node is the inner node, then the function goes
one level in depth and further considers the child node node.childi. Otherwise,
when node is the leaf node, it loops through every data item in the data subset
node.datai. According to the first case, if the result data set Dtop already
contains K data items and the item in node.datai is less significant than the
least significant item Dtop[K] in the result data set Dtop, then item is not
considered further and the procedure continues with the next data item in
node.datai. In the second case, if set Dtop already contains K data items and
item is more significant than Dtop[K], then Dtop[K] is removed from the result
data set Dtop and item is appended to Dtop. After the new data item is appended,
then all data items in the result data set Dtop are ordered in descending order
according to their significance. Following the third case, when the size of set
Dtop is less than K, then item in node.datai is appended to Dtop without any
additional checks. Again, after the new data item is appended, then Dtop is
ordered in descending order according to the significance of the data items.

Example 8 For instance, consider the data set D of ten SNPs listed in Table 2.1
and the RDS tree T containing the reduced data sets for the display resolutions
in R = { 1 × 1, 2 × 2, 4 × 2, 8 × 6 } and depicted in Figure 3.3. Assume we
need to extract such two SNPs from the node v22, that their names are first
in the alphabetical order. First, the leaf node v33 is considered. The Dtop is
empty and, therefore, the third case is satisfied. As a result, the data item d4

in v33.data1 is appended to Dtop. Second, the leaf node v34 is considered and
Dtop = { d4 }. The first data item d6 in v34.data1 is appended to Dtop, since the
third case was satisfied again. Then, d4 and d6 in Dtop are ordered descendingly

CHAPTER 4. QUERYING THE RDS TREE 39

according to their name attributes rs73140430 and rs28729284, respectively.
Since rs28729284 is before rs73140430 in descending alphabetical order, then
d6 < d4 and Dsubset = { d6, d4 }. Consequently, when considering next data item
d7 in v34.data1, then size of Dtop is equal to 2 and Dtop[2] = d4. Evidently, d7 is
more significant than d4, since rs13067307 is before rs73140430 in descending
alphabetical order. Then, according to the second case, d4 is removed from
Dtop and d7 is appended to Dtop. After the ordering the result data set Dtop is
equal to { d7, d6 }. The next data subset to consider is v34.data2 = { d8, d9, d10 }.
Since Dtop already contains two data items and d8 > d6 with d9 > d6, then
d8 and d9 are not considered with respect to the first case. However, d10 is
more significant than d6 and, therefore, d6 is removed from Dtop while d10 is
appended according to the second case. When Dtop is ordered, then it is equal
to { d7, d10 }. �

Case 2:

The representative point of all points in a rectangular area on R2 Euclidean
space is selected such, that it is associated with the most significant data item
between all data items associated with points in the same area. In this case,
the traversal of the RDS tree T can be terminated according to the data item
stored in the element of tree node. Therefore, the number of visited leaf nodes
is decreased significantly. Indeed, assume Dtop already contains K data items
and node.itemi is the most significant data item in the whole subtree referenced
with node.childi. Then, if node.itemi is less significant than the least significant
data item Dtop[K] in Dtop, then the whole subtree starting with node.childi is
omitted from the traversal.

Algorithm 5: Top K Query

function SelectTopK(node, K)
Dtop ← ∅
if node is InnerNode then

InnerNodeK(node, K, Dtop)
else

LeafNodeK(node, K, Dtop)

return Dtop

Algorithm 5 lists a pseudocode of the function SelectTopK(node, K), which
selects top K data items in the RDS tree T starting with the node and assuming
node.itemi is the most significant data item in the whole subtree referenced with
node.childi. It initializes a data set Dtop of top K data items to the empty set and
invokes function InnerNodeK(node, K, Dtop) or LeafNodeK(node, K, Dtop)
if node is an inner or a leaf node, respectively. The former function implements
the depth-first recursive traversal of the RDS tree T, while the latter function
considers data subsets referenced in the leaf node. As a result, the set Dtop

contains top K data items of interest ordered in descending order according to
their significance.

