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Abstract

The goal of this thesis is to design, develop and evaluate new methods for event pat-
tern matching. Event pattern matching is a query technique where an input stream of
events is matched against a pattern. The output consists of matches of the pattern in
the input events. Event pattern matching is widely applicable in different domains and
is regarded as one of the most important building blocks for the construction of event
processing applications. Current solutions for event pattern matching allow to formu-
late patterns that match a sequence of single events imposing one specific order. The
support for matching all permutations of events is limited.

In this thesis, we introduce and formally define the sequenced event set (SES) pat-
tern matching problem, which is the problem of matching a stream of input events
against a complex pattern that specifies a sequence of sets of events rather than a se-
quence of single events. Events that match a set specified in the pattern can occur in
any permutation, whereas events that match different sets have to follow the order of
the sets in the pattern.

We present SES automata for the evaluation of SES pattern matching. A SES au-
tomaton is a nondeterministic finite state automaton enriched with a match buffer that
collects matching events during execution. A pattern query is first translated to a SES
automaton, and the automaton is then executed on an event stream. We conduct an
analysis of the runtime complexity of the SES automaton algorithm where we consider
different types of patterns. The runtime complexity is linear in the size of the event
stream. Furthermore, the runtime depends on the length of the pattern and on the maxi-
mal time span of a match specified in the pattern together with the density of the events
in the event stream. An experimental evaluation with real-world data shows that the
SES automaton algorithm clearly outperforms a baseline approach that enumerates all
permutations of single events.

To improve the performance of event pattern matching, we propose a two-phase
evaluation strategy that consists of a preprocessing step followed by a pattern match-

xvii



ing step. The cheap preprocessing reduces the events that need to be processed by the
expensive pattern matching step. The two-phase evaluation strategy is general enough
to be applicable with SES automata as well as with other event pattern matching al-
gorithms. Experiments with real-world data and two different event pattern matching
algorithms show that the two-phase evaluation strategy significantly improves perfor-
mance.

Event selection strategies allow to restrict the set of all possible matches of a pattern
in an event stream to a set of matches that meets application-specific needs. The widely
used skip-till-next-match event selection strategy has been used in settings where some
events in the input stream are noise and should be ignored. Due to its greedy behavior,
skip-till-next-match fails to identify some events as noise and consequently can miss
matches that satisfy the pattern query. We propose a new event selection strategy, called
robust skip-till-next-match, that improves the skipping of noise in event pattern match-
ing and finds matches that are missed by skip-till-next-match due to its greedy behav-
ior. We present a backtracking mechanism that extends automaton-based event pattern
matching algorithms to find all matches according to robust skip-till-next-match. An
extensive experimental evaluation with real-world data shows that the matches missed
with skip-till-next-match can be substantial and that our backtracking solution clearly
outperforms an alternative solution that finds all possible matches followed by a post
processing step.

xviii



CHAPTER 1

Introduction

1.1 Event Pattern Matching

The goal of this thesis is to design, develop and evaluate new methods for event pattern
matching. Event pattern matching is a query technique where an input stream of events
is matched against a pattern. The output consists of matches of the pattern in the input
events (see Figure 1.1).

Event
Pattern MatchingEvents

input

Pattern

input

Matches
output

Figure 1.1: Event Pattern Matching.

An event is a data item with a timestamp that represents its occurrence time. Ex-
amples of events are the administration of a medication to a patient, the trade of shares
in stock markets, or the measurement of a sensor. The events in an input stream are
chronologically ordered by occurrence time. A pattern specifies constraints on chrono-
logical order, attribute values and quantification of matching events. Furthermore, a
pattern limits the maximal duration of the time interval spanned by matching events.
Matches contain events from the input stream that satisfy the constraints specified in
the pattern.

Event pattern matching is widely applicable in different domains such as financial
services [3, 4, 28, 29, 30, 31, 46, 52, 53], fraud detection [55, 61], business activity
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2 Chapter 1. Introduction

monitoring [32], click stream analysis [32, 46, 53], RFID-based tracking and moni-
toring [4, 31, 43], sensor networks [6, 26], RSS feed monitoring [28], and health ser-
vices [42, 44]. It is regarded as one of the most important building blocks for the
construction of event processing applications [27, 35]. The increasing importance of
event pattern matching in practical applications is underpinned by the availability of
commercial and open source products [34, 45, 50, 54, 58] and by a recent SQL change
proposal to extend SQL for pattern matching over sequences of tuples [61].

Current solutions for event pattern matching allow to formulate patterns that match
a sequence of single events imposing one specific order. The support for matching all
permutations of events is limited. However, some application scenarios need to par-
tially ignore the order of events. This requirement arises from variations in the order of
the input events that exist naturally in the application domain but should be ignored by
the data analysis task. The need to ignore the order of events is also recognized by the
aforementioned SQL change proposal that specifies a PERMUTE operator to retrieve
sequences of input tuples that match any permutation of a set of variables specified in
the pattern. Multiple PERMUTE operators in series permit to match sequences of sets
of tuples. Only a subset of the pattern matching operators in the SQL change proposal
has been implemented [30, 31, 53], and no implementation of the PERMUTE operator
is known.

Event pattern matching solutions do not necessarily find the same set of matches
for a pattern in an event stream. The matches may differ according to the requirements
of the application the solution is made for. To satisfy the diverse needs of event pro-
cessing applications various event selection strategies have been proposed [4] to select
the desired matches from the set of all possible matches.

In this thesis, we introduce the sequenced event set (SES) pattern matching prob-
lem which is the problem of matching sequences of sets of events instead of sequences
of single events. We present an algorithm to evaluate SES pattern queries and an eval-
uation strategy that increases the efficiency of the algorithm. We focus on the widely
used skip-till-next-match event selection strategy that is applied when some events are
noise and should be ignored. We show drawbacks of skip-till-next-match and propose
a new event selection strategy that improves the skipping of noise in the input stream.

In the rest of this chapter, we describe SES pattern matching (Section 1.2), then
we discuss different event selection strategies, next we give an overview of our contri-
butions and publications (Section 1.4), and finally, we present the organisation of the
thesis (Section 1.5).

1.2 Sequenced Event Set Pattern Matching

In this section, we describe sequenced event set (SES) pattern matching that copes with
the requirement of ignoring the order of some events in a pattern. SES pattern matching
is an event pattern matching problem where an input stream of events is matched against
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PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
2 B 10100 1/µl 6 Jul
2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
1 B 3400 1/µl 17 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul

Chemo

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

(a) Events.

1 C 1672.5 mg 3 Jul
1 P 111.5 mg 5 Jul
1 B 3400 1/µl 17 Jul

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e1

e3

e8

e5

e6

e7

e9

(b) Matches.

PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
1 B 3400 1/µl 17 Jul

Chemo with PID = 1

PID L V U T

2 B 10100 1/µl 6 Jul
2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul

Chemo with PID = 2

e1

e2

e3

e8

e4

e5

e6

e7

e9

e10

(c) Events Grouped by Patient.

Figure 1.2: Events of Chemotherapy Treatments.

a pattern that specifies a sequence of sets of events (SES pattern) rather than a sequence
of single events. While the order of the input events that match the same set is irrelevant,
i.e., any permutation of the input events is matched, the order of the input events that
match distinct sets must correspond to the order of the sets in the pattern. SES patterns
range from a sequence of singleton sets that forces one specific order to a single set that
allows all permutations of the desired events.

Example 1.1. Analysis of Chemotherapy Data
A chemotherapy is a treatment for cancer patients that consists of a sequence of events,
such as the administration of medications and laboratory examinations. Physicians at
the Department of Hematology of the Hospital of Meran-Merano retrospectively anal-
yse data recorded during chemotherapies to gain a better understanding of the effects
of the treatment on patients.

Figure 1.2(a) shows a sample stream of chemotherapy events, Chemo. The attributes
represent patient ID (PID), event type (L), value (V ) with measurement unit (U ), and
occurrence time (T ) of an event, respectively. For instance, event e1 represents the
administration of 1672.5 mg of Cyclophosphamide to patient 1 on July 3. An example
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of a typical query to analyse the effect of medications on the blood is the following:

Within fifteen days and for each patient, find the events that match one
administration of Cyclophosphamide (C), one or more administrations of
Prednisone (P), followed by a single blood count measurement (B).

Figure 1.2(b) shows answers to the query in Chemo.

To find the matches that answer the example query, two characteristics of the event
stream and the query must be considered. First, the order of the administrations of
Cyclophosphamide (e1, e6) and Prednisone (e3, e5, e7) differs among patient 1 and
patient 2 as shown in Figure 1.2(c). This happens when treatments are modified to
meet individual needs of patients. Such modifications should be ignored by the query.
Second, to analyse the effect of the medications, the blood counts that occur after the
medication administrations must be found. Thus, a pattern to answer the query above
has to take into account variations in the chronological order of some events in the
stream, and, at the same time, guarantee the succession of other events in the matches.

With an event pattern matching solution that supports only the specification of a
sequence of single events, multiple patterns are needed to find the desired matches.
The patterns needed to answer the example query are the following, where c, p+, and b
match one Cyclophosphamide administration (C), one or more Prednisone administra-
tion (P), and one blood count measurement (B), respectively:

〈c, p+, b〉
〈p+, c, b〉
〈p+, c, p+, b〉

The first and the third pattern detect the matches in Figure 1.2(b). The amount of
patterns for such a solution grows with the factorial of the number of events whose
order should be ignored, since each permutation of the events needs to be considered.

Now, assume the query in Example 1.1 is changed to match one or more Cyclophos-
phamide administrations instead of only one. The patterns needed to answer the modi-
fied query are the following:

〈c+, p+, b〉
〈p+, c+, b〉
〈p+, c+, p+, b〉
〈p+, c+, p+, c+, b〉

...

For each pattern that ends with a Cyclophosphamide administration, another pattern
is needed that ends with a Prednisone administration. Similarly, for each pattern that
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S P V T

GOOG 612 100 9:32:344
IBM 502 200 9:32:357
IBM 505 100 9:32:368

GOOG 615 400 9:32:380
IBM 511 300 9:32:396

GOOG 621 200 9:32:401

Stocks

e1

e2

e3

e4

e5

e6

Figure 1.3: Events of Stock Trades.

ends with a Prednisone administration, another pattern is needed that ends with a Cy-
clophosphamide administration. Hence, the number of the patterns is only bounded by
the maximal amount of events allowed in the time span specified by the query, i.e., the
maximal number of treatment event that can occur in fifteen days. In summary, the
creation and evaluation of multiple patterns becomes quickly infeasible.

With SES pattern matching the following pattern can be formulated to answer the
query in Example 1.1:

〈{c, p+}, {b}〉.

The first set {c, p+}matches the events e1, e3 and e5, e6, e7 for patient 1 and patient 2,
respectively. The second set {b} matches events e8 and e9.

As a second application area that requires pattern queries which cannot be easily
formulated with other event pattern matching solutions we consider the analysis of
stock trade data.

Example 1.2. Analysis of Stock Trade Data
Figure 1.3 shows an event stream of stock trades, Stocks. The attributes represent
stock symbol (S ), price per stock (P ), volume of the trade (V ), and occurrence time
(T ). For instance, event e1 represents the trade of 100 Google stocks at a price of $612
at time 9:32:344. To analyse the correlation of Google and IBM trades, the following
query is issued:

Within a period of 100 ms, find a sequence of three Google (GOOG) stock
trades interleaved with a sequence of three IBM (IBM) stock trades; both
sequences of trades have strictly monotonic increasing stock prices.

A pattern that specifies a sequence of single events is limited to express the query
above as a sequence of three successions of a Google stock trade followed by an IBM
stock trade. That is:

〈g1, i1, g2, i2, g3, i3〉



6 Chapter 1. Introduction

where gj and ij match Google and IBM stock trades, respectively, and the prices of the
stocks increase with j. With such a pattern, two trades of the same stock that occur one
after another are never matched. For example in event stream Stocks in Figure 1.3,
such a pattern detects only events e1, e2, e4, and e5 and ignores e3 and e6. Thus, the
pattern does not find any match in Stocks since it detects only two and not three trades
for Google and IBM stocks. Alternatively, a pattern for each possible combination of
Google and IBM stock trades could be used:

〈g1, i1, g2, i2, g3, i3〉
〈g1, i1, g2, i2, i3, g3〉
〈g1, i1, i2, g2, g3, i3〉
〈g1, i1, i2, g2, i3, g3〉
〈i1, g1, g2, i2, g3, i3〉
〈i1, g1, g2, i2, i3, g3〉
〈i1, g1, i2, g2, g3, i3〉
〈i1, g1, i2, g2, i3, g3〉

However, such a solution suffers from the same drawbacks as described for the analysis
of chemotherapy data, i.e., the amount of patterns grows with the factorial of the num-
ber of events whose order should be ignored, thus, the evaluation of the query becomes
quickly infeasible.

The SES pattern to answer the query in Example 1.2 is

〈{g1, i1}, {g2, i2}, {g3, i3}〉.

The first set matches events e1, e2 in the event stream Stocks, the second set matches
events e4, e3, and the third set matches events e5, e6.

1.3 Event Selection Strategies

An event selection strategy addresses what matches out of all possible matches of a pat-
tern in an event stream should be returned by an event pattern matching solution. The
set of all possible matches of a pattern in an event stream can be large and the differ-
ences between the matches can be minimal (see Figure 1.6). Applications might only
be interested in a subset of all possible matches. To restrict the result set to matches
that fulfill application-specific needs, different event selection strategies have been pro-
posed [4] that are presented in the following.

(Partitioned) Contiguity: Events in a match must be contiguous in the input stream.
All events in the input stream that occur between two events of the same match are
also contained in that match. If the input stream can be conceptually partitioned ac-
cording to an equality condition, contiguity can be relaxed to partitioned contiguity
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PID L V U T

2 B 10100 1/µl 6 Jul
2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul

Chemo with PID = 2

e4

e5

e6

e7

e9

e10

!

!

!

!

(a) Example of a Contiguous Match in a Partition.

PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
2 B 10100 1/µl 6 Jul
2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
1 B 3400 1/µl 17 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul

Chemo

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

!

!

!

%

!

(b) Example of a Non-Contiguous Match.

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e5

e6

e7

e9

2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e6

e7

e9

(c) Matches in Chemo according to Partitioned Contiguity.

Figure 1.4: Contiguity and Partitioned Contiguity.

where events in a match only need to be contiguous within the same partition. Matches
found with partitioned contiguity subsume matches found with contiguity. For exam-
ple, Figure 1.4(a) shows a match in Chemo that conforms to partitioned contiguity. The
checked events represent a match. Between events e5 and e9 in the partition of Chemo
for patient 2, there exist only events that are part of the same match. In contrast, Chemo
does not contain any match that conforms to contiguity since no match can be found
with contiguous events in the unpartitioned event stream Chemo. For example, in Fig-
ure 1.4(b), between e5 and e9 there exist e8 that does not satisfy the pattern together
with e5, e6, e7 and e9 and makes e7 and e9 not contiguous events. Figure 1.4(c) shows
all matches in Chemo according to partitioned contiguity.

Skip-till-next-match: Events that do not match the pattern are skipped until the next
matching event is read. Skip-till-next-match is used to ignore events in the input stream
that are noise to the pattern. Matches found with skip-till-next-match subsume matches
found with contiguity and partitioned contiguity. Figure 1.5(a) shows the events se-
lected for a match in Chemo according to skip-till-next-match. The arrows show the
progression of the match. Events e5, e6, and e7 are matched. Then, e8 is skipped be-
cause it does not belong to patient 2. Finally, the blood count e9 is preferred to blood
count e10 because it is immediately next to the medication administration e7 that was
matched last. All matches in Chemo according to skip-till-next-match are shown in
Figure 1.5(b).
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PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
2 B 10100 1/µl 6 Jul
2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
1 B 3400 1/µl 17 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul

Chemo

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

(a) Selection of the Next Event.

1 C 1672.5 mg 3 Jul
1 P 111.5 mg 5 Jul
1 B 3400 1/µl 17 Jul

e1

e3

e8

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e5

e6

e7

e9

2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e6

e7

e9

(b) Matches in Chemo according to Skip-till-next-
match.

Figure 1.5: Skip-till-next-match.

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e5

e6

e7

e9

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 B 4000 1/µl 18 Jul

e5

e6

e9

2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4000 1/µl 18 Jul

e6

e7

e9

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4900 1/µl 19 Jul

e5

e6

e7

e10

2 P 88 mg 8 Jul
2 C 1320 mg 10 Jul
2 B 4900 1/µl 19 Jul

e5

e6

e10

2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
2 B 4900 1/µl 19 Jul

e6

e7

e10

1 C 1672.5 mg 3 Jul
1 P 111.5 mg 5 Jul
1 B 3400 1/µl 17 Jul

e1

e3

e8

Figure 1.6: All Possible Matches in Chemo (Skip-till-any-match).

Skip-till-any-match: All possible matches of the pattern in the event stream are
found. No restrictions are applied on the result set. The result set found with skip-till-
any-match subsumes matches found with (partitioned) contiguity and skip-till-next-
match. Figure 1.6 shows matches in Chemo that conform to skip-till-any-match.



1.4. Contributions 9

1.4 Contributions

Sequenced Event Set Pattern Matching. We introduce and formally define the se-
quenced event set pattern matching problem, which is the problem of matching a stream
of input events against a complex pattern that specifies a sequence of sets of events
rather than a sequence of single events. Events that match a set specified in the pat-
tern can occur in any permutation, whereas events that match different sets have to be
strictly consecutive, following the order of the sets specified in the pattern.

Automaton-based Evaluation. We present an automaton-based algorithm to eval-
uate SES pattern matching. The algorithm translates a pattern into a so-called SES
automaton. A SES automaton is a nondeterministic finite automaton enriched with a
match buffer. During execution, a SES automaton collects matching events in its match
buffer. If the automaton reaches the accepting state, it outputs the match buffer as a
match. We conduct a detailed complexity analysis of the automaton-based algorithm,
which considers different kinds of patterns and provides upper bounds for the runtime
complexity. We experimentally show that our solution clearly outperforms a brute force
approach that enumerates all permutations of single events expressed by a SES pattern.

Two-phase Evaluation Strategy. We propose a general two-phase pattern matching
strategy that can be combined with different event pattern matching algorithms. The
two-phase strategy consists of a preprocessing step and a pattern matching step. In-
stead of eagerly matching incoming events, the preprocessing step buffers events in a
match window to apply different pruning techniques (filtering, partitioning, and testing
for necessary match conditions). In the second step, an event pattern matching algo-
rithm is called only for match windows that satisfy the necessary match conditions.
Preprocessing is relatively cheap and significantly reduces the number of events that
need to be processed by a more expensive event pattern matching algorithm as well as
the number of calls to the algorithm. We report the results of an empirical evaluation
with an automaton-based and a join-tree-based pattern matching algorithm. For both
algorithms, our two-phase evaluation strategy shows clear performance improvements.

Improve the Skipping of Noise. The widely used skip-till-next-match event selec-
tion strategy greedily matches incoming events if they satisfy the constraints in the pat-
tern along with the events matched so far; events that violate the constraints are ignored
as noise. Due to this greedy behavior, skip-till-next-match can miss matches that sat-
isfy the pattern query. We propose a robust skip-till-next-match event selection strategy
that finds matches that are missed by skip-till-next-match due to its greedy behavior.
Robust skip-till-next-match considers all constraints in the query pattern together with
a complete match to determine whether an input event is relevant or irrelevant. To
implement the new strategy in automaton-based pattern matching algorithms, we pro-
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pose a backtracking mechanism that allows to reclassify relevant events as irrelevant.
Extensive experiments using real-world data show that the number of missed matches
with skip-till-next-match can be quite substantial, and that our proposed backtracking
mechanism outperforms an alternative solution that first produces all possible matches
followed by a post processing step to filter out non-compliant matches.

Publications. The contributions presented in this thesis are published in the following
articles:

• B. Cadonna, J. Gamper, and M. H. Böhlen. Sequenced event set pattern match-
ing. In Proceedings of the 14th International Conference on Extending Database
Technology (EDBT ’11), pages 33–44, 2011.

• B. Cadonna, J. Gamper, and M. H. Böhlen. Efficient event pattern matching
with match windows. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’12), pages 471–
479, 2012.

• B. Cadonna, J. Gamper, and M. H. Böhlen. A robust skip-till-next-match event
selection strategy for event pattern matching. Submitted to 7th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS ’13).

1.5 Organization of the Thesis

The thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 intro-
duces and formally defines SES pattern matching. Chapter 4 presents the automaton-
based evaluation of SES pattern matching. Chapter 5 proposes the two-phase evaluation
strategy. Chapter 6 describes a robust skip-till-next-match event selection strategy that
improves the skipping of noise in the input stream. Finally, Chapter 7 concludes the
thesis and points to future work.



CHAPTER 2

Related Work

In this section we discuss related work. We classified related work into four groups:
complex event processing (Section 2.1), publish/subscribe (Section 2.2), data stream
management (Section 2.3) and miscellaneous (Section 2.4).

2.1 Complex Event Processing

Complex event processing (CEP) is a computing paradigm in which events that hap-
pened in the outside world are collected and combined to composite events according
to user-defined patterns. Hence, event pattern matching is one of the main functional-
ities of CEP systems, and a lot of research has been done in the past. An overview of
CEP can be found in [27, 35].

The SQL change proposal [61] describes an extension to SQL for pattern matching
in sequences of tuples. The SQL extension is motivated by various use cases for event
processing, such as security, financial, fraud detection, and RFID applications, where
a tuple represents an event. The SQL extension addresses event pattern matching with
the (partitioned) contiguity event selection strategy, i.e., events in a match must be con-
tiguous in the input stream, and defines various quantifiers for events including Kleene
plus. The extension defines the PERMUTE operator and its EXPAND FACTORS vari-
ant, which allow to express a set of events. Multiple PERMUTE EXPAND FACTORS
operators in succession permit to express SES patterns that do not contain any Kleene
plus quantifier. The SQL extension focuses on the specification of the language and
provides no implementation of the various operators.

The DejaVu system [30, 31] implements in MySQL a subset of the SQL change
proposal [61] for event pattern matching in live and archived data streams. Besides

11
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event pattern matching, DejaVu addresses pattern correlation queries. Pattern correla-
tion queries allow to join matches of a pattern in a live stream with matches of another
pattern in an archived stream based on conditions over event attributes and the tempo-
ral distance of the matches. As specified in the SQL change proposal, DejaVu uses the
(partitioned) contiguity event selection strategy. The PERMUTE operator is not imple-
mented. Hence, SES patterns cannot be expressed in a simple way. Multiple patterns
are required, one for each possible match. The number of possible matches grows ex-
ponentially with the cardinality of the sets of events specified in the SES pattern and
becomes worse if Kleene plus quantifiers are used. Clearly, such a solution becomes
quickly cumbersome and inefficient for all but very small sets of events (cf. brute force
algorithm in Section 4.7.2). The evaluation of pattern matching queries is based on
finite state automata. The query processor of MySQL is accordingly extended and the
automata run as integral part of the query plan.

SQL-TS [52, 53] extends SQL to process complex sequential patterns in database
systems. The SQL change proposal [61] mentioned above is partly based on SQL-
TS. SQL-TS uses the (partitioned) contiguity event selection strategy. SQL-TS does
not implement the PERMUTE operator, and SES patterns can only be expressed with
multiple patterns similar to DejaVu, thus suffering from the same drawbacks. For the
evaluation of sequential pattern queries, the Knuth-Morris-Pratt string matching algo-
rithm is adapted for event pattern matching.

ZStream [46] is a cost-based query processor using join trees for matching patterns
with the operators sequence, conjunction, disjunction, negation, and Kleene closure. It
uses the skip-till-any-match event selection strategy, i.e., it finds all possible matches of
a pattern in an input stream. Similar to a SES pattern, the conjunction operator allows to
express that two events occur within a specified time window, and their order does not
matter. However, unlike a SES pattern, when a conjunction is combined with a Kleene
plus operator, all occurrences of the quantified event must be consecutive without any
other matching event in between. For the evaluation of the pattern queries, operators
are arranged in a query tree that processes events from the leaves to the root. Hashing
is used to evaluate equality predicates, and a cost-based reordering algorithm is used to
find an efficient order of the operators. The algorithm finds an optimal order for patterns
that consist of a sequence of single events; this is not guaranteed for queries that consist
of sets of more than two events since the reordering does not consider different orders
of binary conjunction operators.

The pattern specification language SASE+ [41, 60] uses the nondeterministic finite
state automaton NFAb [4] to detect matches in a stream of events. SASE+ introduces
and supports all event selection strategies described in Section 1.3. Furthermore, it
allows the use of the Kleene plus quantifier. The specification of SES patterns is similar
to DejaVu and suffers from the same drawbacks. Various optimization techniques are
adopted by NFAb. Similar automaton instances are merged to reduce space and runtime
requirements. Events are partitioned to reduce the number of events processed by one
automaton instance. Automata are only started if an input event matches the beginning
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of the pattern. The two-phase evaluation strategy presented in Chapter 5 elaborates
further on the partitioning and the conditional starting of automata.

AFA [20] is a nondeterministic finite automaton enriched with a register that holds
runtime information which is accessible to the automaton transitions during the execu-
tion. AFA uses contiguity and skip-till-next-match event selection strategies. The work
provides solutions for dynamic patterns, i.e., patterns that change over time, stream dis-
order, and revisions. AFA represents a generalization of the SES automaton presented
in Chapter 4. It would be interesting future work to apply the solutions for dynamic
patterns, stream disorder and revisions provided by AFA to the SES automaton.

The constraint-aware complex event processing (C-CEP) system [32] focuses on
the detection of optimal points for terminating the evaluation of partial pattern query
matches that will never be satisfied. For that purpose, a query unsatisfiability check-
ing technique is applied that uses pre-existing constraints that are evaluated on the
input stream at runtime. These constraints originate from the business logic. The
implemented C-CEP system employs an automaton that allows to specify only SES
patterns with equality relationships between events. SES patterns with more general
relationships between events are not addressed. Different from this work, our pruning
techniques described in the two-phase evaluation strategy in Chapter 5 need no extra
constraints, but exploit the pattern query to filter out irrelevant events and to delay the
instantiation of automata until some necessary conditions are satisfied.

NEEL [44] is a CEP query language for expressing nested CEP pattern queries
composed of sequence, negation, conjunction and disjunction operators. Nesting con-
junction operators into a sequence operator specifies a sequence of event sets. A Kleene
plus quantifier is not supported. Hence, NEEL cannot express all SES patterns. The
event selection strategy used in NEEL is skip-till-any-match. The evaluation of a nested
pattern query consists of rewriting the pattern query, discover sharing opportunities
among subexpressions in the pattern query, and finding a good execution plan.

NEXT CEP system [55] focuses on distributed event pattern matching with query
rewriting. The query rewriting is applied to find equivalent patterns with lower CPU
costs during evaluation. It uses a SQL-like language with six operators. An operator to
specify sets of events is not included. Thus, the formulation of SES patterns is limited.
NEXT CEP applies the skip-till-next-match event selection strategy. For the evaluation,
the operators are translated to nondeterministic finite automata.

Akdere et al. [6] present plan-based complex event processing where input events
are generated by distributed sources and a base node computes the event pattern match-
ing. The main goal is to minimize the transmission of useless events from the sources
to the base node. To achieve this goal, event acquisition and processing plans are cal-
culated based on temporal relationships among events and event occurrence statistics.
They use a pattern language that supports the specification of sequences and sets of
events but does not allow sequences of sets of events. The language does not include
a Kleene plus quantifier. All possible matches of a pattern (skip-till-any-match) are
detected. Pattern queries are evaluated based on event detection graphs [51].
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Amit [3] is an application development and runtime control tool intended to en-
able fast and reliable development of reactive and proactive applications. The situation
manager is a monitor component of Amit that reads input events and detects matches
of patterns (called situations). The pattern language provides various operators includ-
ing a sequence and a conjunction operator. By nesting patterns, sequences of event
sets can be specified. The Kleene plus quantifier is supported with the operator atleast.
However, different from SES patterns, a Kleene plus quantifier nested in a conjunction
operator only allows to match consecutive occurrences of the quantified event with-
out any other matching event in between. The situation manager defines its own event
selection strategies that partly overlap the ones used in our work.

T-REX [26] is a CEP middleware that provides the language TESLA for event
pattern matching. TESLA supports a sequence operator, sets of events are expressible
but a Kleene plus quantifier is missing. The event selection strategies presented partly
overlap with the ones used in this thesis. The evaluation of pattern queries is based on
finite automata.

RACED [25] is a distributed complex event processing middleware that implements
a protocol enabling efficient and distributed detection of complex events inside a net-
work of service brokers and dynamically adapts to network traffic. The pattern lan-
guage proposed can express sequences of sets of events but the formulation is intricate
because no explicit sequence operator is provided. Kleene plus quantifiers are not sup-
ported. The evaluation techniques to detect matches of pattern queries and the event
selection strategies used are not addressed.

PEEX [43] is a system that detects probabilistic high-level events from RFID data.
In particular it addresses data errors and ambiguity observed in event pattern matching
for the RFID application domain. Its pattern language PEEXL supports a sequence
operator but not a conjunction operator to express event sets. PEEX is based on a
relational database management system. Pattern queries are translated to SQL.

A theoretical study about the CEDR pattern specification language [14] focuses
mainly on the management of stream imperfections. CEDR does not include any oper-
ator to match sets of events.

An analysis of temporal models for CEP systems [59] presents a formal framework
that is capable of describing the semantics of the sequence operator, i.e., the next event
to detect, in various CEP systems. Algebraic properties of the sequence operator of
temporal models of different CEP systems are discussed and desirable properties to
improve performance are described.

2.2 Publish/Subscribe

With the publish/subscribe paradigm subscribers express their interests in events or
patterns of events, and are notified when events are generated by publishers that
match their interests. Publish/subscribe systems can be classified into topic-based and
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content-based systems [36]. In topic-based systems publishers generate events under
a topic and subscriber can subscribe to topics. In content-based systems a subscriber
uses a subscription language to express its interests. An overview of publish/subscribe
systems is available in [27, 36].

Cayuga [15, 28, 29] reads an incoming stream of events (publications) and selects
event sequences according to queries that express user’s interests (subscriptions). It
uses an algebra that is inspired by regular expressions to formulate queries over event
streams. Cayuga is unable to express all SES patterns because it can only specify
relationships between consecutive events and not between arbitrary events in a set of
events. Left-associated algebra expressions produce matches that conform to the skip-
till-next-match event selection strategy. For the evaluation, a left-associated algebra
expression is translated into a corresponding nondeterministic finite state automaton.
Non-left-associated algebra expressions can be broken up into a set of left-associated
ones, and each of them is then translated to a nondeterministic finite state automaton.
Optimization techniques focus on the simultaneous evaluation of multiple queries using
indices. By indexing automaton instances, an input event is only processed by those
automaton instances that may change state. This is similar to the filter mechanism
in the two-phase evaluation strategy presented in Chapter 5. To reduce the number
of transitions that are evaluated for each incoming event, transitions are indexed on
their condition. Cayuga instantiates an automaton for each input event that matches
the beginning of the pattern query. Methods for distributing the evaluation of Cayuga’s
pattern queries across multiple machines in a cluster are described in [16].

Other publish/subscribe systems have limited expressiveness, since they are unable
to specify a temporal order [5, 18, 37] and/or other relationships among (attributes of)
events [5, 7, 18, 37].

2.3 Data Stream Management

Data stream management systems (DSMSs) provide functionalities to process data
streams. Requirements for DSMSs consist of continuous queries over streams, adap-
tive resource management and reasonable approximations to queries due to bounded
memory and real-time deadlines. Event pattern matching is outside of the scope of
DSMSs, yet query languages of DSMSs allow – up to a certain extent – to express the
constraints specified in patterns. An overview of challenges and models in DSMSs is
available in [11, 12]. A survey of DSMSs can be found in [27].

STREAM [8, 9, 48] provides the language CQL to formulate continuous queries
over streams and relations. It implements a dynamic resource management to allow
high data rates and large numbers of continuous queries. SES patterns can be formu-
lated in CQL queries by using a combination of selection, join, and aggregation oper-
ations. The formulation of a pattern becomes more and more intricate with growing
length of the pattern due to the increasing number of join and selection operations that
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are required to specify such sequences. CQL is unable to express SES patterns with
a Kleene plus quantifier since the number of join operations must be known at query
time.

Aurora [2, 17] and its further development Borealis [1] use a query algebra that
contains seven primitive operations for expressing continuous and ad-hoc queries. Its
dynamic resource management is driven by quality-of-service specifications supplied
by applications. SES patterns can be formulated by a combination of join, selection and
aggregation operations. Thus, Aurora is subject to the same limitations as STREAM
regarding the formulation of SES patterns.

TelegraphCQ [21] uses an adaptive query engine based on the Eddy concept [10]
to process queries. Within the query engine tuples are routed through query modules.
Modules are pipelined, non-blocking versions of join, selection, projection, grouping,
and aggregation operations and duplicate elimination. The routing of the tuples is con-
tinuously adapted on a tuple-by-tuple basis. Similar to STREAM, Aurora and Borealis,
with TelegraphCQ, SES patterns can be formulated with join, selection and aggregation
operations suffering from the same limitations.

NiagaraCQ [22] queries distributed XML data sets using a query language like
XML-QL. To increase scalability, it groups continuous queries based on the observation
that many queries share similar structures. Event pattern matching can be simulated
by transforming the event stream into a XML document that has an element for each
event. Formulating SES patterns in XML-QL for NiagaraCQ is intricate and Kleene
plus quantification to match multiple occurrences of similar events is not supported.

Gigascope [23, 24] is a DSMS that focuses on network applications, including traf-
fic analysis, intrusion detection, and performance monitoring. Its SQL-like language
called GSQL provides selection, join, grouping and aggregate operators. SES patterns
with Kleene plus cannot be expressed with GSQL. During evaluation, queries are trans-
lated into execution plans that can be rearranged based on operator costs.

Stream Mill [13] uses the SQL-like language ESL. ESL permits to define continu-
ous queries that contain selection, join, union and grouping operations. Additionally,
it supports the creation of user-defined aggregates (UDA) in an imperative way. The
authors claim that with non-blocking UDAs ESL allows to express every non-blocking
query expressible in any other possible language. Hence, in theory SES pattern can
be expressed. Complexity of pattern query formulation and efficiency comparison to
our work need to be investigated and we leave it for future work. For evaluation, ESL
queries are compiled into query plans, the plans are optimized and executed as known
from relational database management systems.

Herald-driven optimization [33] is a semantic query optimization technique applied
to queries on data streams with selection and join operations. Heralds are metadata
about future stream data sent with the stream. Based on such heralds a query can be
continuously optimized. Heralds could be employed with the two-phase evaluation
strategy presented in Chapter 5 to filter multiple input events at once and for more
efficient updates of the statistics used to test the necessary match conditions.
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Stream Schema [38] is a model for the specification of static metadata for data
streams. Stream Schema allows to specify constraints about the structure of the items in
a data stream, logical partitioning by item structure and attribute values, value relation-
ships (e.g., order), and repetitions of subsequences in the stream. The constraints can be
combined and used for query optimization during the static analysis of the queries. We
leave the investigation of possible benefits of Stream Schema for SES pattern matching
and the two-phase evaluation strategy described in Chapter 5 as future work.

2.4 Miscellaneous

Active databases react to events that originate from operations within the system such
as data manipulations. Event languages of active databases allow to express composi-
tions of events to which the system should react. Various event languages have been
proposed [19, 39, 40, 47, 62]. They are unable to express general SES patterns be-
cause they are either very limited or unable to express relationships between attributes
of events.

Event Analyzer [42] is a data warehouse component to analyze event sequences
that uses skip-till-any-match event selection strategy. Its pattern specification language
is able to express patterns that match simultaneous events. Simultaneous events can be
interpreted as a special case of SES patterns because no total order can be imposed on
the events, and hence, their order should be ignored in a query. However, the pattern
specification language is not able to express more general SES patterns.

SEQ [56, 57] is a sequence database with an SQL-like query language, called SE-
QUIN. SEQUIN allows to select event sequences with a combination of selection, join,
and aggregation operations. With the growing length of the retrieved event sequences,
the queries become more and more intricate due to the increasing number of join and
select operations that are required to specify such sequences. SEQUIN is unable to
express SES patterns with a Kleene plus quantifier since the number of join operations
must be known at query time.





CHAPTER 3

Sequenced Event Set Pattern Matching

3.1 Introduction

In this chapter, we introduce and formally define sequenced event set (SES) pattern
matching. In SES pattern matching an input stream of events is matched against a pat-
tern that specifies a sequence of sets of events rather than a sequence of single events.
While the order of the input events that match the same set is irrelevant, i.e., any per-
mutation of the input events is matched, the order of the input events that match distinct
sets must correspond to the order of the sets in the pattern.

Example 3.1. As a running example, we consider the analysis of chemotherapy data.
Figure 3.1 shows a sample event stream Chemo. The attributes represent patient ID
(PID), event type (L), value (V ) with measurement unit (U ), and occurrence time
(T ) of an event, respectively. For instance, event e1 represents the administration of
1672.5 mg of Cyclophosphamide to patient 1 on July 3. To investigate the effect of the
medications on the blood count the following query is issued:

Q1: For each patient, find the events that match (in any order) one admin-
istration of Cyclophosphamide (C), one or more administrations of Pred-
nisone (P) with monotonically increasing values, and one administration
of Doxorubicin (D), followed by a single blood count measurement (B); all
events occur within fifteen days.