Algorithm 6 lists a pseudocode of the function InnerNodeK(node, K, Dtop).
First, it orders the data items in node in descending order according to their

CHAPTER 4. QUERYING THE RDS TREE 40

Algorithm 6: Top K Query Over Inner Node

function InnerNodeK(node, K, Dtop)
Ditems ← order(node.items)
foreach node.itemi ∈ Ditems do

if size(Dtop) ≥ K ∧ node.itemi ≥ Dtop[K] then
return

else
if node.childi is InnerNode then

InnerNodeK(node.childi, K, Dtop)
else

LeafNodeK(node.childi, K, Dtop)

significance. Then, the function loops through the ordered set of data items
and considers every data.itemi. If set Dtop already contains K data items and
data.itemi is less significant than the least significant item Dtop[K] in Dtop,
then the traversal of the RDS tree T terminates with Dtop containing the final
result. Otherwise, the traversal continues with the child node node.childi. If
node.childi is an inner node, then InnerNodeK(node.childi, K, Dtop) is invoked.
If node.childi is a leaf node then LeafNodeK(node.childi, K, Dtop) is invoked.

Algorithm 7 lists a pseudocode of the function LeafNodeK(node, K, Dtop),
which selects top K significant data items from the data subsets referenced
with the leaf node. It considers the same three cases as the function
NodeK(node, K, Dtop) listed in Algorithm 4. However, since the most signifi-
cant data item is stored explicitily as node.itemi for every data subset node.datai,
then the data items in subset node.datai are read only when they can contribute
to the result data set Dtop.

Example 9 For instance, consider the data set D of ten SNPs listed in Table 2.1
and the RDS tree T containing the reduced data sets for the display resolutions
in R = { 1× 1, 2× 2, 4× 2, 8× 6 } and depicted in Figure 3.3. Every element
node.itemi in the tree node corresponds to the SNP with the lowest pval attribute
between all SNPs associated with points in node.areai. Assume we need to
extract two SNPs from the node v22, which has the lowest pval attribute. First,
the node v22 is considered. The data items d4 and d10 are ordered ascendingly
according to their pval attributes. Since 0.0010 < 0.0050, then d10 < d4 and
Ditems = {d10, d4}. Consequently, the node v34 is considered next. Again, items
d6 and d10 are ordered in ascending order with respect to the pval attribute and,
therefore, Ditems = { d10, d6 }. As a result, two data items d10 and d9 with the
lowest pval attributes in the data subset v34.data2 = { d8, d9, d10 } are appended
to the result data set Dtop. Further, since d6 has greater pval attribute than
d9, then the data subset v34.data1 = { d6, d7 } is not considered. Analogously,
the leaf node v33 is omitted from the traversal, since the pval attribute of d4 is
greater than the pval attribute of d9. Therefore, the tree traversal terminates
with the final data set Dtop = { d10, d9 }. �

CHAPTER 4. QUERYING THE RDS TREE 41

Algorithm 7: Top K Query Over Leaf Node

function LeafNodeK(node, K, Dtop)
Ditems ← order(node.items)
foreach node.itemi ∈ Ditems do

if size(Dtop) ≥ K then
if node.itemi ≥ Dtop[K] then

return
else

foreach item ∈ node.datai do
if item < Dtop[K] then

Dtop ← Dtop \Dtop[K]
Dtop ← Dtop ∪ item
Dtop ← order(Dtop)

else
foreach item ∈ node.datai do

if size(Dtop ≥ K) then
if item < Dtop[K] then

Dtop ← Dtop \Dtop[K]
Dtop ← Dtop ∪ item
Dtop ← order(Dtop)

else
Dtop ← Dtop ∪ item
Dtop ← order(Dtop)

Chapter 5
Experiments

This chapter provides the evaluation of the RDS tree applied on the generated
data sets of SNPs. In particular, the efficiency of the tree construction, the
selection query and the top K query are considered.

5.1 Setup and Data

For the experiments six data sets of SNPs were generated. The smallest data
set contains 5 million of SNPs, while the largest data set contains 30 million
of SNPs. For the simplicity, the unique chromosomal position of a SNP was
represented with a single unique integer number. The hypothetical P value of
a SNP was generated from the continuous uniform distribution U(0, 1), which
corresponds to the null hypothesis in a GWA study.