The rest of this chapter is organized as follows. In Section 3.2, we formally de-
fine the concepts of event stream, pattern and match used in SES pattern matching.
Section 3.3 sums up the chapter.

19
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PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
2 B 10100 1/µl 6 Jul
1 D 84 mgl 7 Jul
2 P 88 mg 8 Jul
2 D 84 mgl 9 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
1 P 116.5 mg 12 Jul
2 P 88 mg 15 Jul
1 B 3400 1/µl 17 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul
1 B 3000 1/µl 22 Jul

Chemo

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

Figure 3.1: Events of Chemotherapy Treatments.

3.2 Definition of SES Pattern Matching

In this section we formalize SES pattern matching. The notation is summarized in
Table 3.1.

Symbol Description Example
E event stream Chemo in Fig. 3.1
e event e1 = (1, ’C’, 1672.5,mg, 3 Jul)
A attribute of e PID with e1.PID = 1
T occurrence time of e e1.T = 3 Jul
~e chronologically ordered event sequence 〈e1, e2, e3〉
P pattern (〈{c, p+, d}, {b}〉,Θ, 15 d)
Bi set of variables {c, p+, d}
v variable in P c
Θ set of constraints {c.L = ’C’, c.PID = p.PID}
θ constraint c.L = ’C’
τ maximal time span 15 d (15 days)
γ substitution {c/〈e1〉, p/〈e3〉, d/〈e5〉, b/〈e12〉}

Table 3.1: Notation.

An event is represented as a tuple with schema E = (A1, . . . , Al, T ), where T is
a temporal attribute that stores the occurrence time of an event. For T we assume a
totally ordered time domain. An event stream, E, is a set of events with a total order
given by attribute T (see event stream Chemo in Fig. 3.1). A chronologically ordered
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sequence of events is represented as ~e = 〈e1, . . . , en〉 with e1 and en referring to the
first and last event in ~e, respectively.

Definition 3.1. (Pattern) A pattern, P , is a triple

P = (〈B1, . . . , Bk〉,Θ, τ),

where 〈B1, . . . , Bk〉, k ≥ 1, is a sequence of pairwise disjoint sets of variables of the
form v or v+, Θ = {θ1, . . . , θl} is a set of constraints over variables in B1, . . . , Bk,
and τ is a duration.

A variable, v ∈ Bi, binds a sequence of a single event, 〈e1〉. A quantified variable,
v+ ∈ Bi, binds a sequence of one or more events, 〈e1, . . . , en〉, n ≥ 1. To simplify
notation, we will use v to refer to both, v and v+, when it is clear from the context.
Set Θ contains constraints over variables that must be satisfied by matching events.
We distinguish between properties and relationships, i.e., Θ = Θp ∪ Θr. Properties,
θ ∈ Θp, have the form (v.A φ C), where v.A refers to an attribute of a matching event,
C is a constant, and φ ∈ {=, 6=, <,≤, >,≥, } is a comparison operator. Properties
can be further partitioned by variable, Θp = Θp

v1 ∪ · · · ∪ Θp
vm . Each set Θp

vi (also
referred to as properties of variable vi) contains all constraints of the form (vi.A φ C).
Relationships, θ ∈ Θr, have the form (vi.Ak φ vj .Al) or (prev(v.A) φ v.A), where
prev(v.A) refers to the previous event that has been bound to a quantified variable v+.
Finally, τ is the maximal time span within which all matching events must occur.

Example 3.2. Query Q1 is formulated as pattern P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d).
The first set, B1 = {c, p+, d}, contains three variables with the quantifier + applied to
p. The second set, B2 = {b}, contains one variable. The maximal time span is fifteen
days. The constraints, separated in properties and relationships, are Θ = Θp

c ∪ Θp
p ∪

Θp
d ∪Θp

b ∪Θr with properties:

Θp
c = { c.L = ’C’ },

Θp
p = { p.L = ’P’ },

Θp
d = { d.L = ’D’ },

Θp
b = { b.L = ’B’ },

and relationships

Θr = { c.PID = p.PID ,

p.PID = d.PID ,

d.PID = b.PID ,

prev(p.V ) < p.V }.

Variable c binds a single administration of Cyclophosphamide (c.L = ’C’), p+ binds
one or more administrations of Prednisone (p.L = ’P’), d binds a single administration
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of Doxorubicin (d.L = ’D’), and b binds a single blood count measurement (b.L =
’B’). The first three relationships force the matched events to refer to the same patient.
The fourth relationship requires the amount of Prednisone to be increasing.

To define the matching of a pattern P and an event stream E, we use a substitution
γ = {v1/~e1, . . . , vm/~em}. Each pair v/~e represents a binding of variable v to a
sequence, ~e = 〈e1, . . . , en〉, n ≥ 1, of events in E. A substitution contains exactly one
binding for each variable in P , and an event can appear in at most one of the bindings.
For a constraint θ ∈ Θ, θγ denotes the instantiation of θ by γ and is obtained from θ by
simultaneously replacing all variables vi by the corresponding event sequence ~ei. The
instantiation of a set of constraints Θ is Θγ = {θ1γ, . . . , θlγ}. The truth value of an
instantiation is defined through an interpretation, I(Θγ), as follows:

• I(Θγ) ≡ I({θ1γ, . . . , θlγ}) ≡ I(θ1γ) ∧ · · · ∧ I(θlγ),

• I(~e.A φ C) ≡ ∀x ∈ ~e ( x.A φ C ),

• I(~ei.Ai φ ~ej .Aj) ≡ ∀x ∈ ~ei, y ∈ ~ej ( x.Ai φ y.Aj ),

• I(prev(~e.A) φ ~e.A) ≡

∀xi−1, xi ∈ ~e ( xi−1.A φ xi.A ) if |~e| ≥ 2,

true otherwise.

The interpretation of Θγ is the conjunction of the interpretation of the individual
constraints θiγ. If θ is a property, i.e., has the form (v.AφC), attribute A of each event
that is bound to v is compared to the constant value C. If θ is a relationship of the form
(vi.Ai φ vj .Aj), all combinations of attributes Ai and Aj of all events bound to vi and
vj , respectively, are compared. If θ is a relationship of the form (prev(v.A) φ v.A), the
attribute A of each pair of consecutive events that are bound to v are compared.

Example 3.3. Let Θ be the set of constraints of pattern P1 =
(〈{c, p+, d}, {b}〉,Θ, 15 d) and γ = {c/〈e8〉, p/〈e6, e9〉, d/〈e7〉, b/〈e13〉} be a
substitution. The instantiation of Θ (cf. Example 3.2) with γ is

Θγ = {〈e8〉.L = ’C’, 〈e6, e9〉.L = ’P’, 〈e7〉.L = ’D’,

〈e13〉.L = ’B’,

〈e8〉.PID = 〈e6, e9〉.PID , 〈e6, e9〉.PID = 〈e7〉.PID ,
〈e7〉.PID = 〈e13〉.PID ,
prev(〈e6, e9〉.V ) < 〈e6, e9〉.V }.
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The interpretation of Θγ is

I(Θγ) ≡ I(〈e8〉.L = ’C’) ∧ I(〈e6, e9〉.L = ’P’) ∧ I(〈e7〉.L = ’D’) ∧
I(〈e13〉.L = ’B’) ∧
I(〈e8〉.PID = 〈e6, e9〉.PID) ∧ I(〈e6, e9〉.PID = 〈e7〉.PID) ∧
I(〈e7〉.PID = 〈e13〉.PID) ∧
I(prev(〈e6, e9〉.V ) < 〈e6, e9〉.V )

≡ e8.L = ’C’ ∧ e6.L = ’P’ ∧ e9.L = ’P’ ∧ e7.L = ’D’ ∧
e13.L = ’B’ ∧
e8.PID = e6.PID ∧ e8.PID = e9.PID ∧ e6.PID = e7.PID ∧
e9.PID = e7.PID ∧ e7.PID = e13.PID ∧
e6.V < e9.V

≡ ’C’ = ’C’ ∧ ’P’ = ’P’ ∧ ’P’ = ’P’ ∧ ’D’ = ’D’ ∧ ’B = ’B ∧
2 = 2 ∧ 2 = 2 ∧ 2 = 2 ∧ 2 = 2 ∧ 2 = 2 ∧
88 < 98

≡ true

Definition 3.2. (Match) Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pattern and E be an event
stream. A substitution γ = {v1/~e1, . . . , vm/~em} is a match of P in E if and only if the
following holds:

I(Θγ) is true, (3.1)

∀vi/~ei, vj/~ej ∈ γ ( vi∈Bi ∧ vj∈Bi+1 → ein .T <ej1 .T ), (3.2)

∀vi/~ei, vj/~ej ∈ γ ( |ei1 .T − ejn .T | ≤ τ ). (3.3)

Condition 3.1 requires that a match satisfies all constraints in Θ. Condition 3.2
ensures that all events in a match that are bound to a variable in Bi must occur before
all events that are bound to any variable inBi+1. No order is imposed on events that are
bound to variables in the same Bi, hence any permutation is matched. Condition 3.3
constrains all events in a match to occur within a time span of τ .

Example 3.4. Figure 3.2 illustrates a match of P1 in relation Chemo. Each of the vari-
ables c, d, and b binds a single event, whereas p binds a sequence of two events. The
instantiation Θγ is satisfied (Condition 3.1): e8 is a Cyclophosphamide administration
(’C’), e6 and e9 are Prednisone administrations (’P’), e7 is a Doxorubicin adminis-
tration (’D’) and e13 is a blood count measurement (’B’); all events refer to the same
patient; and the value of e6 is less than the value of e9. Events e6, e7, e8, and e9 that
match the first set in P1 occur before e13 that matches the second set in P1 (Condi-
tion 3.2). The time span between the first (e6) and last event (e13) is less than fifteen
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E = { . . . , e6, e7, e8, e9, . . . , e13, . . . , }

P1 = ( 〈 { c, p+ d }, { b } 〉, Θ, 15 d )

γ = { c / 〈e8〉, p / 〈e6, e9〉, d / 〈e7〉, b / 〈e13〉 }

10 days ≤ 15 days

Figure 3.2: Match for Pattern P1.

days (Condition 3.3). The complete list of matches is:

{ c/〈e1〉, p/〈e3〉, d/〈e5〉, b/〈e12〉 },
{ c/〈e1〉, p/〈e10〉, d/〈e5〉, b/〈e12〉 },
{ c/〈e1〉, p/〈e3, e10〉, d/〈e5〉, b/〈e12〉 },
{ c/〈e8〉, p/〈e6〉, d/〈e7〉, b/〈e13〉 },
{ c/〈e8〉, p/〈e6〉, d/〈e7〉, b/〈e14〉 },
{ c/〈e8〉, p/〈e9〉, d/〈e7〉, b/〈e13〉 },
{ c/〈e8〉, p/〈e9〉, d/〈e7〉, b/〈e14〉 },
{ c/〈e8〉, p/〈e11〉, d/〈e7〉, b/〈e13〉 },
{ c/〈e8〉, p/〈e11〉, d/〈e7〉, b/〈e14〉 },
{ c/〈e8〉, p/〈e6, e9〉, d/〈e7〉, b/〈e13〉 },
{ c/〈e8〉, p/〈e6, e9〉, d/〈e7〉, b/〈e14〉 }.

Definition 3.2 specifies the set of all possible matches of P in E, but applications
might be interested in a subset only. This can be controlled by different event selection
strategies [4]. In this thesis, we use the skip-till-next-match event selection strategy
and leave the adaptation of presented techniques to other event selection strategies for
future work. Skip-till-next-match greedily matches incoming events if they satisfy the
constraints in the pattern along with the events matched so far; events that violate the
constraints are skipped as noise.

Example 3.5. Consider P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d) and match γ in Figure 3.2.
Match γ conforms to skip-till-next-match because all events in γ are greedily matched
and satisfy the constraints in the pattern along with the events matched earlier. Event
e6 starts the match because it matches variable p in the first set, {c, p+, d}, of P1.
Events e7, e8 and e9 are the first after e6 that match c, d, and again p in {c, p+, d}.
Then, e10, e11, and e12 are skipped since they do not satisfy the constraints specified
by P1. Finally, e13 is the first event after e9 that satisfies b in {b}. In contrast, match
{c/〈e8〉, p/〈e6, e9〉, d/〈e7〉, b/〈e14〉} does not conform to skip-till-next-match, since
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e14 bound to b occurs after e13 that also satisfies the constraints in P1 along with the
events matched earlier. The complete list of matches of P1 in E that conform to skip-
till-next-match is:

{ c/〈e1〉, p/〈e3, e10〉, d/〈e5〉, b/〈e12〉 },
{ c/〈e8〉, p/〈e9〉, d/〈e7〉, b/〈e13〉 },
{ c/〈e8〉, p/〈e6, e9〉, d/〈e7〉, b/〈e13〉 }.

3.3 Summary

In this chapter, we introduced and formally defined SES pattern matching. A pattern
consists of a sequence of sets of variables, a set of constraints and a duration. A variable
matches a single event and a variable that is quantified with a plus matches one or more
events. Events that match variables in the same set can occur in any permutation,
whereas events that match variables from different sets must occur in the order of the
sets in the pattern. The set of constraints contains conditions over the variables that
must be satisfied by matching events. The duration determines the maximal time span
within which all matching event must occur. A match is a set of bindings that binds
variables in the pattern to chronologically ordered sequences of events from the input
stream. A match must satisfy all constraints specified in the pattern. In this thesis, we
focus on the skip-till-next-match event selection strategy.





CHAPTER 4

Automaton-based Evaluation

4.1 Introduction

In this chapter we present an automaton-based algorithm for the evaluation of pattern
queries in SES pattern matching. The algorithm first translates a query pattern into a
so-called SES automaton, which is then executed on the input event stream. We analyse
the runtime complexity of the automaton-based algorithm considering different kinds
of nondeterminism. Finally, we experimentally evaluate the algorithm.

Example 4.1. As a running example for this chapter, we reuse the event stream Chemo

and the query Q1 from the previous chapter which we replicate in Figure 4.1 and below
for the sake of convenience.

Q1: For each patient, find the events that match (in any order) one admin-
istration of Cyclophosphamide (C), one or more administrations of Pred-
nisone (P) with monotonically increasing values, and one administration
of Doxorubicin (D), followed by a single blood count measurement (B); all
events occur within fifteen days.

The corresponding pattern for Query Q1 is

P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d).

The rest of this chapter is organized as follows. Section 4.2 defines the SES au-
tomaton. In Section 4.3, we describe the construction of a SES automaton from a
pattern. The execution of a SES automaton is presented in Section 4.4. Section 4.5
provides the algorithm for the evaluation of event pattern matching with SES automata.

27
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PID L V U T

1 C 1672.5 mg 3 Jul
1 B 7100 1/µl 4 Jul
1 P 111.5 mg 5 Jul
2 B 10100 1/µl 6 Jul
1 D 84 mgl 7 Jul
2 P 88 mg 8 Jul
2 D 84 mgl 9 Jul
2 C 1320 mg 10 Jul
2 P 98 mg 11 Jul
1 P 116.5 mg 12 Jul
2 P 88 mg 15 Jul
1 B 3400 1/µl 17 Jul
2 B 4000 1/µl 18 Jul
2 B 4900 1/µl 19 Jul
1 B 3000 1/µl 22 Jul

Chemo

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

Figure 4.1: Events of Chemotherapy Treatments.

In Section 4.6, we analyse the runtime complexity of the algorithm. Section 4.7 shows
the result of an experimental evaluation with real-world data. The chapter ends with a
summary in Section 4.8.

4.2 Definition of SES Automaton

A SES automaton is a nondeterministic finite state automaton enriched with a match
buffer, β, which collects bindings during the execution of the automaton.

Definition 4.1. (SES Automaton) Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pattern with vari-
ables V = {v1, . . . , vm} and E be a schema of events. A SES automaton, N , is a six
tuple

N = (V,Q,Σ, δ, qs, qf ),

where

• V is the set of variables in P ,

• Q = {q1, . . . , ql}, qi ⊆ V , is a finite set of states,

• Σ is the set of all possible events with schema E,

• δ is a transition function δ : Q× Σ→ V ∗,

• qs ∈ Q is the start state, and
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• qf ∈ Q is the accepting state.

Each state, q ∈ Q, is defined as the subset of the variables in P that have been
matched so far. The transition function δ takes as arguments a state q and an event e, and
returns a finite set of variables {v1, . . . , vn}. If the output contains exactly one variable
v, the automaton changes to state q∪{v} and adds the binding of v and input event e to
match buffer β. If the output contains multiple variables {v1, . . . , vn}, nondeterminism
occurs. The automaton branches into n automata and for each variable vi a distinct
automaton changes to state q ∪ {vi} and adds the binding of vi and input event e to
its match buffer β. Transition function δ uses a transition condition Θδ to decide if
a variable is contained in the output. Transition condition Θδ contains constraints of
the form (v.A φ C), (vi.Ak φ vj .Al) and (prev(v.A) φ v.A) over variables in P . The
execution of an automaton begins in the start state, qs = ∅. The accepting state, qf ,
marks the acceptance of the bindings in β as a match.

To simplify notation, we redefine a SES automaton to be a four tuple N =
(Q,∆, qs, qf ), where ∆ = {δ1, . . . , δn} is a finite set of transitions of the form
δ = (q, v,Θδ). A transition, δ = (q, v,Θδ) ∈ ∆, leads from a source state, q ∈ Q, to
a target state, q ∪ {v} ∈ Q, if the transition condition, Θδ, is satisfied by the current
input event; the input event is bound to variable v and added to match buffer β.

A SES automaton can be graphically represented as a graph. Nodes represent states,
and edges represent transitions. An edge is labeled with the variable that is bound by
the transition and the corresponding transition condition. The start state is marked with
an incoming arrow, the accepting state is doubly circled.

Example 4.2. Figure 4.2 shows the SES automaton for the pattern (〈{b}〉,Θ, 15 d)
with Θ = {b.L = ’B’}, which is the second set B2 (in isolation) of pattern P1 in
Example 4.1. The corresponding automaton is

({∅, {b}},∆, ∅, {b}).

It has two states, the start state ∅ and the accepting state {b}. To facilitate reading, in
the graphical illustration we denote states by the concatenation of the corresponding
variables, e.g., the node labeled with b represents state {b}. There is a single transition,

∆ = {(∅, b, {b.L = ’B’})},

with a condition that constrains variable b to match a blood count measurement. Notice
that no other conditions are involved, since B2 is considered in isolation.

4.3 Construction of a SES Automaton

The construction of a SES automaton for a pattern, P , is a two-step process:

1. each individual set in P is translated into a SES automaton and
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∅ b
b,Θ1

Θ1 = {b.L = ’B’}

Figure 4.2: SES Automaton for Pattern (〈{b}〉,Θ, 15 d).

2. the individual automata from step 1 are concatenated according to the order of
the sets in P .

4.3.1 Translation of a Single Set in the Pattern

Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pattern, and consider a single set Bi with variables
Vi = {v1, . . . , vm} in P . For each subset of Vi, the corresponding SES automaton
contains a state, yielding Q = {q : q ∈ P (Vi)} as the set of states. For each state,
q ∈ Q, and single variable, v ∈ Vi \ q, a transition δ = (q, v,Θδ) is built with the
following constraints:

Θδ = {θ ∈ Θ : (θ ≡ v.A φ C) ∨
(θ ≡ v.Ak φ w.Al ∧ w ∈ B1 ∪ · · · ∪Bi−1 ∪ (q ∪ {v}))}.

That is, Θδ is defined as the set of all conditions in Θ that constrain events bound to
variable v (of transition δ) either with respect to a constant value C or with respect
to events that are bound to other variables from the current state or from preceding
sets in P . For each state, q, and quantified variable, v+ ∈ Bi and v ∈ q, a transition
δ = (q, v,Θδ) is created, which loops at state q since q ∪ {v} = q for v ∈ q. The
transition condition Θδ is constructed in a similar way as above, but additionally it
includes conditions of the form prev(v.A) φ v.A.

Example 4.3. Figure 4.3 shows the SES automata N1 and N2 for the sets {c, p+, d}
and {b} in the example pattern P1, respectively. The automaton for {c, p+, d} is

N1 = (Q1,∆1, ∅, {c, p, d}),

where

Q1 = { ∅, {c}, {d}, {p}, {c, d}, {c, p}, {d, p}, {c, p, d} },
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and

∆1 = { (∅, c,Θ1), (∅, d,Θ2), (∅, p,Θ3),

({c}, d,Θ4), ({c}, p,Θ5),

({d}, c,Θ6), ({d}, p,Θ7),

({p}, c,Θ8), ({p}, d,Θ9), ({p}, p,Θ10),

({c, d}, p,Θ11),

({c, p}, d,Θ12), ({c, p}, p,Θ13),

({d, p}, c,Θ14), ({d, p}, p,Θ15),

({c, p, d}, p,Θ16) }.

The automaton for {b} is
N2 = (Q2,∆2, ∅, {b})

where
Q2 = { ∅, {b} }

and
∆2 = { (∅, b,Θ17) }.

The set of states corresponds to all possible subsets of the variables in the sets of P1.
Notice the looping transitions in all states that include the quantified variable p+. The
different paths through the individual automata correspond to all possible permutations
of input events that are matched by the corresponding set.

4.3.2 Concatenation of SES Automata

The second step is to concatenate the individual automata N1, . . . , Nk from step 1. For
two consecutive automataNi, Ni+1, this means essentially to merge the accepting state
of Ni with the start state of Ni+1 plus doing some renaming.

More formally, let N1 = (Q1,∆1, qs1 , qf1) and N2 = (Q2,∆2, qs2 , qf2) be the
automata for the sets B1 and B2, respectively. The concatenation of N1 and N2 yields
a SES automaton N = (Q1 ∪ Q∗2,∆1 ∪ ∆∗2, qs1 , qf2 ∪ V1), which is constructed as
follows. The states in Q2 are renamed to include the set of variables V1 of the set B1,
i.e., Q∗2 = {q ∪V1 : q ∈ Q2}. The states in the transitions are renamed in an analogous
way, i.e., for each transition (q, v,Θδ) ∈ ∆2 we have a transition (q∪V1, v,Θδ) in ∆∗2.

The concatenation of a sequence of automata, N1, . . . , Nn, is done in the same
order as the corresponding sets, B1, . . . , Bn, specified in the pattern. N1 and N2 are
concatenated into an intermediate automaton N ′ = N1N2, which is then concatenated
with N3 to give N ′′ = (N1N2)N3, and so on.

Example 4.4. The SES automaton in Figure 4.4 is the result of concatenating N1 and
N2 from Figure 4.3, and it corresponds to pattern P1 in the running example. The
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∅ d

c

p

cp

cd

dp

cpd

c,Θ1

d,Θ2

p,Θ3

d,Θ4

p,Θ5

c,Θ6

p,Θ7

c,Θ8

d,Θ9

p,Θ10

p,Θ11

d,Θ12

p,Θ13

c,Θ14

p,Θ15

p,Θ16

Θ1 = { c.L = ’C’ }
Θ2 = { d.L = ’D’ }
Θ3 = { p.L = ’P’ }
Θ4 = { d.L = ’D’, c.PID = d.PID }
Θ5 = { p.L = ’P’, c.PID = p.PID }
Θ6 = { c.L = ’C’, c.PID = d.PID }
Θ7 = { p.L = ’P’ }
Θ8 = { c.L = ’C’, c.PID = p.PID }
Θ9 = { d.L = ’D, c.PID = d.PID }
Θ10 = { p.L = ’P’, prev(p.V ) < p.V }
Θ11 = { p.L = ’P’, c.PID = p.PID }
Θ12 = { d.L = ’D’, c.PID = d.PID }
Θ13 = { p.L = ’P’, c.PID = p.PID ,

prev(p.V ) < p.V }
Θ14 = { c.L = ’C’, c.PID = d.PID ,

c.PID = p.PID }
Θ15 = { p.L = ’P’, prev(p.V ) < p.V }
Θ16 = { p.L = ’P’, c.PID = p.PID ,

prev(p.V ) < p.V }

(a) N1 for {c, p+, d}

∅ b
b,Θ17 Θ17 = { b.L = ’B’, d.PID = b.PID }

(b) N2 for {b}

Figure 4.3: SES Automata for Single Sets in P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d).

complete automaton is specified as

N = (Q,∆, ∅, {c, p, d, b})

where

Q = { ∅, {c}, {d}, {p}, {c, d}, {c, p}, {d, p}, {c, p, d}, {c, p, d, b} },

and

∆ = { (∅, c,Θ1), (∅, d,Θ2), (∅, p,Θ3),

({c}, d,Θ4), ({c}, p,Θ5),

({d}, c,Θ6), ({d}, p,Θ7),

({p}, c,Θ8), ({p}, d,Θ9), ({p}, p,Θ10),

({c, d}, p,Θ11),

({c, p}, d,Θ12), ({c, p}, p,Θ13),

({d, p}, c,Θ14), ({d, p}, p,Θ15),

({c, p, d}, p,Θ16), ({c, p, d}, b,Θ17) }.
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c,Θ6

p,Θ7

c,Θ8

d,Θ9

p,Θ10

p,Θ11

d,Θ12

p,Θ13

c,Θ14

p,Θ15

b,Θ17

p,Θ16

N1 N2

Figure 4.4: SES Automaton for P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d).

The accepting state {c, p, d, b} originates from state {b} in N2 extended by {c, p, d},
and the state {c, p, d} originates from the “merging” of the accepting state of N1 and
the start state of N2. The conditions, Θi, are identical to the conditions in Figure 4.3.

4.4 Execution of a SES Automaton

The execution of a SES automaton consists of reading events from the input, taking
the transitions whose conditions are satisfied by an input event, and adding the input
events that trigger a transition to the match buffer. To describe the execution of a SES
automaton in more detail, we first define the concept of an automaton instance.

Definition 4.2. (Automaton Instance) An automaton instance, ñ, describes a SES au-
tomaton N during execution and is defined as a pair

ñ = (qc, β),

where qc ∈ Q is the state ñ is currently in and β is the corresponding match buffer.

An automaton instance, ñ, of a SES automaton N = (Q,∆, qs, qf ) begins in the
start state qs. It reads events from the input and tests the conditions, Θδ, of the tran-
sitions that leave the current state qc. If an input event satisfies the condition of a
transition, ñ moves to the target state of the transition and adds a binding consisting of
the variable of the transition and the input event to match buffer β. If an input event
satisfies the condition of multiple transitions, nondeterminism occurs, and ñ branches
into multiple automaton instances. If no transition conditions are satisfied and the au-
tomaton instance is not in the start state, the input event is ignored and the automaton
remains in its current state. When all input events are read, the automaton instances
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that reached the accepting state, qf , contain a match in their match buffer β. To ensure
that the time interval spanned by events in a match does not exceed duration τ , only
a subsequence of input stream E, called a match window, is passed to an automaton
instance as input.

Definition 4.3. (Match Window) LetE be an event stream and τ be a duration specified
in a pattern. The match window starting at event ei ∈ E is defined as

W = 〈e ∈ E : 0 ≤ e.T − ei.T ≤ τ〉.

A match window, W , is a maximal subsequence of E that starts at an event ei and
includes all subsequent events that are within distance τ .

Example 4.5. Figure 4.5 illustrates two match windows, W1 and W2, for event stream
Chemo and duration τ that is equal to fifteen days. The match windows start at event
e1 and e2, respectively. Both match windows contain 13 events, each with a maximal
time span of fifteen days between the first and the last event.

E = e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, . . .

W1

W2

Figure 4.5: Match Windows for Chemo and τ = 15 d.

Conceptually, a match window slides over the input stream event-by-event and cov-
ers at each step all events that are within duration τ from the earliest event in the win-
dow. Depending on the density of the input events along the time axis, the number of
events in the match window might vary.

Example 4.6. Figure 4.6 shows a few steps of the execution of the SES automaton
N from our running example with match window W = 〈e1, . . . , e13〉 from the event
stream Chemo. The example shows the automaton instance, ñ, that produces a match
for patient 1. For each step we show the transition, δ, of the automaton instance (δ = {}
if ñ does not take any transition, i.e., the event is ignored), the current state and match
buffer of ñ, and the transition graph. The black node represents the current state of
ñ before taking the transition, thick edges represent the transitions that ñ takes, and
gray nodes represent states which ñ traversed before. For example, in Figure 4.6(e)
the automaton instance is in state {c, d}, and input event e5 triggers transition δ =
({c, d}, p,Θ11). The transition moves the automaton instance to state {c, p, d} and
adds the binding p/〈e5〉 to the match buffer β.
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qc = ∅
β= {}

{
ñ

(a) Create new instance
ñ

qc = {c}
β= {c/〈e1〉}

{
ñ

δ = {(∅, c,Θ1)}

(b) Read e1, match starts

qc = {c}
β= {c/〈e1〉}

{
ñ

δ = {}

(c) Read e2, ignored

qc = {c, d}
β= {c/〈e1〉, d/〈e3〉}

{
ñ

δ = {({c}, d,Θ4)}

(d) Read e3, matched

qc = {c, d, p}
β= {c/〈e1〉, d/〈e3〉, p/〈e5〉}

{
ñ

δ = {({c, d}, p,Θ11)}

(e) Read e5, matched

qc = {c, d, p}
β= {c/〈e1〉, d/〈e3〉, p/〈e5, e10〉}

{
ñ

δ = {({c, d, p}, p,Θ16)}

(f) Read e10, repetition matched

qc = {c, d, p, b}
β= {c/〈e1〉, d/〈e3〉, p/〈e5, e10〉, b/〈e12〉}

{
ñ

δ = {({c, d, p}, b,Θ17)}

(g) Read e12, accepting state reached

Figure 4.6: Execution of the SES Automaton for P1 = (〈{c, p+, d}, {b}〉,Θ, 15 d).

4.5 Algorithm

In this section, we describe two algorithms that together execute a SES automaton. The
first algorithm fills the match window with the events that occur within duration τ . The
second algorithm applies the SES automaton on the match window. To simplify the
notation in the algorithms, we define the union of two sets of bindings. The union of
two sets of bindings is denoted with the symbol ] and has the following semantics:
{vi/~ei, vj/~ej} ] {vi/~el,vk/~ek} = {vi/〈~ei ∪ ~el〉, vj/~ej , vk/~ek}.

Algorithm 1 shows function Match, which has two input parameters: a pattern P
and an event stream E. The function returns all matches of P in E according to the
skip-till-next-match event selection strategy. First, P is translated into a SES automaton
N . Then, the algorithm iterates over all input events, e ∈ E, and feeds them into the
match window W , which — once it is filled up — is passed to algorithm SESExec to



36 Chapter 4. Automaton-based Evaluation

compute matches. Hence, before the current input event e can be inserted in the match
window W , the algorithm needs to ensure that W does not exceed τ after the event is
added. If e’s distance from the first event in W exceeds τ , function SESExec is called
that executes the SES automaton N on the match window W . Finally, after all events
in stream E are read, the remaining events in W are processed by the SES automaton.

Algorithm 1: Match(P,E)

Input: pattern P = (〈B1, . . . , Bk〉,Θ, τ), event stream E
Output: set of matches

1 Translate P into N = (Q,∆, qs, qf );
2 R← ∅;
3 W ← empty match window;
4 foreach e ∈ E ordered by T do
5 while |W | > 0 and e.T −W [1].T > τ do
6 R← R ∪ SESExec(N,W );
7 dequeue(W );

8 enqueue(W, e);

9 while |W | > 0 do
10 R← R ∪ SESExec(N,W );
11 dequeue(W );

12 return R;

Algorithm 2 shows function SESExec, which takes as input parameters an automa-
ton N , and a match window W , and returns the set of matches that start with the first
event in W . First, the algorithm starts an automaton instance in the start state, qs, with
an empty match buffer β, and adds it to the set of automaton instances Ω. Then, the
algorithm iterates over all events e ∈ W and all automaton instances. For each au-
tomaton instance, the algorithm iterates over all outgoing transitions, δ ∈ ∆, from the
current state, qc. In each iteration, e is bound to variables v in the transition and stored
in β′ together with the current buffer. Next, Θδ is tested with β′. If β′ satisfies Θδ, an
automaton instance (q ∪ {v}, β′) is created. If β′ satisfies the transition conditions of
several transitions, nondeterminism arises, and several new automaton instances branch
from ñ. If none of the transitions fires (Ωδ = ∅) and the automaton instance ñ is not in
the start state, the event e is ignored. Finally, after all events in W are read, the match
buffers of the automaton instances in the accepting state are returned as matches.

4.6 Complexity Analysis

In this section, we analyze the runtime complexity of the algorithm Match, i.e., the
execution of a SES automaton N for a pattern P with an event stream E as input. The
runtime complexity of Match predominantly depends on the number of input events in
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Algorithm 2: SESExec(N,W )

Input: SES automaton N = (Q,∆, qs, qf ), match window W
Output: set of matches

1 R← ∅;
2 Ω← {(qs, ∅)};
3 foreach e ∈W ordered by T do
4 foreach (qc, β) ∈ Ω do
5 Ωδ ← ∅;
6 foreach δ = (q, v,Θδ) ∈ ∆ such that q = qc do
7 β′ ← β ] {v/〈e〉};
8 if β′ satisfies Θδ then
9 Ωδ ← Ωδ ∪ {(q ∪ {v}, β′)};

10 if Ωδ = ∅ ∧ qc 6= qs then
11 Ωδ ← {(qc, β)};
12 Ω← Ω ∪ Ωδ;

13 foreach (qc, β) ∈ Ω do
14 if qc = qf then
15 R← R ∪ {β};

16 return R;

streamE (Algorithm 1, line 4), the number of events in match windowW (Algorithm 2,
line 3), and the number of automaton instances in Ω that process each event in W
(Algorithm 2, line 4). Automaton instances in Ω are created in the start state of the SES
automaton (Algorithm 2, line 2) and if nondeterminism occurs. This gives a runtime
complexity for Match of

O(|E| · |Ŵ | · |Ω̂|),

where |Ŵ | is the maximal number of events in a match window with duration τ sliding
over E event-by-event, and |Ω̂| is the maximal number of automaton instances during
the processing of a match window. Determining |E| and |Ŵ | can be done by analyzing
the input stream E, whereas for |Ω̂| we can provide an upper bound. In the remaining
of this section, we analyse the upper bound of |Ω̂|. We begin with the definition of
mutually exclusive variables.

Definition 4.4. (Mutually Exclusive Variables) Let (〈B1, . . . , Bk〉,Θ, τ) be a pattern
and e be an event. Two variables v, w in P are mutually exclusive if and only if

∃v.A φ C1, w.A φ C2 ∈ Θ (v 6= w ∧ @e ((e.A φ C1) and (e.A φ C2) are satisfied )).

In other words, two variables in a pattern are mutually exclusive, if there does not
exist an event that satisfies all properties of both variables.
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Example 4.7. In our running example, all variables are pairwise mutually exclusive,
since Θ contains the conditions c.L = ’C’, d.L = ’D’, p.L = ’P’, and b.L = ’B’,
which are all of the form v.A φ C, and there does not exist an event that satisfies two
of these conditions.

Lemma 4.1. Let (〈B1, . . . , Bk〉,Θ, τ) be a pattern and N be the corresponding SES
automaton. If all variables in P are pairwise mutually exclusive, nondeterminism can-
not occur in any state during the execution of N .

Proof. If all variables in a pattern P are pairwise mutually exclusive, Θ contains a
condition of the form v.A φ C for each variable v that cannot be satisfied by the same
event. In the corresponding SES automaton N , each two transitions, δ = (q, v,Θδ)
and δ′ = (q, w,Θ′δ), that leave a state q have in their transition condition, Θδ and Θ′δ,
conditions of the form v.A φ C1 and w.A φ C2, that cannot be satisfied by the same
event. Therefore, the transition condition Θδ and Θ′δ cannot be satisfied contemporarily
for the same input event, which excludes nondeterminism.

The following analysis consists of two parts. In the first part, we consider a SES
automaton Ni corresponding to one set Bi from pattern P = (〈B1, . . . , Bk〉,Θ, τ) in
isolation. We distinguish four cases and provide for each case an upper bound for the
cardinality of the automaton instances, |Ω̂|, that process the events of a match window
W . In the second part, we describe how to compute the upper bound of |Ω̂| of the SES
automaton N for the complete pattern P based on the upper bounds from the first part.

4.6.1 Analysis of Single Set

For the first part, we assume a SES automaton, Ni, translated from a single set, Bi
in P . To simulate nondeterminism that may occur due to the concatenation of the
automata Ni and Ni+1, we assume a special transition with an empty variable ε and an
empty transition condition (qf i, ε, ∅), leaving the accepting state qf i of Ni and leading
to a special state qf i ∪ {ε}. The special transition is always taken by an automaton
instance. In other words, the special transition and the special node simulate variables
from Bi+1 that are not pairwise mutually exclusive with variables in Bi, i.e., an event
might contemporarily match variables from Bi and Bi+1. Transition (qf i, ε, ∅) and
node {ε} do not belong to Ni and are only used for the complexity analysis.