The experiments were run on the machine with the following configuration:

• Dual core CPU 2.26 GHz

• 4 GB RAM

• Intel(R) Integrated Graphics Media Accelerator 4500MHD

• 1292 MB of maximum amount of graphics memory

• 32-bit Operating System

5.2 Tree Construction

In this section the implementation of a top-down incremental RDS tree construc-
tion is evaluated. The top-down incremental tree construction is performed in
two steps:

1. In the first full data set scan, the extent of a data set in R2 Euclidean
space is estimated.

2. In the second full data set scan, every data item is added to the RDS tree
individually.

42

CHAPTER 5. EXPERIMENTS 43

After the first step, the estimated extent of the data set and the predefined set
R of display resolutions completely describe the tessellation of R2 Euclidean
space in every node of every level in the RDS tree. Therefore, in the second
step, the leaf node and the corresponding data subset for storing the data item
are located by recursively traversing the RDS tree from the root node and
examining all possible space tiles in every node on the traversal path. If the
space tile containing the point associated with the data item doesn’t have the
corresponding element in the tree node, then the new node element is created
with respect to the node type. Otherwise, the existing node element is considered.
If the element belongs to the inner node, then the data item is passed to the
referenced child node and the tree traversal continues. Otherwise, the data item
is appended to the referenced data subset.

The predefined set R of display resolutions determines the height of the RDS
tree and the maximum number of children in every tree node. The height of the
RDS tree is equal to the number of resolutions in set R, while the maximum
number of children in every tree node depends on the particular consecutive
pairs of resolutions in set R. Thus, the cost of the data item insertion to
the RDS tree doesn’t depend on the data set size. Although, it completely
depends on the predefined set R of display resolutions. If set R is such that
R2 Euclidean space is always partitioned in two areas, then the RDS tree is
analogous to the BSP tree [33] and the data item insertion operation takes
O(2|R|) time. Similarly, if set R is such that R2 Euclidean space is always
partitioned into four areas, then the RDS tree is analogous to the MX Quadtree
[16, 35, 32, 22, 9, 33, 27, 36, 24] and the data item insertion operation takes
O(4|R|) time. In general, if R = {N1 × M1, . . . , Nk × Mk} is the set of
display resolutions and k ∈ N∗, then the data item insertion to the RDS tree
takes O(N1M1 +

∑k−1
i=1

Ni+1Mi+1

NiMi
) time. The maximum size of the RDS tree

also depends on the predefined set R of display resolutions and is equal to
O(1 +

∑k−1
i=1 NiMi).

We examined three nested sets of display resolutions R1 = { 64× 48, 128×
96, 256 × 192, 512 × 384, 1024 × 768 }, R2 = { 16 × 12, 32 × 24 } ∪ R1 and
R3 = { 4× 3, 8× 6 }∪R2. For each of them the RDS tree was constructed using
the implementation of the top-down incremental tree construction procedure.
Figure 5.1 depicts the RDS tree construction time efficiency and Figure 5.2 depicts
the size of the RDS tree for sets R1, R2 and R3. The RDS tree construction
time decreases significantly when the sequence of display resolutions in set R
begins with the relatively small resolution. At the same time, the difference in
the number of nodes is not significant. Figure 5.3 separately depicts the time
efficiency of the initial full data set scan and the time efficiency of the RDS
tree construction for the set R3 of display resolutions, which showed the best
performance. Similarly, Figure 5.3 separately depicts the number of leaf nodes
and the number of inner nodes in the RDS tree constructed for the set R3 of
display resolutions.

5.3 Selection Query

In the evaluation of the selection query the two outcomes were considered. The
first is the number of retrieved data items for the current display resolution and
the given minimum size δ of a point on the display. The second is the combined

CHAPTER 5. EXPERIMENTS 44

 0

 100

 200

 300

 400

 500

 600

 700

 800

 5 10 15 20 25 30

T
im

e
(s

ec
)

Data Size (106)

R1
R2
R3

Figure 5.1: Time Efficiency of the RDS Tree Construction.

 90

 100

 110

 120

 130

 140

 150

5 10 15 20 25 30

N
um

be
r

of
 N

od
es

 (
10

3)

Data Size (106)

R1
R2
R3

Figure 5.2: Size of the RDS Tree.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30

T
im

e
(s

ec
)

Data Size (106)

First Data Scan
RDS Tree Construction

Combined

Figure 5.3: Time Efficiency of the RDS Tree Construction in Different Steps.

time efficiency of the data retrieval from the RDS tree and visualization.
The RDS tree was constructed for the set R = { 4× 3, 8× 6, 16× 12, 32×

24, 64× 48, 128× 96, 256× 192, 512× 384, 1024× 768 } of display resolutions.
The selection query was executed for the seven display resolutions. The four

CHAPTER 5. EXPERIMENTS 45

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

5 10 15 20 25 30

N
um

be
r

of
 N

od
es

 (
10

3)