Case 1

The variables in set Bi are pairwise mutually exclusive, and Bi does not contain any
quantified variable, v+.

Theorem 4.1. If all variables in Bi are pairwise mutually exclusive, and Bi does not
contain any quantified variable, v+, the upper bound of |Ω̂| is O(1).
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Proof. According to Lemma 4.1, if the variables in Bi are pairwise mutually exclu-
sive, nondeterminism cannot occur in Ni. Also the concatenation of automaton Ni to
automaton Ni+1 simulated by the special transition (qf i, ε, ∅) does not introduce any
nondeterminism, since (qf i, ε, ∅) is the only transition that leaves the accepting state
qf i. Consequently, the number of automaton instances in Ω̂ stays constant which leads
to a constant upper bound O(1).

Figure 4.7 illustrates the SES automaton Ni that is translated from our assumed set
Bi with |Bi| = 3. Special transition and special node are drawn with dashed lines. The
figure shows that for Case 1 only one automaton instance traverses the automaton. The
path from the start state to the accepting state was chosen arbitrarily; any other path
would be valid as well.

ñ ñ

ñ
ñ

ñ

Figure 4.7: Case 1.

Case 2

The variables in set Bi are pairwise mutually exclusive, and Bi contains m quantified
variables, v+.

Theorem 4.2. If all variables in Bi are pairwise mutually exclusive, and Bi contains
m quantified variable, v+, the upper bound of |Ω̂| is O(|Ŵ |).

Proof. According to Lemma 4.1, if the variables in Bi are pairwise mutually exclu-
sive, nondeterminism cannot occur in Ni. However, with quantified variables in Bi
nondeterminism can occur due to the concatenation of automaton Ni with automaton
Ni+1. The accepting state qf i has m transitions that loop. In the worst case an au-
tomaton instance that reads an event e in qf i takes one looping transition (e matches a
quantified variable in Bi) and the special transition (qf i, ε, ∅) (e matches a variable in
Bi+1). Hence, at most one automaton instance branches from the original automaton
instance per event read. Thus, assuming that |Ŵ | is the maximal number of events in a
match window within an event stream E, the number of automaton instances in Ω̂ has
an upper bound O(|Ŵ |).

Figure 4.8 illustrates the SES automaton Ni that is translated from our assumed
set Bi with |Bi| = 3 and one quantified variable. It shows that for Case 2 only one
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automaton instance traverses the automaton, but then at the accepting state |W | au-
tomaton instances branch from the original instance due to nondeterminism introduced
by the concatenation of automata simulated by transition (qf i, ε, ∅). As in the previous
case, the path from the start state to the accepting state was chosen arbitrarily; any other
path would be valid as well.

ñ ñ

ñ
ñ

ñ1, . . . , ñ|W |

ñ

Figure 4.8: Case 2.

Case 3

The variables in set Bi are not pairwise mutually exclusive, and Bi does not contain
any quantified variable, v+.

Theorem 4.3. If the variables in Bi are not pairwise mutually exclusive and Bi does
not contain any quantified variable, the upper bound of |Ω̂| is O(|Bi|!).

Proof. Since variables v in Bi are not pairwise mutually exclusive, Lemma 4.1 does
not apply and nondeterminism might occur during the execution of Ni. In the worst
case, each automaton instance that reaches a state q ∈ Q branches to a number of
automaton instances equal to the number of transitions that leave q. If t is the number
of transitions that leave q, t − 1 new automaton instances are created, whereas one
transition is taken by the original automaton instance. Thus, there exists an automaton
instance for each path from the start state to the accepting state. The number of paths
in a SES automaton translated from a pattern with one set Bi is |Bi|!, which gives an
upper bound for |Ω̂| of O(|Bi|!).

Figure 4.9 shows the SES automaton translated from our assumed set Bi with
|Bi| = 3. It illustrates how automaton instances branch and which path each one
takes to reach the accepting state. Each path in N is used by one automaton instance
ñi.

Case 4

The variables in Bi are not pairwise mutually exclusive, and Bi contains quantified
variables.
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ñ1
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ñ3

ñ1

ñ4

ñ2

ñ5

ñ3

ñ6

ñ1, ñ2
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ñ5, ñ6

ñ1, . . . , ñ6

Figure 4.9: Case 3.

Theorem 4.4. If the variables inBi are not pairwise mutually exclusive andBi contains
m quantified variables, v+, the upper bound of |Ω̂| isO((|Bi| − 1)! · |Ŵ ||Bi|) m = 1,

O(m · (|Bi| − 1)! ·m|Ŵ |·|Bi|) m > 1.

Proof. Since the variables in Bi are not pairwise mutually exclusive, Lemma 4.1 does
not apply and nondeterminism might occur during the execution of Ni. Further, with
quantified variables in Bi, Ni has transitions that loop at a state, i.e., source state q and
target state q ∪ {v} of the transition are the same.

As in Case 3, each automaton instance that reaches a state q might branch to a
number of automaton instances that is equal to the number of transitions that leave q.
However, if there is a transition that loops at q, the automaton instance that takes this
transition returns immediately to q and might cause a branching of automaton instances
at q when the next input event is consumed.

Let rout(q, xq) be a function that returns the number of automaton instances that
originate from one automaton instance and that leave q through a transition that does
not loop at q. Parameter xq is the number of events that are consumed by an automaton
instance at q. Function rout(q, xq) differs depending on the number of transitions that
loop at q:

• rout(q, xq) = 1 for a state without any transition that loops;

• rout(q, xq) = xq for a state with m = 1 transition that loops; and

• rout(q, xq) = mxq for a state with m > 1 transitions that loop.

On a path from the start state to the accepting state, the maximal number of au-
tomaton instances that are created from one automaton instance and that leave a state
is

|Ω|pathj =
∏

q∈pathj

rout(q, xq).
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The maximal number of automaton instances created on all paths is then

|Ω|out =

|Bi|!∑
j=1

|Ω|pathj .

The start state, ∅, is the first state of each path through Ni. Function rout(∅, x∅) =
1 because ∅ does not contain any quantified variable, and hence no transition loops
at state ∅. The paths that match a quantified variable in the first transition contain
the largest number of states with transitions that loop. The number of such paths is
m · (|Bi| − 1)! because m paths start with a quantified variable, and after a quantified
variable is matched in the first transition, there are (|Bi| − 1)! paths to the accepting
state. The upper bound of |Ω̂| with xq ≤ |Ŵ | and m quantified variables is thereforeO((|Bi| − 1)! · |Ŵ ||Bi|) m = 1,

O(m · (|Bi| − 1)! ·m|Ŵ |·|Bi|) m > 1.

Figure 4.10 shows the SES automaton translated from our assumed set Bi with
|Bi| = 3 and one quantified variable. The labels on the transitions are the result of the
functions rout, i.e., the number of automaton instances that leave state q. Thick edges
emphasize paths which contain the largest number of states with looping transitions.
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Figure 4.10: Case 4.

4.6.2 Analysis of Complete Pattern

Until now, we considered SES automata for a set Bi from a pattern P in isolation.
Below, we describe how to compute the upper bound of |Ŵ | for a pattern P =
(〈B1, . . . , Bk〉,Θ, τ) with k sets, k > 1.

The SES automaton that corresponds to set Bi starts its execution with the au-
tomaton instances created by the SES automaton that corresponds to the previous set
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Bi−1. Thus, for a pattern P with k sets, the upper bound of the number of automaton
instances, |Ω̂|, created by the corresponding SES automaton N is

O(|Ω̂|1 · · · |Ω̂|k),

where |Ω̂|i is the upper bound for the set Bi in P and is determined according to
Cases 1–4. If all variables in all sets Bi in P are pairwise mutually exclusive the
upper bound for |Ω̂| can be reduced to

O(1),

because in the complete SES automaton N nondeterminism cannot occur as stated in
Lemma 4.1.

4.7 Experiments

In this section, we report the results of an empirical evaluation using real-world
data. The experiments have two purposes. The first purpose is to compare the SES
automaton-based algorithm to a brute force approach that matches sequences of sets of
events by using a set of automata, each of which matches a sequence of single events.
The second purpose is to evaluate the results of the complexity analysis in Section 4.6.

The two hypotheses corresponding to our purposes are the following. First, the SES
automaton algorithm is more efficient in terms of runtime than the brute force approach.
Second, the runtime is upper-bounded according to the theorems in Section 4.6.

4.7.1 Setup and Data

For the experiments, we implemented the automaton-based evaluation algorithm and
the brute force approach in C. The relation with the input events is stored in an Oracle
database, Enterprise Edition 11.1, which is accessed over the OCI API. The experi-
ments were performed on a PC with four AMD Opteron 285 processors with 1.8 GHz
and 16 GB memory, on which a 64-bit Linux 2.6.32 is installed.

We use two different real-world data sets. The Onco data set contains 341055
chemotherapy events from the Department of Hematology at the Hospital Meran-
Merano. The NYSE data set contains 1M share trades in stock markets [49] over 34
hours.

4.7.2 Brute Force Algorithm

We compare our SES automaton that uses one automaton to match sequences of sets of
events with a brute force algorithm that uses a set of automata, each of which matches
a sequence of single events. The brute force algorithm generates all possible sequences
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(orderings) of variables of a set in the pattern, creates a SES automaton for each of
these sequences, and executes all automata over the event stream.

Let P be a pattern with sets 〈B1, . . . , Bn〉, where all sets contain only variables
without a plus quantifier. A sequence of all variables in P is a concatenation of one
permutation of each set Bi. The number of all possible sequences of variables is
|B1|! · |B2|! · · · |Bn|!. The brute force algorithm creates for each of these sequences an
automaton and executes all automata in parallel, i.e., iterates for each match window
over these automata. By specifying each variable as a set with exactly one variable, we
can use SES automata. The brute force algorithm essentially corresponds to straightfor-
ward extensions of the automata in [4, 28, 31]. We do not consider any optimizations
of the automata described in these papers, rather our aim is to compare the efficiency
of the plain automata to solve SES pattern matching.

Example 4.8. Consider a slight modification of the pattern in our running example,
where all variables are variables without a plus quantifier, i.e., (〈{c, p, d}, {b}〉, Θ,
15 d). The possible sequences of variables are given as follows:

P1 = 〈c, d, p, b〉
P2 = 〈c, p, c, b〉
P3 = 〈d, c, p, b〉
P4 = 〈d, p, c, b〉
P5 = 〈p, c, d, b〉
P6 = 〈p, d, c, b〉

Figure 4.11 shows the corresponding SES automaton that is created by our evaluation
algorithm and the set of SES automata that are created by the brute force algorithm.

4.7.3 SES Automaton vs. Brute Force

The purpose of this experiment is to compare the SES automaton algorithm (ses) to the
brute force (bf) algorithm. Our hypothesis is that the runtime of the SES automaton
algorithm is less than the runtime of the brute force algorithm, and that the difference
in runtime between the two algorithms is increasing with the number of the variables
in a set in the pattern.

We use the following two patterns:

• P1 = (〈{v1, v2, v3, v4, v5, v6}〉,Θ1, τ)

• P2 = (〈{v1, v2, v3, v4, v5, v6}〉,Θ2, τ)

The conditions in Θ1 specify that each variable vi matches distinct types of treatment
event of the same patient for the Onco data and trades of distinct shares for the NYSE
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Figure 4.11: SES Automaton and Set of Automata Created by the Brute Force Algo-
rithm.

data. Thus, all variables are pairwise mutually exclusive. The conditions in Θ2 specify
that all variables match the same type of treatment events for the Onco data and trades
of the same share for the NYSE data. Thus, all variables are not pairwise mutually
exclusive. The maximal duration τ is 11 days for Onco and 1 s for NYSE.

We experiment with two parameters. First, we vary the number of variables in one
set from one to six in steps of one, i.e., {v1}, {v1, v2}, . . . , {v1, v2, v3, v4, v5, v6}.
Second, while using all six variables, we vary the number of sets from one to six in
steps of one, i.e.,

• 〈{v1, v2, v3, v4, v5, v6}〉

• 〈{v1, v2, v3}, {v4, v5, v6}〉
...

• 〈{v1}, {v2}, {v3}, {v4}, {v5}, {v6}〉

The measured parameter is the runtime of the algorithm.
Figure 4.12 shows the results of the experiment. With pattern P1, the SES automa-

ton algorithm is up to three orders of magnitude faster than the brute force algorithm.
The reason is that when the SES automaton algorithm creates one automaton instance
for an event that matches a variable in the first set B1 in P1, the brute force algorithm
creates (|B1| − 1)! automaton instances because (|B1| − 1)! automata start with the
same variable (see Figure 4.11(b)). Since all variables are pairwise mutually exclusive,
nondeterminism does not occur in both algorithms, hence automaton instances never
branch during the execution. The differences in the number of automaton instances
started can also be seen in the trends of the graphs for the SES automaton algorithm
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Figure 4.12: SES vs. Brute Force

and the brute force algorithm with pattern P1. The graphs for the SES automaton al-
gorithm have a roughly constant trend for Onco and NYSE whereas the graphs for the
brute force algorithm have an (hyper)exponential trend. Notice the logarithmic scale
on the ordinate.

With P2, the SES automaton algorithm needs up to one order of magnitude less
runtime than the brute force algorithm. The graphs for both algorithms show a roughly
(hyper)exponential trend. The SES automaton algorithm creates |B1| automaton in-
stances when it consumes an event that matches all variables in B1. Afterwards, if
other events that match all variables in B1 are encountered the number increases to
maximal |B1|! due to nondeterminism (cf. Theorem 4.3). The brute force algorithm,
instead, creates |B1|! automaton instances at once and keeps this number of instances
until all events in the match window are processed, independently of other events that
match all variables in B1.

To summarize, the SES automaton algorithm creates automaton instances when
they are needed and the brute force algorithm creates possibly needed automaton in-
stances in advance duplicating execution steps.
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4.7.4 Varying the Size of the Match Window

The purpose of this experiment is to validate the upper bound of the runtime

O(|E| · |Ŵ | · |Ω̂|)

and the upper bounds for |Ω̂| depending on the size of the match windowW . The upper
bounds for |Ω̂| are

• O(1) for pairwise mutually exclusive variables without plus (Theorem 4.1),

• O(|Ŵ |) for pairwise mutually exclusive variables with plus (Theorem 4.2),

• O(|B1|!) for not pairwise mutually exclusive variables without plus (Theo-
rem 4.3), and

•

O((|B1| − 1)! · |Ŵ ||B1|) m = 1,

O(m · (|B1| − 1)! ·m|Ŵ |·|B1|) m > 1
for not pairwise mutually exclusive

variables with plus (Theorem 4.4).

Our hypothesis is that the runtime is upper-bounded as stated in the theorems.
We use the following five patterns:

• P1 = (〈B1 = {v1, v2, v3}, B2 = {v4, v5}〉,Θ1, τ)

• P2 = (〈B1 = {v+
1 , v2, v3}, B2 = {v4, v5}〉,Θ1, τ)

• P3 = (〈B1 = {v+
1 , v

+
2 , v3}, B2 = {v4, v5}〉,Θ1, τ)

• P4 = (〈B1 = {v1, v2, v3}, B2 = {v4, v5}〉,Θ2, τ)

• P5 = (〈B1 = {v+
1 , v2, v3}, B2 = {v4, v5}〉,Θ2, τ)

With the Onco data, variables v4 and v5 in all patterns match distinct blood labo-
ratory examinations, duration τ specifies a maximal duration of 5 days and all events
matched refer to the same patient. In patterns P1, P2 and P3, variables v1, v2, v3 match
distinct types of medication administrations, hence the variables are not pairwise mu-
tually exclusive. Variables v1, v2, v3 in patterns P4 and P5 match the same type of
medication administration, so that the variables are not pairwise mutually exclusive.

With the NYSE data, all patterns specify a maximal duration τ of 1 s. In patterns
P1, P2 and P3, all variables match trades of distinct shares, and hence all variables are
pairwise mutually exclusive. In patterns P4 and P5, variables v1, v2, v3 match trades of
the same share, so that v1, v2, v3 are not pairwise mutually exclusive.

With both data sets, patterns P1, P2 and P3 validate Theorem 4.1 and 4.2, and P4

and P5 validate Theorems 4.3 and 4.4.
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To obtain event streams with increasing amounts of events in match windows, we
generated ten data sets from the original Onco and NYSE data sets by copying the
events that match the variables of the patterns above multiple times. For example,
starting with O1 that represents the original Onco data set, to obtain O2 we copied the
events once, for O3 we copied them twice, etc. To keep the sizes of the event streams
equal, we trimmed the event streams to the size of the original stream by removing the
superfluous events at the tail. Table 4.1 shows the generated data sets with the maximal
size of the match window |Ŵ | for each of the Onco and NYSE event streams.

Onco |Ŵ | NYSE |Ŵ |
O1 2602 N1 984
O2 2946 N2 1225
O3 3290 N3 1627
O4 3634 N4 1945
O5 3978 N5 2431
O6 4322 N6 2917
O7 4666 N7 3403
O8 5010 N8 3889
O9 5354 N9 4375
O10 5698 N10 4861

Table 4.1: Data Sets with Different Match Window Sizes.

We vary the maximal window size, |Ŵ |, by using the data sets O1 to O10 and N1

to N10. The measured parameter is the runtime of the SES automaton algorithm.
The graphs in Figure 4.13 show the runtime of the SES automaton algorithm de-

pending on the maximal window size |Ŵ |. The results for patterns P1, P2, and P3 in
Figure 4.13(a) and 4.13(c) show a linear trend of runtime with an increasing Ŵ , which
validates the runtime complexity and Theorem 4.1 and 4.2. For patterns P4 and P5,
the graphs in Figure 4.13(b) and 4.13(d) show a polynomial trend (logarithmic scale of
ordinate), which validates Theorem 4.3 and Theorem 4.4.

4.7.5 Varying the Size of the Event Stream

The purpose of this experiment is to show how the runtime of the SES automaton
depends on the size of the event stream. Our hypothesis is that the runtime depends
linearly from the size of the event stream.

We use the same patterns as in the previous experiment. We vary the size of event
streams in ten steps: from 34105 to 341050 events for Onco and from 100K to 1M
events for NYSE. For each step we measure the runtime of the SES automaton algo-
rithm.

The graphs in Figure 4.14 show the runtime depending on the data size, |E|. The
results show for all patterns roughly linear trends which confirm our hypothesis.
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Figure 4.13: Varying the Size of the Match Window.
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4.8 Summary

In this chapter, we proposed an automaton-based evaluation algorithm for SES pattern
matching. We introduced SES automata and described their construction for a pattern
as well as their execution with an input event stream. We provided a detailed analysis of
the runtime complexity of the SES automaton algorithm for different types of patterns.
The runtime depends on the number of variables and the amount of Kleene plus in the
pattern as well as on the number of events in a match window. Regarding the size of
the event stream, the runtime is linear. We conducted an experimental evaluation study
using real-world data. The results show that the SES automaton algorithm clearly out-
performs a brute force approach, which is based on existing techniques. Furthermore,
the results validate the complexity analysis.