Data Size (106)

Inner Nodes
Leaf nodes

Figure 5.4: Number of Leaf and Inner Nodes in the RDS Tree.

display resolutions 128 × 96, 256 × 192, 512 × 384 and 1024 × 768 belong to
set R and have exactly corresponding nodes in the RDS tree. Another three
display resolutions 224× 144, 384× 288 and 768× 576 don’t belong to set R and
don’t have exactly corresponding nodes in the RDS tree. Figures 5.5, 5.6 and 5.7
depict the number of retrieved data items for these display resolutions, where the
minimum size δ of a point on the display equals to 1, 3 and 5 respectively. The
number of retrieved data items for the intermediate display resolutions 224×144,
384× 288 and 768× 576 exceeds the expected value. The most significant data
reduction is achieved with the minimum size threshold δ = 5. Generally, very
small δ values shouldn’t be considered in the interactive visualization, since they
reduce the applicability of the interactive operations on single data items.

0

50

100

150

200

250

300

350

128 × 96

224 × 144

256 × 192

384 × 288

512 × 384

768 × 576

1024 × 768

R
et

rie
ve

d
D

at
a

Ite
m

s
(1

03)

Display Resolution

5 ⋅ 106

10 ⋅ 106

15 ⋅ 106

20 ⋅ 106

25 ⋅ 106

30 ⋅ 106

Figure 5.5: Number of Retrieved Data Items for the Minimum Size Threshold
δ = 1.

The time efficiency of the selection query was evaluated on the display
resolution 1024× 768 with the minimum size δ of a point on the display equal
to 1. It is the most granular resolution in the constructed RDS tree, and with
respect to the smallest minimum size threshold it requires to traverse all the
leaf nodes. Additionally, we compare the time efficiency of the selection query
against the naive standard visualization of the full data set, where all points

CHAPTER 5. EXPERIMENTS 46

0

50

100

150

200

250

300

350

128 × 96

224 × 144

256 × 192

384 × 288

512 × 384

768 × 576

1024 × 768

R
et

rie
ve

d
D

at
a

Ite
m

s
(1

03)

Display Resolution

5 ⋅ 106

10 ⋅ 106

15 ⋅ 106

20 ⋅ 106

25 ⋅ 106

30 ⋅ 106

Figure 5.6: Number of Retrieved Data Items for the Minimum Size Threshold
δ = 3.

0

50

100

150

200

250

300

350

128 × 96

224 × 144

256 × 192

384 × 288

512 × 384

768 × 576

1024 × 768

R
et

rie
ve

d
D

at
a

Ite
m

s
(1

03)

Display Resolution

5 ⋅ 106

10 ⋅ 106

15 ⋅ 106

20 ⋅ 106

25 ⋅ 106

30 ⋅ 106

Figure 5.7: Number of Retrieved Data Items for the Minimum Size Threshold
δ = 5.

in R2 Euclidean space corresponding to all data items are visualized. Figure
5.8 depicts the results of the experiment. The execution time of the selection
query together with the succeeding visualization of the retrieved data items
doesn’t vary significantly with the data set size. It remains almost constant and
approximately equals to one fourth of a second. At the same time, the execution
time of the naive standard visualization grows linearly with the data set size.

Figures 5.9 - 5.13 show the Manhattan plots visualized on the displays of
resolutions 256× 192, 384× 288, 512× 384, 768× 576 and 1024× 768. For each
display resolution the size of a point on the display is 5. The visualizations on
the left side of the figures use the full data set, while the visualizations on the
right side of the figures use the reduced data sets. The reduced data sets were
retrieved by the appropriate selection query with δ = 5 from the RDS tree, which
was constructed with respect to the set R of display resolutions over the data
set containing 5 million SNPs. As a result, we observe no significant difference
in the visualizations of the full and reduced sets of SNPs.

CHAPTER 5. EXPERIMENTS 47

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

T
im

e
(s

ec
)

Data Size (106)

Naive Visualization
RDS Tree, δ = 1

Figure 5.8: Time Efficiency of the Selection Query for the Display Resolution
1024× 768.

(a) Full Data Set (b) Reduced Data Set

Figure 5.9: Manhattan plot on Display of Resolution 256× 192.

(a) Full Data Set (b) Reduced Data Set

Figure 5.10: Manhattan plot on Display of Resolution 384× 288.

5.4 Top K Query

The top K query can be executed starting with any node in the RDS tree. Usually,
the starting node corresponds to the data item, which was visualized and selected
by an analyst in some step of data investigation. In our experiment we execute

CHAPTER 5. EXPERIMENTS 48

(a) Full Data Set (b) Reduced Data Set

Figure 5.11: Manhattan plot on Display of Resolution 512× 384.

(a) Full Data Set (b) Reduced Data Set

Figure 5.12: Manhattan plot on Display of Resolution 768× 576.

(a) Full Data Set (b) Reduced Data Set

Figure 5.13: Manhattan plot on Display of Resolution 1024× 768.

the top K query starting with the root node. The root node references the
whole data set and, therefore, in the worst scenario the query will visit every leaf
node. Since, the top K query corresponds to the details-on-demand operation,
then we consider K varying from 10 to 1000. Similarly to the selection query,
the top K query was evaluated on the RDS tree constructed for the set R =
{ 4×3, 8×6, 16×12, 32×24, 64×48, 128×96, 256×192, 512×384, 1024×768 }
of display resolutions. Figure 5.14 depicts the time efficiency of the top K query.

CHAPTER 5. EXPERIMENTS 49

The experiment on the data set containing 10 million of SNPs emphasizes, that
the data set influences the execution time of the query. However, it still remains
under the half of a second and for K ≤ 100 it is less than 0.05 of a second.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Top Data Items

5 ⋅ 106

10 ⋅ 106

15 ⋅ 106

20 ⋅ 106

25 ⋅ 106

30 ⋅ 106

Figure 5.14: Time Efficiency of the Top K Query.

5.5 Summary of Experimental Results

As previously discussed (see Section 1.2.2), for any instantaneous interactive
query, the results should be produced and displayed in no more than 100 msec.
While the visualization of the whole data set should be completed within 1 sec.
This is the gold standard that any interactive visualization should follow. Our
experimental results with synthetic GWA study data confirm that the RDS tree
provides the sufficient efficiency to support the interactivity. Indeed, the selection
query for the visualization of the whole data executes in approximately one fourth
of a second. Furthermore, the execution time remains constant with the increase
of the data set size. The execution time of top K instantaneous interactive query
is less than 100 msec with K < 200. This is completely sufficient, since in the
common scenario K is equal to 10 or 20 data items, and rarely if ever can exceed
100 data items.

Chapter 6
Related Work

The high degree of overplotting and the required support of rapid display updates
are universally recognized as the two main challenges in the visualization of mas-
sive data sets [8, 10, 21, 42, 5, 20, 19, 13, 38, 18, 14]. Fekete et al. [10] evaluated
the recent hardware-based techniques for the efficient interactive visualization of
large data sets and showed sustainable performance for approximately one million
of data items. Considering the improving technologies, nowadays we can expect
to have sustainable performance with several million of data items. Although,
the focus of this thesis is the data sets containing tens of millions of data items.
Eick et al. [8] and Keim et al. [19] listed filtering, aggregation, compression,
principle component analysis and other data reduction techniques as the possible
techniques for data reduction and, therefore, for the solution of the overplotting
problem. Shneiderman [38] emphasized the aggregate visualization as the most
promising for keeping display complexity low. In the aggregate visualization, the
individual markers representing individual data records are organized into the
aggregate markers using various clustering strategies. Then, only the aggregate
markers, which can represent thousands of records, are visualized. In this chapter
we provide an overview of the recent aggregate visualization techniques.

6.1 Data Set Partitioning

The exact aggregation technique depends on the type of data and on the visual-
ization technique. The most common practice is to partition the data set into
the predefined number of bins and then to assign aggregated values to every
bin. For example, Hao et al. [14] propose the variable binned scatter plots for
the visualization of large amount of data without overplotting. The bin size is
variable and is computed from the data density. The similar solution is proposed
in [13] for the large time-series data, where the display space is allocated in
proportion to the degree of interest of data subintervals. However, both solutions
change the conventional metaphors of the visualizations and are not scalable to
the millions of data items.