CHAPTER 5

Two-Phase Evaluation Strategy

5.1 Introduction

In this chapter, we propose a novel two-phase evaluation strategy for event pattern
matching that consists of a preprocessing phase and a pattern matching phase. The
two-phase evaluation strategy is general enough to be applicable with SES automata
described in Chapter 4 as well as with other event pattern matching algorithms as we
will show in Section 5.4.

Example 5.1. As a running example for this chapter, we consider the event stream
Chemo shown in Figure 5.1 that we already used in the previous chapters in combination
with the following query:

Q2: For each patient, find the events that match (in any order) one ad-
ministration of Cyclophosphamide (C) and one or more administrations of
Prednisone (P) with monotonically increasing values, followed by a single
blood count measurement (B); all events must occur within fifteen days.

The corresponding SES pattern for Query Q2 is

P2 = (〈{c, p+}, {b}〉,Θ, 15 d).

In the preprocessing phase, incoming events are buffered in the match window,
where different pruning techniques, such as filtering, partitioning, and testing for nec-
essary match conditions are applied. The aim of the comparably cheap preprocessing
is to reduce the number of input events that need to be processed in the much more
expensive pattern matching phase.

51
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Chemo
PID L V U T

e1 1 C 1672.5 mg 3 Jul
e2 1 B 7100 1/µl 4 Jul
e3 1 P 111.5 mg 5 Jul
e4 2 B 10100 1/µl 6 Jul
e5 1 D 84 mgl 7 Jul
e6 2 P 88 mg 8 Jul
e7 2 D 84 mgl 9 Jul
e8 2 C 1320 mg 10 Jul
e9 2 P 98 mg 11 Jul
e10 1 P 116.5 mg 12 Jul
e11 2 P 88 mg 15 Jul
e12 1 B 3400 1/µl 17 Jul
e13 2 B 4000 1/µl 18 Jul
e14 2 B 4900 1/µl 19 Jul
e15 1 B 3000 1/µl 22 Jul

Figure 5.1: Events of Chemotherapy Treatments.

First, to eliminate irrelevant events that will never participate in a match we pro-
pose a filtering mechanism, which can be done very efficiently. Filtering out irrelevant
events is particularly effective for the skip-till-next-match and skip-till-any-match event
selection strategies that both allow to skip events [4].

Second, a critical aspect of current solutions is that each input event is immediately
processed by the pattern matching algorithm. For example, in automaton-based algo-
rithms, each event creates a new automaton instance since each event can potentially
start a match. This leads to a large number of automaton instances with a significant
amount of state information to be maintained. A first step to improve this is to start an
automaton only when it leaves the start state [4]. We achieve a substantial reduction of
the number of automata by buffering input events in the match window, W , and lazily
instantiating an automaton (or equivalently call an event pattern matching algorithmA)
only when the buffered events satisfy a set of necessary match conditions. We adopt
a summary statistics based on event counting to efficiently check the necessary match
conditions.

Third, although filtering removes irrelevant events, the match window might still
contain events that cannot be part of any match starting at the first event in W . For
instance, in our example all events in a match must be of the same patient. Thus, all
events in W with a patient ID different from the one of the first event do not need
to be forwarded to A. We achieve this by partitioning incoming events into different
windows, based on equality constraints that are derived from the query specification.

In the second phase, an event pattern matching algorithm, A, is called for each
match window that satisfies the necessary match conditions. This two-phase strategy
with a lazy call of the matching algorithm significantly reduces the number of events
that need to be processed by A and the number of calls to A. While pattern matching
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algorithms tend to be expensive in terms of runtime and memory complexity, prepro-
cessing can be done very efficiently.

The rest of this chapter is organized as follows. In Section 5.2 we describe the lazy
evaluation strategy that first buffers events in a match window and then applies pruning
techniques on the match window. Section 5.3 presents an algorithm that implements
the two-phase evaluation strategy. In Section 5.4, we report an empirical evaluation
using real-world data. Section 5.5 concludes the chapter with a summary.

5.2 Lazy Evaluation using Match Windows

In this section we propose a lazy evaluation strategy for event pattern matching. Instead
of eagerly matching incoming events, we advocate a two-phase strategy composed of
a preprocessing step and a pattern matching step (see Figure 5.2). First, incoming
events are buffered in a match window, which allows to apply pruning techniques on
the window, such as filtering, partitioning, and testing for necessary match conditions.
Second, an event pattern matching algorithm, A, is called that needs to consider only
the events in the match window. The preprocessing phase aims at reducing the number
of events that need to be processed by A.

Events Filter Partition Test Necessary Match Conds
...

Test Necessary Match Conds

Test Necessary Match Conds

EPM Algorithm
...

EPM Algorithm

EPM Algorithm

Matches

Pre-processing Pattern Matching

Figure 5.2: Two-phase Evaluation Strategy.

The match window, which buffers incoming events and aids a lazy call of A is
defined in Definition 4.3 in Chapter 4. For convenience, we replicate Example 4.5.

Example 5.2. Figure 5.3 illustrates two match windows, W1 and W2, for the event
stream Chemo and a duration of fifteen days. The match windows start at event e1 and
e2, respectively. Both match windows contain 13 events, each with a maximal time
span of fifteen days between the first and the last event.

A match window W = 〈e1, . . . , en〉 is a buffer that collects all incoming events
that need to be considered for a match that starts at e1. This includes all events until
the time span between the first event e1 and the current input event exceeds τ . At this
point an event pattern matching algorithm is called to compute the matches that start at
e1. Afterwards, e1 is removed from W .
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E = e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, . . .

W1

W2

Figure 5.3: Match Windows for Chemo and τ = 15 d.

Definition 5.1. (Event Pattern Matching Algorithm) Let W = 〈e1, . . . , en〉 be a match
window for a pattern P . An event pattern matching algorithm, A(P,W ), takes P and
W as input and returns the set of matches that start at e1.

A can be any event pattern matching algorithm that returns the matches that start
at the first event e1 in the window. To make the discussion more concrete, we assume
the automaton-based SES pattern matching algorithm described in Chapter 4. In the
evaluation section we apply our framework also to the ZStream [46] event processing
system, which is based on the use of join trees rather than automata.

Example 5.3. Consider pattern P2 and the match windows W1 and W2 in Figure 5.3.
A(P2,W1) returns a single match {c/〈e1〉, p/〈e3, e10〉, b/〈e12〉} that starts at e1. In
contrast,A(P2,W2) for the second match window returns the empty set since no match
starts at e2.

An eager instantiation of automata for each incoming event might lead to a large
number of concurrent instances in memory, whereas a lazy instantiation strategy re-
duces this number.

5.2.1 Filtered Match Windows

While the lazy initialization of automata reduces the number of concurrently active
automaton instances, filtering aims at reducing the number of events that need to be
processed by A. For this we analyse each incoming event for the properties specified
in the pattern.

Not all events in the match window are candidates for matching a variable in the
pattern query. Events that cannot contribute to any match can be filtered out before they
are passed to A. The following theorem specifies a condition that must be satisfied by
each event in a match.

Theorem 5.1. Let (〈B1, . . . , Bk〉,Θ, τ) be a pattern with variables v1, . . . , vm,
Θp
v1 , . . . ,Θ

p
vm ⊆ Θ be the properties of the variables, and γ be a match of P in E.

Each event e in γ satisfies Θp
v1(e) ∨ · · · ∨Θp

vm(e).

Proof. The constraints Θ consist of relationships and properties, i.e., Θ = Θr ∪ Θp.
The properties can further be partitioned by variable, i.e., Θp = Θp

v1 ∪ · · · ∪ Θp
vm . By

Definition 3.2, a match γ satisfies I(Θγ). This can be transformed into I(Θp
v1γ)∧· · ·∧
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I(Θp
vmγ) ∧ I(Θrγ). Since I(Θp

viγ) ≡ I(Θp
vi{vi/〈e1, . . . , en〉}) ≡ I(Θp

vi{vi/〈e1〉}) ∧
· · · ∧ I(Θp

vi{vi/〈en〉}), each event in a match satisfies all properties of the variable it is
bound to.

From Theorem 5.1 we can conclude that an event e ∈ E can only be part of a match
if Θp

v1(e) ∨ · · · ∨ Θp
vm(e) is satisfied for some vi. Therefore, we can filter out events

that do not satisfy this condition, which leads to a reduction of the events that must be
processed by algorithm A. Notice that only a subset of Θ needs to be checked.

Example 5.4. Consider pattern P2 = (〈{c, p+}, {b}〉,Θ, 15 d) and match window W1

in Figure 5.3. All events ei that contribute to a match must satisfy Θp
c (ei) ∨ Θp

p(ei) ∨
Θp
b (ei), which is equivalent to ei.L = ’C’ ∨ ei.L = ’P’ ∨ ei.L = ’B’. Referring

to relation Chemo, we can easily verify that all events except e5 and e7 satisfy this
condition. Thus, e5 and e7 can safely be filtered out and need not to be buffered.
W1 and W2 from Figure 5.3 become W ′1 = 〈e1, . . . , e4, e6, e8, . . . , e12〉 and W ′2 =
〈e2, . . . , e4, e6, e8, . . . , e13〉, respectively.

5.2.2 Candidate Match Windows

While filtering checks for each individual event whether it satisfies the properties of
at least one variable, here we consider all events in a match window together and for-
mulate conditions that must be satisfied for a match that starts with the first event in
the match window. Match windows that do not satisfy these conditions need not to be
passed to A.

Necessary Match Conditions

The following theorem specifies necessary conditions for a match window to contain a
match that starts at the first event.

Theorem 5.2. (Necessary Match Conditions) Let (〈B1, . . . , Bk〉,Θ, τ) be a pattern
with variables v1, . . . , vm. A match window, W = 〈e1, . . . , en〉, that contains a match
starting at e1 satisfies the following conditions:

|W | ≥ m, (5.1)

∃v ∈ B1 ( Θp
v(e1) ), (5.2)

∀v ∈ {v1, . . . , vm} ∃ei ∈W ( Θp
v(ei) ), (5.3)

∀vi ∈ Bi, vj ∈ Bi+1 ( ∃ei, ej ∈W ( Θp
vi(ei) ∧Θp

vj (ej) ∧ ei.T < ej .T ) ). (5.4)

Proof. Condition 5.1: Since a given event can only appear once in a match, W needs
to contain at least as many input events as variables in the query pattern. Condition 5.2:
By Definition 3.2, the earliest event in a match is bound to a variable in B1. Thus, the
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first event in W must satisfy the properties Θp
v of a variable v ∈ B1. Condition 5.3:

By Definition 3.2, each variable v1, . . . , vm is bound to at least one input event that
satisfies the properties Θp

vi . Hence, W must contain such an event for each variable.
Condition 5.4: By Definition 3.2, input events that are bound to variables vi, vj in
consecutive Bis need to occur in the same chronological order as the Bis in P .

Theorem 5.2 allows to selectively pass match windows to algorithm A, thereby
reducing the number of calls toA. A match window that does not satisfy the necessary
match conditions cannot contain a match that starts with the first event in the window.

Example 5.5. Consider P2 = (〈{c, p+}, {b}〉,Θ, 15 d) and match window W ′1 =
〈e1, . . . , e4, e6, e8, . . . , e12〉 after filtering out e5 and e7. W ′1 is a candidate match win-
dow since the necessary match conditions are satisfied: the cardinality of the match
window, |W ′1| = 11, is greater than the number of variables, which is 3 (Condi-
tion 5.1); event e1 satisfies all properties of c in B1 (Condition 5.2); e1, e3, and
e12 satisfy all properties of c, p, and b, respectively (Condition 5.3), and their or-
der corresponds to the order of B1 and B2 (Condition 5.4). Next, consider W ′2 =
〈e2, . . . , e4, e6, e8, . . . , e13〉, which is not a candidate match window, since e2 does
not satisfy all properties of c or p (Condition 5.2). Hence, W ′2 cannot contain a match
that starts at e2.

Summary Statistics for Match Windows

Verifying Condition 5.1 and 5.2 of the necessary match conditions is efficient and can
be done incrementally as the individual events arrive. This is not the case for Con-
dition 5.3 and 5.4, for which all events in the match window must be considered. We
maintain a summary statistics over the match window that can be updated incrementally
and allows to efficiently verify the conditions.

Definition 5.2. (Summary Statistics) Let W be a match window and P =
(〈B1, . . . , Bk〉,Θ, τ) be a pattern with variables v1, . . . , vm. A summary statistics,
S = 〈(v1, cnt1), . . . , (vm, cntm)〉, is a set of variable-counter pairs such that for each
vi ∈ Bi

cnt i =|{ ei ∈W :

Θp
vi(ei) ∧ ∀vj ∈ Bi−1∃ej ∈W ( Θp

vj (ej) ∧ ej .T < ei.T ) }|.
(5.5)

The summary statistics maintains a counter for each variable. The counter for a
variable vi ∈ Bi records the number of events in W that (1) satisfy all properties of vi
and (2) chronologically follow events in W that satisfy the properties of the variables
in the previous set Bi−1.

Example 5.6. Consider P2 = (〈{c, p+}, {b}〉,Θ, 15 d) and match window W =
〈e1, e2, e3〉. The summary statistics for W is S = 〈(c, 1), (p, 1), (b, 0)〉. Events e1
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and e3 satisfy all properties of c and p, respectively, and there is no previous set Bi−1

in P2. Although e2 satisfies all properties of variable b, its counter is zero since there is
no event in W that occurs before e2 and satisfies the properties of p.

Theorem 5.3. Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pattern with variables v1, . . . , vm,
W be a match window, and S = 〈(v1, cnt1), . . . , (vm, cntm)〉 be a summary statistics.
The necessary match conditions 5.3 and 5.4 are satisfied if cnt1 > 0∧ · · · ∧ cntm > 0.

Proof. cnt i is greater than zero if and only if there exists at least one event in the set
specified by Condition 5.5. Therefore, cnt1 > 0 ∧ · · · ∧ cntm > 0 is equivalent to

∀v ∈ B1 ∃e ∈W ( Θp
v(e) ) ∧

∀v ∈ B2, v
′ ∈ B1 ∃e, e′ ∈W ( Θp

v(e) ∧Θp
v′(e
′) ∧ e′.T < e.T )

∧ · · · ∧
∀v ∈ Bk, v′ ∈ Bk−1 ∃e, e′ ∈W ( Θp

v(e) ∧Θp
v′(e
′) ∧ e′.T < e.T ).

By applying the rule ∀x(A ∧B) ≡ ∀x(A) ∧ ∀x(A ∧B) to all quantified conjuncts we
get

∀v ∈ B1 ∃e ∈W ( Θp
v(e) ) ∧ · · · ∧ ∀v ∈ Bk ∃e ∈W ( Θp

v(e) ) ∧
∀1 < i ≤ k ( ∀v ∈ Bi, v′ ∈ Bi−1 ∃e, e′ ∈W ( Θp

v(e) ∧Θp
v′(e
′) ∧ e′.T < e.T ) ),

which corresponds to Condition 5.3 and 5.4.

The summary statistics is incrementally updated when input events enter or exitW .
When a new event e is added, the properties are evaluated. If e satisfies all properties of
a variable v ∈ Bi and the counters of all variables from the previous setBi−1 are greater
than zero (i.e., W contains a matching event for these variables), cnt i is incremented
by one. When the first event, e, is dequeued from the match window, the counter for
each variable whose properties are satisfied by e is decremented. If the counter for a
variable v ∈ Bi becomes zero, the counters of all variables in the sets Bj , j > i, are
reset to zero.

Example 5.7. Figure 5.4 shows the summary statistics for a match window W that
buffers events of patient 1. The last four columns show the fulfillment of the necessary
match conditions. Event e1 increments the counter for c. Event e2 matches b, but has
no effect on the statistics, since the counter for p is zero. After reading e5, all counters
are greater than zero, and the necessary match conditions are satisfied. Since the next
event exceeds the duration of 15 days, the pattern matching algorithm is called withW .
Next, e1 is removed from W and the summary statistics is updated. Since the counter
for c becomes zero, the counter for b is reset to zero.

The summary statistics provides an approximate solution and might produce false
positives (e.g. due to relationships between variables that are not encoded in the statis-
tics). We show experimentally that the number of match candidates can be significantly
reduced.
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Match conditions
W S (5.1) (5.2) (5.3) (5.4)
〈e1〉 〈(c, 1), (p, 0), (b, 0)〉 F T F F
〈e1, e2〉 〈(c, 1), (p, 0), (b, 0)〉 F T F F
〈e1, e2, e3〉 〈(c, 1), (p, 1), (b, 0)〉 T T T F
〈e1, e2, e3, e9〉 〈(c, 1), (p, 2), (b, 0)〉 T T T F
〈e1, e2, e3, e9, e11〉 〈(c, 1), (p, 2), (b, 1)〉 T T T T
〈e2, e3, e9, e11〉 〈(c, 0), (p, 2), (b, 0)〉 T F F F

Figure 5.4: Summary Statistics for P2 = (〈{c, p+}, {b}〉,Θ, 15 d).

5.2.3 Partitioned Match Windows

The last optimization aims to further reduce the number of events in a match window
that are processed by algorithmA. The core idea is to remove events that, while fulfill-
ing the properties of a variable, can be excluded from a match since they violate some
relationships. If all events in a match must have identical values in one or more at-
tributes, the corresponding equality relationships in Θ can be used to partition a match
window W into a set of match windows W1, . . . ,Wn.

To formalize the partitioning of match windows based on equality relationships, we
first define the transitive closure of these relationships. Let (〈B1, . . . , Bk〉,Θ, τ) be a
pattern with variables v1, . . . , vm and Θeq = {θ : θ ∈ Θ ∧ θ ≡ vi.Ai = vj .Ai} be the
set of all relationships with equality constraints over a single attribute. The transitive
closure of Θeq is defined as

Θ+
eq =

⋃
l∈N

Θl
eq ,

where Θ0
eq = Θeq and Θl

eq = {vi.Ai=vj .Ai : ∃vk((vi.Ai=vk.Ai) ∈ Θl−1
eq ∧ (vk.Ai=

vj .Ai) ∈ Θl−1
eq )}.

Definition 5.3. (Partitioned Match Windows) Let W be a match window for a pattern
(〈B1, . . . , Bk〉,Θ, τ) with variables v1, . . . , vm. Furthermore, let X = { A : ∀i, j ∈
[1,m]( ( vi.A=vj .A ) ∈ Θ+

eq ) }. The set of attributesX partitionsW intoW1, . . . ,Wn

such that for each Wi the following holds:

∀ei, ej ∈Wi ∀A ∈ X ( ei.A = ej .A ).