50

CHAPTER 6. RELATED WORK 51

6.2 Interactive Hierarchical Displays

Yang et al. [42, 11] introduced a general framework for visualization and
exploration of large multivariate data sets, which is called interactive hierarchical
displays (IHDs). The main goal of the framework is to overcome the overplotting
problem. It can be applied to a wide range of existing visualization techniques like
parallel coordinates, star glyphs, scatterplot matrices and dimensional stacking.
The IHDs use the hierarchical cluster tree constructed upon a data set with a
clustering algorithm, such as BIRCH [44]. Then, the subsets of clusters in the
hierarchical cluster tree are visualized instead of the whole data set. The user
controls the level of details by specifying the minimum cluster size threshold.
Only the clusters with the size greater than the specified threshold are visualized.
Each cluster is visualized using a technique called the meanpoint band, which
conveys several essential features of the cluster, such as the mean and extent. The
hierarchical relationships are also depicted using color and, therefore, sibling and
parent relations are readily observed. As a result, every node in the hierarchical
cluster tree represents a cluster and stores the information about the size,
population, mean, minimum and maximum bounds of the cluster. Additionally,
the IHDs support the zoom in operation through the combination of the brushing
and the drill down operations. The meanpoint band technique partially allows
the IHDs to preserve the conventional metaphors of the visualizations. However,
the IHDs completely depends on the data set and user explicitly needs to specify
the level of details to reduce the overplotting. Also, the authors don’t provide
any interactive query equivalent to the top K query in the RDS tree.

6.3 The MRO tree

Keim et al. [20] propose the MRO tree of multi-resolution objects. The tree
represents the hierarchy of clusters constructed with respect to the relevance of
each data item defined with the predefined relevance function. The most relevant
data items are stored in the top of the MRO tree, while the least relevant data
items are stored in the bottom of the MRO tree. To visualize the data set,
data items from the tree are selected so that the number and relevance of the
selected items is maximized, depending on the given display space. Therefore, in
contrast to the IHDs and similar to the RDS tree, the selection of the data items
in the MRO tree depends on the availabe display area. However, in contrast
to the RDS tree, the construction and characteristics of the MRO tree depend
only on the data. Also, authors don’t provide the zoom in query or any other
instantaneous query for the MRO tree.

Chapter 7
Conclusions And Future Work

In this thesis we presented the space partitioning RDS tree, which indexes the
data to support the interactivity and to decrease the overplotting in the data
visualization. It is constructed only once and then can be used in visualizations
on the displays of different resolutions. The construction of the RDS tree requires
two full scans of data set and is relatively efficient. The queries over the RDS
tree consider the current display resolution and retrieve such data items, that the
overplotting is decreased. Moreover, the execution time of the queries doesn’t
exceed the required thresholds for the interactive data visualization. The RDS
tree was applied to support the interactivity in the Manhattan plot, that is
one of the most widely used tools for visual representation of the observed
associations of SNPs with a trait in GWA studies. The evaluation of the RDS
tree with synthetic GWA study data confirmed its efficiency in the framework of
the Manhattan plot.

The following summarizes the contributions of this thesis:

• We propose the data reduction based on the defined screen resolution such,
that the visualization of the reduced data doesn’t suffer from overplotting
and is identical to the visualization of the full data.

• We present the novel index structure, termed RDS tree, which indexes
data with respect to the hierarchy of reduced data constructed for the
predefined list of screen resolutions.

• We introduce and provide algorithms for three queries over the RDS tree,
which support the basic interactive tasks: (i) selection query – ensures
the fast data retrieval for the overview task and reduces the overplotting;
(ii) window query – ensures the fast data retrieval for the visualization of
the data in the particular region and reduces the overplotting; (iii) top K
query – implements the details-on-demand task, that efficiently retrieves
top K data items occluded in the visualization.

• The evaluation with synthetic GWA study data confirms the high efficiency
of the RDS tree with tens of millions of SNPs, which ensures short response
times.

52

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 53

• The evaluation with synthetic GWA study data confirms the high efficiency
of the RDS tree with tens of millions of SNPs, which ensures short response
times.

For the future work we consider the following directions. First, implemen-
tation of the hard disk based version of the RDS tree. Second, performing the
user based evaluation of the interactive visualizations supported by the RDS
tree. Third, application of the RDS tree for other plots like quantile-quantile
plots or genotype cluster plots. Finally, development of strategies for the RDS
tree construction and selection of the predefined display resolutions.

Bibliography

[1] Wolfgang Aigner, Alessio Bertone, and Silvia Miksch. Tutorial: Introduction
to Visual Analytics. In Andreas Holzinger, editor, HCI and Usability for
Medicine and Health Care, volume 4799 of Lecture Notes in Computer
Science, pages 453–456. Springer Berlin / Heidelberg, 2007.