X is a maximal set of partitioning attributes that have to assume identical values
for all events in a match. Accordingly, all events in a partition have identical values in
the attributes X .

Example 5.8. Consider P2 = (〈{c, p+}, {b}〉,Θ, 15 d). The transitive closure of the
equality relationships is Θ+

eq = { c.PID = p.PID , c.PID = b.PID , p.PID = b.PID ,
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c.PID = c.PID , p.PID = p.PID , b.PID = b.PID }. The set of partitioning at-
tributes is X = {PID}. That is, all events in a match must have the same pa-
tient ID. Partitioning W ′1 = 〈e1, . . . , e4, e6, e8, . . . , e12〉 by PID results in two par-
titions, 〈e1, e2, e3, e10, e12〉 containing all events of patient 1 and 〈e4, e6, e8, e9, e11〉
with all events of patient 2.

Partitioning input events allows two types of optimizations. First, since each par-
tition Wi can be processed independently by algorithm A, parallel event processing is
possible. Second, after partitioning, the relationships vi.Ai = vj .Ai for all Ai ∈ X
need not to be considered anymore by A. They can be removed from Θ before calling
A to reduce conditions that need to be verified in A.

5.3 Algorithm

Algorithm 3 implements the two-phase evaluation strategy for event pattern matching
from the previous section. The input parameters are a pattern P , an event stream E,
and an event pattern matching algorithm A. The algorithm returns the set of matches.

In the initialization phase, an empty hash table H and result set R are created, and
the set X of partitioning attributes is determined, which serves as a key for the hash
table. H stores triples of the form (K,W,S), where K are values of the partitioning
attributes X , W is a match window, and S is the summary statistics over W .

The main loop iterates over all input events in chronological order. Events that do
not satisfy the properties of any variable are immediately filtered out. For events that
pass the filter, the corresponding entry in H is retrieved; if no such entry exists, a new
entry is added with key set to the values of the partitioning attributes of the current
event, an empty match window, and a summary statistics with all counters set to zero.
Before inserting the current event e inW , the algorithm ensures thatW does not exceed
τ when the event is added. If e’s distance from the first event in W exceeds τ , the
necessary match conditions are verified; if they are satisfied, algorithm A is called.
Afterwards, the first event is removed from W and the summary statistics is updated.
This step is repeated until e fits into W and can be added; the summary statistics is
updated.

After reading all input events, the remaining events in the match windows need to
be processed. As long as the necessary match conditions are satisfied, A is called and
the first event is removed.

The summary statistics can efficiently be implemented using bit vectors. Let P =
(〈B1, . . . , Bk〉,Θ, τ) be a pattern with variables v1, . . . , vm. We use a bit vector, ēi, of
length m to mask each incoming event ei. Each position in the bit vector corresponds
to a variable in P . If a bit is 1, the event satisfies all properties of the corresponding
variable; otherwise it is set to 0. Similarly, we use a bit vector, s̄, where each position
corresponds to a counter in the summary statistics. A 0 bit means that the correspond-
ing counter is greater than zero; otherwise the counter is zero. Finally, to check whether
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Algorithm 3: Match(P,E,A)

Input: pattern P = (〈B1, . . . , Bk〉,Θ, τ) with m variables, event stream E, event
pattern matching algorithm A

Output: set of matches

1 H ← ∅;
2 R← ∅;
3 Compute set X = (X1, . . . , Xk) of partitioning attributes;
4 foreach e ∈ E ordered by T do
5 if Θp

v1(e) or . . . or Θp
vm(e) then

6 K ′ ← (e.X1, . . . , e.Xk);
7 if @(K,W,S) ∈ H with K = K ′ then
8 Add (K ′, ∅, 〈(v1, 0), . . . , (vm, 0)〉) to H;

9 Let (K,W,S) be the entry in H with K = K ′;
10 while |W | > 0 and e.T −W [1].T > τ do

// match window exceeds τ with event e
11 if |W | ≥ m and ∃v ∈ B1(Θp

v(W [1])) and ∀(v, cnt) ∈ S(cnt > 0) then
12 R← R ∪ A(W,P );

13 dequeue(W );
14 Update S;

15 enqueue(W, e);
16 Update S;

17 foreach (K,W,S) ∈ H do
18 while |W | ≥ m and ∃v ∈ B1(Θp

v(W [1])) and ∀(v, cnt) ∈ S(cnt > 0) do
19 R← R ∪ A(W,P );
20 dequeue(W );
21 Update S;

22 return R;

the counters of all variables of a set Bi are greater than zero we specify a bit mask, b̄i,
for each Bi. It has all bits set to 0 except for the bits that represent the positions of the
variables in the previous set, Bi−1. Using these bit vectors in combination allows an
efficient update and querying of the summary statistics.

Example 5.9. Consider P2 = (〈{c, p+}, {b}〉,Θ, 15 d) and the events e1, e2, and e3.
Event e1 satisfies all properties of variable c, but not for p and b. The corresponding bit
vector is ē1 = 100. For the events e2 and e3 the bit vectors are, respectively, ē2 = 001

and ē3 = 010. The bit vector for the summary statistics is s̄ = 111 at the beginning
and 001 after processing e1, e2, and e3 (cf. Figure 5.4). The bit mask for set B1 is
b̄1 = 000; for B2 it is b̄2 = 110.
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5.4 Experiments

In this section, we report the results of an empirical evaluation using real-world data.
The experiments have three purposes: (1) to show the effect of the pruning techniques
for the match window on the automaton-based SES pattern matching algorithm that
finds matches that conforms to skip-till-next-match and on the join-based ZStream pat-
tern matching algorithm [46] that finds all matches (skip-till-any-match); (2) to show
the scalability of the two-phase evaluation strategy in the pattern, and (3) to show the
scalability of the two-phase evaluation strategy in the data.

5.4.1 Setup and Data

We implemented our two-phase evaluation strategy with the SES algorithm and
ZStream algorithm in C. The event stream is stored in an Oracle database, Enterprise
Edition 11.1, which is accessed over the OCI API. The experiments were performed
on a PC with four AMD Opteron 285 processors with 1.8 and 2.6 GHz and 16 GB
memory, on which a 64-bit Linux 2.6.32 is installed.

We use two different real-world data sets. The Onco data set contains 341055
chemotherapy events from the Department of Hematology at the Hospital Meran-
Merano. The NYSE data set contains 1M share trades in stock markets [49] over 34
hours.

In the experiments, we analyze the scalability by varying the number of variables,
the length of τ , and the size of the event stream. For the experiments with a varying
number of variables, we use the following two pattern queries:

• Pseq = (〈{v1}, {v2}, . . . , {vk}〉,Θ, τ)

• Pset = (〈{v1, v2, . . . , vk}〉,Θ, τ)

The number of variables varies from k = 1, . . . , 10. For each step, we randomly choose
ten distinct patterns out of all possible patterns with k variables, and we take the average
of the measured throughput. The duration τ is 10 days for the Onco data set and 20 ms
for the NYSE data set. Pseq is a sequential pattern where the matching events must
occur in the same order as the variables in the pattern. In Pset the matching events may
occur in any order.

For the experiments with a varying length of τ , we use the following patterns.

• Ponco = (〈{c, d}, {p+, r+}, {b, h}〉,Θonco, τ)

• Pnyse = (〈{a+, g+}, {i+}〉,Θnyse, τ)

Ponco roughly resembles a cycle of a chemotherapy treatment. b matches white blood
cell counts, h red blood cell counts, and the rest different medication administrations.
Partitioning is applied on the patient ID. Pnyse specifies that a, g, and i match share
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trades of Apple, Google, and IBM, respectively. The price of the Apple and Google
shares must be increasing between trades (i.e., prev(a.price) < a.price), followed by a
decrease of IBM shares (i.e., prev(i.price) > i.price). Apple and Google share trades
can occur interleaved. We vary τ from 5 days to 50 days for the Onco data set and from
10 to 100 ms for the NYSE data set.

For the experiments with a varying size of E, we use the pattern Pnyse and vary the
size of E from 100 to 1M events in steps of a factor 10.

5.4.2 Scalability in the Pattern

In this experiment, we study the scalability of our framework by varying the number
of variables and the length of τ in the pattern, respectively. Our hypothesis is that our
two-phase evaluation strategy significantly increases the throughput.

We first run the SES and ZStream algorithms with a plain match window without
any pruning techniques (baseline), and apply then filtering (f), partitioning (p), and
testing for necessary match conditions (c). The performance of the optimizations is
measured in terms of throughput increase with respect to the baseline algorithm.

Figures 5.5 and 5.6 show the factor of the throughput increase of the various prun-
ing techniques relative to the baseline algorithm. The first observation is that the match
windows achieve a significant improvement over the baseline solution, up to several
orders of magnitudes for Pset.

Second, the optimizations are more effective for SES than for ZStream. The reasons
are that ZStream implicitly filters new events when they are added to the join tree, and
it uses hash tables for the joins on equality predicates. However, filtering, partitioning
and testing for necessary conditions together still increase the throughput three to four
times.

The third observation is that for SES the optimizations are much more effective
for Pset (more than two orders of magnitude) than for Pseq. With Pset and without
any pruning techniques, every event that matches any variable starts an automaton in-
stance, yielding a large number of automaton instances, many of which do not lead to
a match. With Pseq, only events that match the first variable in the pattern start an au-
tomaton instance. The two-phase evaluation strategy has a larger potential to increase
the throughput of Pset than of Pseq.

The fourth observation is that the throughput for Ponco increases with increasing
duration τ for SES. Events in the Onco data set follow roughly a chemotherapy pro-
tocol. Individual chemotherapy treatments are shifted in time, hence the patients are
not distributed uniformly over the data. With increasing τ , events of more patients are
encountered, hence more partitions of match windows can be created. SES can fully
exploit the increasing number of partitions.
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Figure 5.5: Varying the Pattern with SES.

5.4.3 Scalability in the Data

In this experiment, we study the scalability of our framework by varying the number
of events in the input stream. Our hypothesis is that the throughput increase remains
constant with increasing size of the stream. Again, we run first the baseline SES and
ZStream algorithms on NYSE, and apply then filtering (f) and testing for necessary
match conditions (c).

Figure 5.7 shows the factor of the throughput increase relative to the baseline al-
gorithm. As expected, the throughput increase for our two-phase evaluation strategy
remains roughly constant. The reason is that neither the filtering nor the testing for
necessary match conditions depends on the length of the event stream. Notice the log-
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Figure 5.6: Varying the Pattern with ZStream.

arithmic scale on the horizontal axis.

5.5 Summary

In this chapter we presented a novel pattern matching strategy that consists of two
phases, a preprocessing phase and a pattern matching phase. In the preprocessing
phase, incoming events are buffered in a match window, which allows to apply different
pruning techniques, such as filtering, partitioning, and testing for necessary match con-
ditions, and aids a lazy evaluation of a pattern matching algorithm. Filtering eliminates
events that cannot contribute to a match from the match window. Partitioning reduces



5.5. Summary 65

0

1

2

3

4

5

6

7

8

100 1000 10000 100000 1M

F
a

c
to

r 
o

f 
T

h
ro

u
g

h
p

u
t 

In
c
re

a
s
e

|E| [# of Events]

fc
f

(a) Pnyse with SES

1

2

3

4

100 1000 10000 100000 1M

F
a

c
to

r 
o

f 
T

h
ro

u
g

h
p

u
t 

In
c
re

a
s
e

|E| [# of Events]

fc
f

(b) Pnyse with ZStream

Figure 5.7: Varying the Size of the Data.

the events in a match window for each call of the event pattern matching algorithm
and allows for parallel processing. Testing for necessary match conditions reduces
the number of calls to the event pattern matching algorithm. We conducted extensive
experiments using two real-world data sets and two existing event pattern matching al-
gorithms. The results show that our framework significantly increases the throughput
for both algorithms.





CHAPTER 6

Improving the Skipping of Noise

6.1 Introduction

In this chapter, we propose a robust skip-till-next-match event selection strategy that
improves the skipping of noise with respect to the skip-till-next-match event selection
strategy. To find all matches according to robust skip-till-next-match, we present a
backtracking mechanism that extends automaton-based event pattern matching algo-
rithms. Such an approach avoids large intermediate results.

The widely used skip-till-next-match event selection strategy skips all irrelevant
(or uninteresting [28]) events until the next relevant event is read. It has been used in
scenarios where some events in the input stream are noise to the pattern and therefore
should be ignored. Examples for application scenarios that use skip-till-next-match are
medical data analysis as presented in the previous chapters, stock market analysis [4,
29], credit card fraud detection [55] and publish/subscribe systems [28].

The skip-till-next-match event selection strategy strongly depends on how relevant
and irrelevant events are determined. In previous work, determining relevant events is
tightly bound to the greedy matching of input events. That is, only the current partial
match consisting of the events matched so far together with the corresponding con-
straints in the pattern are used to determine whether an input event is relevant or not,
and once this is determined, the decision is not revisited. In contrast, we advocate to
determine relevant events by considering all constraints in the pattern together with a
complete match. At the technical level, we implement this through an efficient back-
tracking mechanism that allows to change an event from being relevant to irrelevant.
We are motivated by the observation that in some cases an event that seems to be rel-
evant with respect to a partial match might turn out to be actually irrelevant later on

67
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Stocks
S P V T

e1 GOOG 615 100 9:32:344
e2 IBM 204 200 9:32:357
e3 GOOG 610 400 9:32:368
e4 GOOG 618 100 9:32:380
e5 GOOG 620 300 9:32:396
e6 GOOG 628 200 9:32:401
e7 GOOG 628 700 9:32:421
e8 GOOG 632 100 9:32:450...

...
...

...
...

e71 GOOG 629 200 14:15:555
e72 GOOG 645 300 14:15:572
e73 MSFT 28 100 14:15:581
e74 GOOG 632 100 14:15:592
e75 GOOG 635 700 14:15:605
e76 GOOG 638 100 14:15:613
e77 GOOG 642 600 14:15:628
e78 GOOG 635 500 14:15:640

(a) Event Stream Stocks

Price

Time

e1
e3

e4
e5

e6 e7
e8

(615, 100)

(610, 400)

(618, 100)

(620, 300)

(628, 200)

(628, 700)

(632, 100)

Price

Time

e71

e72

e74
e75

e76
e77

e78(629, 200)

(645, 300)

(632, 100)

(635, 700)

(638, 100)

(642, 600)

(635, 500)

(b) Google Stock Trades over Time (Price, Volume) and Two Matches for Q3

Figure 6.1: Stock Trade Events.

when more input events are read. We illustrate this in the following example.

Example 6.1. Consider event stream Stocks in Figure 6.1(a) that records stock trades.
The attributes represent stock symbol (S ), price per stock (P ), volume of the trade (V ),
and occurrence time (T ). For instance, event e1 represents the trade of 100 Google
stocks at a price of $615 at time 9:32:344. Figure 6.1(b) shows Google trades plotted
over time and labeled with stock price and trade volume. To analyze Google stock
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trades, consider the following pattern query:

Q3: Within a period of 100 ms, find three or more Google (GOOG) stock
trades with strictly monotonic increasing prices, followed by one Google
stock trade with volume larger than each of the price-increasing trades.

Query Q3 is formulated as SES pattern

P3 = (〈{s1}, {s2}, {s+
3 }, {s4}〉,Θ, 100 ms).

Figure 6.1(b) shows two matches for pattern P3. The first match consists of the events
e1, e4, e5, e6, and e7: e1 starts the match; e4, e5, e6 are subsequent events with strictly
increasing prices ($615 < $618 < $620 < $628); and e7 is the final event that has
a larger trade volume than e1, e4, e5, and e6 (100 < 700, 100 < 700, 300 < 700,
200 < 700). The events e2 and e3 are skipped as irrelevant and are not part of the
match: e2 is not a Google stock trade (’IBM’ 6= ’GOOG’), and e3 has a decreasing
instead of an increasing price relative to e1 ($615 > $610).

The second match consists of e71, e74, e76, and e77 with $629 < $632 < $638 and
200 < 600, 100 < 600, 100 < 600 (see Figure 6.1(b)). Events e72, e73, and e75 are
irrelevant and therefore not included in the match: though e72 has an increasing price
relative to e71 ($629 < $645), there are no events in the Stocks stream that continue
this trend to complete the match; event e73 is not a Google stock trade (’MSFT’ 6=
’GOOG’); and the volume of e75 is larger than the one of e77 that follows the price-
increasing trend (700 > 600).

The skip-till-next-match event selection strategy finds the first match with the
events e1, e4, e5, e6, and e7, but misses the second match with the events e71, e74,
e76, and e77. The second match is missed because e72, which has a higher price than
the previous event e71, is greedily matched. The subsequent events e74, e75, e76, and
e77 are skipped since they do not continue the positive trend. Note that event e72 is
considered relevant because it satisfies the constraints with e71 (i.e., follows the price
trend), and subsequent events that will be included in the match are not considered.
If e72 would be skipped as irrelevant, the subsequent events can be matched success-
fully. The same problem with the greedy matching strategy occurs for e75. Initially,
this event is considered relevant since it continues the positive price trend. Later, when
processing e77 it must be reclassified as irrelevant to permit the second match.

Robust skip-till-next-match finds both matches. Regarding the second match, e72
and e75 are correctly determined as irrelevant events since all constraints in the pattern
together with all events in the complete match are considered. More specifically, our
strategy recognizes that e72 has a price and e75 a volume that violate the constraints in
the pattern.

Our robust skip-till-next-match event selection strategy considers all constraints in
the pattern together with a complete match to determine whether events are relevant or
not. Robust skip-till-next-match finds all matches of a pattern in an event stream that
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contain the events occurring earliest after the start of the match. Robust skip-till-next-
match finds all matches that are found with skip-till-next-match in addition to those
matches that are not found due to the erroneous matching of irrelevant events. The
robust skip-till-next-match event selection strategy has the property that the result set
can be derived from the set of all possible matches of the pattern (which corresponds
to the skip-till-any-match event selection strategy in Chapter 1) without accessing the
original event stream. In general, this is not possible for the set of matches that conform
to skip-till-next-match. This property is useful in interactive analysis, where first all
possible matches are analysed and then in a following analysis step the matches should
be restricted.

The rest of this chapter is organized as follows. In Section 6.2, we formally define
robust skip-till-next-match and compare it to skip-till-next-match. Section 6.3 presents
the backtracking mechanism for automaton-based event pattern matching algorithms.
The algorithm that implements the backtracking mechanism is described in Section 6.4.
In Section 6.5 we report the results of an empirical evaluation using real-world data.
Section 6.6 summarizes the chapter.