[2] John Attia, John P. A. Ioannidis, Ammarin Thakkinstian, Mark McEvoy,
Rodney J. Scott, Cosetta Minelli, John Thompson, Claire Infante-Rivard,
and Gordon Guyatt. How to use an article about genetic association: A:
Background concepts. JAMA, 301(1):74–81, 2009.

[3] John Attia, John P. A. Ioannidis, Ammarin Thakkinstian, Mark McEvoy,
Rodney J. Scott, Cosetta Minelli, John Thompson, Claire Infante-Rivard,
and Gordon Guyatt. How to use an article about genetic association: B:
Are the results of the study valid? JAMA, 301(2):191–197, 2009.

[4] Paul R. Burton, Martin D. Tobin, and John L. Hopper. Key concepts in
genetic epidemiology. The Lancet, 366(9489):941–951, 2005.

[5] Chaomei Chen. Top 10 Unsolved Information Visualization Problems. IEEE
Computer Graphics and Applications, 25(4):12–16, 2005.

[6] Psychiatric GWAS Consortium Coordinating Committee. Genomewide
Association Studies: History, Rationale, and Prospects for Psychiatric
Disorders. The American journal of psychiatry, 166(5):540–556, 2009.

[7] Paul I.W. de Bakker, Manuel A.R. Ferreira, Xiaoming Jia, Benjamin M.
Neale, Soumya Raychaudhuri, and Benjamin F. Voight. Practical aspects of
imputation-driven meta-analysis of genome-wide association studies. Human
Molecular Genetics, 17(R2):R122–R128, 2008.

[8] Stephen G. Eick and Alan F. Karr. Visual Scalability. Journal of Computa-
tional & Graphical Statistics, 11:22–43, 2000.

[9] David Eppstein, Michael T. Goodrich, and Jonathan Z. Sun. The Skip
Quadtree: A Simple Dynamic Data Structure for Multidimensional Data.
In Proc. 21st ACM Symposium on Computational Geometry, pages 296–305,
2005.

54

BIBLIOGRAPHY 55

[10] Jean-Daniel Fekete and Catherine Plaisant. Interactive Information Visu-
alization of a Million Items. Proceedings of the 2002 IEEE Symposium on
Information Visualization, page 117, 2002.

[11] Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner. Navigating
Hierarchies with Structure-Based Brushes. 1999 IEEE Symposium on
Information Visualization, page 58, 1999.

[12] Anthony J. F. Griffiths, Susan R. Wessler, Richard C. Lewontin, William M.
Gelbart, David T. Suzuki, and Jeffrey H. Miller. An Introduction to Genetic
Analysis. W. H. Freeman, 8th edition, 2004.

[13] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. Multi-
Resolution Techniques for Visual Exploration of Large Time-Series Data.
Eurographics/IEEE VGTC Symposium on Visualization, pages 27–34, 2007.

[14] Ming C. Hao, Umeshwar Dayal, Ratnesh K. Sharma, Daniel A. Keim, and
Halldr Janetzko. Visual Analytics of Large Multi-Dimensional Data Using
Variable Binned Scatter Plots. Proceedings of the SPIE (The International
Society for Optical Engineering), 7530, 2010.

[15] John Hardy and Andrew Singleton. Genomewide Association Studies and
Human Disease. The New England Journal of Medicine, 360(17):1759–1768,
2009.

[16] Gregory M. Hunter and Kenneth Steiglitz. Operations on Images Using Quad
Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1(2):145–153, April 1979.

[17] National Human Genome Research Institute. Talking Glossary of Genetic
Terms. http://www.genome.gov/glossary/, September 2010.

[18] Daniel A. Keim, Ming C. Hao, Umeshwar Dayal, Halldor Janetzko, and
Peter Bak. Generalized scatter plots. Information Visualization, 2009.

[19] Daniel A. Keim, Florian Mansmann, Jrn Schneidewind, and Hartmut Ziegler.
Challenges in Visual Data Analysis. In Proceedings of the Tenth Interna-
tional Conference on Information Visualization, pages 9–16, 2006.

[20] Daniel A. Keim and Jörn Schneidewind. Scalable Visual Data Exploration
of Large Data Sets via MultiResolution. Journal of Universal Computer
Science, 11(11):1766–1779, 2005.

[21] Robert Kosara, Helwig Hauser, and Donna L Gresh. An Interaction View
on Information Visualization. Proceedings of EUROGRAPHICS 2003, 2003.

[22] Ravi Kanth V Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and R-
tree Indexes in Oracle Spatial: A Comparison using GIS Data. Proceedings
of the 2002 ACM SIGMOD international conference on Management of
data, pages 546–557, 2002.

[23] Yun Li, Cristen Willer, Serena Sanna, and Gonalo Abecasis. Genotype
Imputation. Annual Review of Genomics and Human Genetics, 10:387–406,
2009.

BIBLIOGRAPHY 56

[24] Ling Liu and M. Tamer Özsu. Encyclopedia of Database Systems. Springer,
2009.

[25] Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty
Krieger, Matthew P. Scott, Lawrence Zipursky, and James Darnell. Molecu-
lar Cell Biology. W. H. Freeman, 5th edition, 2003.

[26] Mark I. McCarthy, Gonalo R. Abecasis, Lon R. Cardon, David B. Goldstein,
Julian Little, John P. A. Ioannidis, and Joel N. Hirschhorn. Genome-wide
association studies for complex traits: consensus, uncertainty and challenges.
Nature Reviews Genetics, 9:356–369, 2008.

[27] Hossein Mirzaee and Farhad Besharati. Tree Based Decomposition of
Sunspot Images. World Academy of Science, Engineering and Technology,
27:139–143, March 2007.

[28] Jason H. Moore, Folkert W. Asselbergs, and Scott M. Williams. Bioin-
formatics challenges for genome-wide association studies. Bioinformatics,
26(4):445–455, 2010.

[29] Cristian Pattaro, Alessandro De Grandi, Veronique Vitart, and et al. A
meta-analysis of genome-wide data from five European isolates reveals an
association of COL22A1, SYT1, and GABRR2 with serum creatinine level.
BMC Medical Genetics, 11:41, 2010.

[30] Thomas A. Pearson and Teri A. Manolio. How to Interpret a Genome-wide
Association Study. JAMA, 299(11):1335–1344, 2009.

[31] Kai Puolamäki and Alessio Bertone. Introduction to the Special Issue
on Visual Analytics and Knowledge Discovery. SIGKDD Explorations
Newsletter, 11(2):3–4, 2009.

[32] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1990.

[33] Hanan Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006.

[34] Arne Schillert, Daniel F. Schwarz, Maren Vens, Silke Szymczak, Inke R.
Knig, and Andreas Ziegler. ACPA: automated cluster plot analysis of
genotype data. BMC Proceedings, 3(Suppl 7):S58, 2009.

[35] Clifford A. Shaffer and Hauan Samet. Optimal quadtree construction
algorithms. Computer Vision, Graphics, and Image Processing, 37(3):402–
419, March 1987.

[36] Shashi Shekhar and Hui Xiong. Encyclopedia of GIS. Springer, 2007.

[37] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. Proceedings of the 1996 IEEE Symposium on
Visual Languages, pages 336–343, 1996.

[38] Ben Shneiderman. Extreme Visualization: Squeezing a Billion Records
into a Million Pixels. Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 3–12, 2008.

BIBLIOGRAPHY 57

[39] James J. Thomas and Kristin A. Cook. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. National Visualization and
Analytics Ctr, 2005.

[40] William Y. S. Wang, Bryan J. Barratt, David G. Clayton, and John A.
Todd. Genome-wide association studies: theoretical and practical concerns.
Nature Reviews Genetics, 6:109–118, 2005.

[41] Graham J. Wills. Selection: 524,288 Ways to Say ”This is Interesting”.
Proceedings of the 1996 IEEE Symposium on Information Visualization,
1996.

[42] Jing Yang, Matthew O. Ward, and Elke A. Rundensteiner. Interactive Hier-
archical Displays: A General Framework for Visualization and Exploration
of Large Multivariate Data Sets. Computers & Graphics, 27(2):265–283,
2003.

[43] Beth Yost, Yonca Haciahmetoglu, and Chris North. Beyond Visual Acuity:
The Perceptual Scalability of Information Visualizations for Large Displays.
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 101–110, 2007.

[44] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. SIGMOD ’96: Proceed-
ings of the 1996 ACM SIGMOD international conference on Management
of data, 25(2):103–114, 1996.

[45] Andreas Ziegler, Inke R. Knig, and John R. Thompson. Biostatistical
aspects of genome-wide association studies. Biometrical Journal, 50(1):8–28,
2008.