6.2 Robust Skip-till-next-match

In this section, we introduce the robust skip-till-next-match event selection strategy
and compare it to skip-till-next-match. We formally define both strategies and formu-
late theorems to characterize them. To facilitate the definition of the event selection
strategies, we introduce the prefix of a pattern and the prefix of a match.

A prefix of a pattern (〈B1, . . . , Bk〉,Θ, τ) is defined as a pattern
(〈B̂1, . . . , B̂m〉, Θ̂, τ), where B̂j = Bj and B̂m ⊆ Bm, B̂m 6= ∅, for j < m ≤ k, and
Θ̂ is the set of conditions in Θ that only involve variables from B̂1 ∪ · · · ∪ B̂m. The set
of all prefixes of a pattern P is denoted as preP (P ).

Example 6.2. Consider our running example and pattern P3 =
(〈{s1}, {s2}, {s+

3 }, {s4}〉,Θ, 100 ms). A prefix of P3 is P̂3 = (〈{s1}, {s2}〉,
Θ̂2, 100 ms), where Θ̂2 = {s1.S = ’GOOG’, s2.S = ’GOOG’, s1.P < s2.P}. The set
of all prefixes of P3 is given as

preP(P3) = {(〈{s1}〉, Θ̂1, 100 ms),

(〈{s1}, {s2}〉, Θ̂2, 100 ms),

(〈{s1}, {s2}, {s+
3 }〉, Θ̂3, 100 ms),

(〈{s1}, {s2}, {s+
3 }, {s4}〉,Θ, 100 ms)}.
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where

Θ̂1 = {s1.S = ’GOOG’},

Θ̂2 = {s1.S = ’GOOG’, s2.S = ’GOOG’, s1.P < s2.P},

Θ̂3 = {s1.S = ’GOOG’, s2.S = ’GOOG’, s3.S = ’GOOG’,

s1.P < s2.P , s2.P < s3.P , prev(s3.P) < s3.P}.

A prefix of a match {v1/~e1, . . . , vk/~ek} that binds the events 〈e1, . . . , en〉 is defined
as a match {v1/~̂e1, . . . , vl/~̂el} of a pattern prefix P̂ ∈ preP(P ), l ≤ k, with ~̂ej ⊆ ~ej ,
that binds the events 〈e1, . . . , ei〉, i ≤ n. The set of all prefixes of a match γ is denoted
as preM (γ).

Example 6.3. Consider match γ = {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉}. A
prefix of match γ is {s1/〈e71〉, s2/〈e74〉}. It satisfies the pattern prefix P̂3 =
〈{s1}, {s2}〉, Θ̂2, 100 ms) in the previous example. The set of all prefixes of γ is given
as

preM (γ) = {{s1/〈e71〉},
{s1/〈e71〉, s2/〈e74〉},
{s1/〈e71〉, s2/〈e74〉, s3/〈e76〉},
{s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉}}.

6.2.1 Formal Definition

The first event selection strategy that we formally define is skip-till-next-match as used
in [4].

Definition 6.1. (Skip-till-next-match [4]) Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pattern
with B = B1 ∪ · · · ∪ Bk, E be an event stream, γ be a match that binds the events
〈e1, . . . , en〉 and γ̂ be a prefix of γ that binds the events 〈e1, . . . , ei〉, i ≤ n. A match γ
conforms to the skip-till-next-match event selection strategy if and only if

@γ̂ ∈ preM (γ) \ γ, P̂ ∈ preP(P ), v ∈ B, e ∈ E (

ei.T < e.T < ei+1.T ∧ γ̂ ] {v/〈e〉} is a match of P̂ ).
(6.1)

A match conforming to skip-till-next-match does not contain a prefix that, if ex-
tended by an event from the event stream E which occurs after the prefix and before
the chronologically next event in γ, satisfies a prefix of pattern P . From a procedural
point of view, skip-till-next-match specifies that events in E are skipped until the next
event is found which along with the events bound so far matches a prefix of P .
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Example 6.4. Consider match γ = {s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉}. The
only prefix of γ that can be extended by a binding with an event that occurs after the
prefix and before the chronologically next event in γ is γ̂ = {s1/〈e1〉}. For γ̂ only pre-
fix P̂3 = (〈{s1}, {s2}〉, Θ̂, 100 ms) of the example pattern P3 needs to be considered.
Neither the binding s2/〈e2〉 nor s2/〈e3〉 extend γ̂ to a match of P̂3. Consequently, Con-
dition 6.1 is satisfied and the match conforms to skip-till-next-match. In contrast, match
γ = {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉} does not conform to skip-till-next-
match, because the prefix γ̂ = {s1/〈e71〉} of γ can be extended with binding s2/〈e72〉
to {s1/〈e71〉, s2/〈e72〉}, which satisfies the prefix P̂3 = (〈{s1}, {s2}〉, Θ̂, 100 ms) of
pattern P3. The complete list of matches for P3 that conform to skip-till-next-match is
as follows:

{ s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e3〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e4〉, s2/〈e5〉, s3/〈e6〉, s4/〈e7〉 }.

Next, we formally define the robust skip-till-next-match event selection strategy.

Definition 6.2. (Robust Skip-till-next-match) Let P = (〈B1, . . . , Bk〉,Θ, τ) be a pat-
tern with B = B1 ∪ · · · ∪ Bk, E be an event stream, and Γ be the set of all possible
matches of P inE according to Definition 3.2. Furthermore, let γ be a match that binds
the events 〈e1, . . . , en〉 and γ̂ be a prefix of γ that binds the events 〈e1, . . . , ei〉, i ≤ n.
A match γ conforms to the robust skip-till-next-match event selection strategy if and
only if

@γ̂ ∈ preM (γ) \ γ, γ′ ∈ Γ, v ∈ B, e ∈ E (

ei.T < e.T < ei+1.T ∧ (γ̂ ] {v/〈e〉}) ∈ preM (γ′) ).
(6.2)

A match that conforms to robust skip-till-next-match does not contain a prefix that,
if extended by an event from event stream E which occurs after the prefix and before
the chronologically next event in γ, corresponds to a prefix of some match in Γ. From
a procedural point of view, robust skip-till-next-match specifies that events in E are
skipped until the next event is found which satisfies P along with the events matched
so far and the future events that will be matched.

Example 6.5. Consider match γ1 = {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉} and the
set of all possible matches of P3 in Stocks,

Γ = { { s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e1〉, s2/〈e4〉, s3/〈e5〉, s4/〈e7〉 },
{ s1/〈e1〉, s2/〈e4〉, s3/〈e6〉, s4/〈e7〉 },
{ s1/〈e3〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e3〉, s2/〈e4〉, s3/〈e5〉, s4/〈e7〉 },
{ s1/〈e3〉, s2/〈e4〉, s3/〈e6〉, s4/〈e7〉 },
{ s1/〈e4〉, s2/〈e5〉, s3/〈e6〉, s4/〈e7〉 },
{ s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉 },
{ s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e78〉 } }.
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Match γ1 conforms to robust skip-till-next-match, because prefix γ̂ = {s1/〈e71〉} of
γ1 extended by bindings s2/〈e72〉 or s2/〈e73〉 does not resemble a prefix of a match in
Γ. Other extensions of prefixes of γ1 with bindings are not possible. In contrast, match
γ2 = {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e78〉} does not conform to robust skip-till-
next-match, because prefix γ̂ = {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉} of γ2 can be extended
by binding s4/〈e77〉 resulting in match γ1 that is a member of preM (γ1). The complete
list of matches for P3 found with robust skip-till-next-match is as follows:

{ s1/〈e1〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e3〉, s2/〈e4〉, s3/〈e5, e6〉, s4/〈e7〉 },
{ s1/〈e4〉, s2/〈e5〉, s3/〈e6〉, s4/〈e7〉 },
{ s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉 }.

The main difference between skip-till-next-match and robust skip-till-next-match
lies in the events that disqualify a match from conforming to the event selection strate-
gies, i.e., the event e ∈ E in Condition 6.1 and 6.2. An event e disqualifies a match
from conforming to skip-till-next-match if e belongs to a partial match that satisfies
the constraints of a prefix of the pattern, but does not necessarily belong to a complete
match. That is, e may be an irrelevant event that together with the events matched so
far satisfies some constraints in the pattern. In contrast, a match is disqualified from
conforming to robust skip-till-next-match by an event e that must belong to another
complete match. No irrelevant events are involved. That is, robust skip-till-next-match
is robust against irrelevant events in the event stream because it correctly recognizes
them.

6.2.2 Properties

The relationship between skip-till-next-match and robust skip-till-next-match is de-
scribed in the following theorem.

Theorem 6.1. Let Γstnm and Γrstnm be the matches of a pattern P in an event streamE
that conform to skip-till-next-match and robust skip-till-next-match, respectively. For
Γstnm and Γrstnm the following holds:

Γstnm ⊆ Γrstnm. (6.3)

Proof. Assume a pattern P and an event stream E, and let Γ be the set of all possible
matches of P in E as defined in Definition 3.2. Condition 6.3 holds, if, for any match
γ of P in E, Condition 6.2 is satisfied whenever Condition 6.1 is satisfied, i.e.,

γ ∈ Γstnm → γ ∈ Γrstnm. (6.4)

Since the prefix of a match satisfies the prefix of a pattern by definition, whenever γ
does not contain a prefix that extended as described in Condition 6.1 matches a prefix
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ΓΓrstnmΓstnm

Figure 6.2: Containment of Sets of Matches.

of P (i.e., γ ∈ Γstnm), γ does not contain a prefix that extended as described in Con-
dition 6.2 is a prefix of some match in Γ (i.e., γ ∈ Γrstnm). Thus, Condition 6.4 is
satisfied for any γ.

The set of matches that conform to robust skip-till-next-match contains all matches
that conform to skip-till-next-match (see Figure 6.2). That is, an event pattern matching
algorithm that complies with robust skip-till-next-match finds all matches that are found
with an algorithm that complies with skip-till-next-match.

A nice property of robust skip-till-next-match is that the result set of a query can
be derived from the set of all possible matches without accessing the event stream, as
stated in the following theorem.

Theorem 6.2. Given only the set of all possible matches Γ of a pattern P in an event
stream E, (a) the set of matches Γrstnm that conform to robust skip-till-next-match can
be found, (b) the set of matches Γstnm that conform to skip-till-next-match cannot be
found.

Proof. Assume the set of all possible matches Γ of a pattern P in an event stream E
and the set of matches Γrstnm ⊆ Γ that conform to robust skip-till-next-match as well
as the set of matches Γstnm ⊆ Γrstnm that conform to skip-till-next-match.

To proof (a), consider a match γ ∈ Γ. Match γ does not conform to robust skip-till-
next-match if and only if Condition 6.2 is not satisfied. Condition 6.2 is not satisfied
if and only if ei.T < e.T < ei+1.T ∧ (γ̂ ] {v/〈e〉}) ∈ preM (γ′) is satisfied. Since
this term can only be satisfied by events that are contained in a match, only the events
in the matches in Γ need to be considered rather than all events in E. Thus, the set of
matches Γrstnm can be derived only from the set of all possible matches Γ.

Part (b) of the theorem is proofed by contradiction. Assume that it is possible
to find the matches in Γstnm given only the set of all possible matches Γ. Match
{s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉} from the running example, cannot be ex-
cluded from Γstnm without considering event e72. Event e72 is not contained in any
match in Γ. This contradicts the assumption.

Theorem 6.2 enables to derive matches that conform to robust skip-till-next-match
from the result set of event pattern matching algorithms that find all possible matches of
a pattern in an event stream such as ZStream [46], NEEL [44], and Event Analyzer [42]
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in a post processing step without accessing the event stream an additional time. This is
not possible for matches that conform to skip-till-next-match. This property of robust
skip-till-next-match is useful in interactive analysis where first all possible matches are
analysed and then in a following analysis step the matches should be restricted.

6.3 Automaton with Backtracking

In this section we present an automaton-based solution for the evaluation of event pat-
tern matching using the robust skip-till-next-match event selection strategy. We begin
with a basic automaton and show that under certain conditions matches are missed.
Then we propose a backtracking mechanism that extends the basic automaton to find
all matches according to robust skip-till-next-match. To make the discussion more con-
crete, we assume a SES automaton as described in Chapter 4. However, the discussion
can be equally applied to other automaton-based algorithms that produce matches ac-
cording to skip-till-next-match [4, 28].

Example 6.6. Figure 6.3 shows the SES automaton, represented as a directed graph,
for our pattern query P3 = (〈{s1}, {s2}, {s+

3 }, {s4}〉,Θ, 100 ms). The automaton has
states

Q = { ∅, {s1}, {s1, s2}, {s1, s2, s3}, {s1, s2, s3, s4} },
transitions

∆ = { δ1 = (∅, s1,Θ1),

δ2 = ({s1}, s2,Θ2),

δ3 = ({s1, s2}, s3,Θ3),

δ4 = ({s1, s2, s3}, s3,Θ4),

δ5 = ({s1, s2, s3}, s4,Θ5) },

start state qs = ∅, and accepting state qf = {s1, s2, s3, s4}.

∅ s1 s1s2
s1s2
s3

s1s2
s3s4

s1,Θ1 s2,Θ2 s3,Θ3 s4,Θ5

s3,Θ4 Θ1 = {s1.S = ’GOOG’}
Θ2 = {s2.S = ’GOOG’, s1.P < s2.P}
Θ3 = {s3.S = ’GOOG’, s2.P < s3.P}
Θ4 = {s3.S = ’GOOG’, prev(s3.P) < s3.P}

Θ5 = {s4.S = ’GOOG’, s1.V < s4.V ,
s2.V < s4.V , s3.V < s4.V }

Figure 6.3: SES Automaton for P3 = (〈{s1}, {s2}, {s+
3 }, {s4}〉,Θ, 100 ms).

In the following examples we show that an automaton might miss matches that
conform to the robust skip-till-next-match event selection strategy due to the erroneous
matching of irrelevant events.
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Example 6.7. Consider the automaton for pattern P3 in Figure 6.3 and events e71,
. . .e78 in event stream Stocks (see Figure 6.1). The automaton starts in state ∅, binds
e71 to s1, and changes to state {s1}. Then, e72 matches s2 since the price of the
Google trade is larger than in e71; the automaton changes to state {s1, s2}. Event
e73 is skipped since it cannot match any variable in P3. Since none of the follow-
ing events, e74, e75, e76, e77, and e78, continues the upward trend as required by
transition condition Θ3, the automaton expires without producing a match. However,
{s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉} represents a valid match according to the ro-
bust skip-till-next-match strategy.

Example 6.8. Now consider again the automaton in Figure 6.3 and the events e71,
. . .e78 in Stocks, but this time without e72. The automaton starts in state ∅, binds e71 to
s1, and changes to state {s1}. Event e73 is skipped since it cannot match any variable in
P3. Then, e74 matches s2 and e75 as well as e76 match s3 since the price of the Google
trades are increasing; the automaton changes to state {s1, s2} and to {s1, s2, s3}. Since
neither e77 nor e78 has a larger volume than e75 as required by Θ5, the automaton ex-
pires without producing a match. Also here, {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉}
represents a valid match according to the robust skip-till-next-match strategy.

The reason for the missing match in the above examples is that s2 binds e72 in
Example 6.7 and e75 in Example 6.8, since they represents an increase in the price with
respect to the events matched so far. Only later on when the next Google stock trades
are read, it turns out that the partial match cannot be completed, hence e72 and e75 shall
be skipped as irrelevant events. By skipping e72 and binding s2 to e74 in Example 6.7
and skipping e75 in Example 6.8 the match {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e77〉}
would be found.

The following theorem specifies conditions when an automaton misses matches
that are valid under the robust skip-till-next-match strategy.

Theorem 6.3. Let E be an event stream and (〈B1, . . . , Bk〉,Θ, τ) be a pattern with
variables u ∈ Bi, v ∈ Bj , w ∈ Bl, i ≤ j ≤ l and the relationships between u and v,
Θr
u,v ⊆ Θ, are not empty. Furthermore, let γ be a match of P in E according to the

robust skip-till-next match event selection strategy that contains bindings u/~eu, v/~ev,
and w/~ew with eu1 .T < ev1 .T < ew1 .T , and let ~e denote all events in γ. An automaton
misses match γ if ∃e ∈ E \ ~e such that

eu1 .T < e.T < min(evn .T, ew1 .T ), (6.5)

Θp
v(e) ∧Θr

v,v(〈{evi ∈ ~ev : evi .T < e.T} ∪ {e}〉)
∧Θr

u,v(~eu, 〈{evi ∈ ~ev : evi .T < e.T} ∪ {e}〉).
(6.6)

Proof. Assume an event streamE and a pattern P = (〈B1, . . . , Bk〉,Θ, τ) that consists
of exactly three variables, u ∈ Bi, v ∈ Bj , and w ∈ Bl with i ≤ j ≤ l. Furthermore,
let γ = {u/~eu, v/~ev, w/~ew} be a match with eu1 .T < ev1 .T < ew1 .T that conforms
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to the robust skip-till-next-match strategy. Finally, let e ∈ E \ 〈~eu ∪ ~ev ∪ ~ew〉 be an
event that satisfies Conditions 6.5 and 6.6.

An automaton N for pattern P contains the following path from the start state to
the accepting state (possible looping transitions are not shown), and this path needs to
be traversed to find match γ.

∅ u uv uvw
u,Θ1 v,Θ2 w,Θ3

Θ1 = Θp
u ∪Θr

u Θ2 = Θp
v ∪Θr

v ∪Θr
u,v Θ3 = Θp

w ∪Θr
w ∪Θr

u,w ∪Θr
v,w

By Conditions 6.5 and 6.6, after reading event e, the automaton is in state {u, v}
since e occurs after the first event that is bound to u, satisfies all properties of v, and
satisfies all relationships with the events matched to u and v so far. In this situation,
N cannot reach the accepting state {u, v, w}. If N reached {u, v, w}, γ would not
comply with the robust skip-till-next-match strategy (Condition 6.2) because e would
occur after a prefix γ̂ of γ and before the chronologically next event in γ, and it would
extend γ̂ to a prefix of the match of P that would be found if N reached the accepting
state. This contradicts our assumption that γ conforms to robust skip-till-next-match.
The proof can easily be generalized to more than three variables.

Example 6.9. Consider Example 6.7. The variables s1, s2, and s3 correspond to u,
v, and w, the event sequences 〈e71〉, 〈e74〉, and 〈e76〉 to ~eu, ~ev, and ~ew, and event
e72 corresponds to e in Theorem 6.3. Event e72 occurs after e71 and before e74 (Con-
dition 6.5). The event sequences 〈e71〉 and 〈e72〉, bound to s1 and s2, respectively,
satisfy the properties Θp

s2 = {s2.S = ’GOOG’} and the relationships Θr
s2,s2 = ∅ and

Θr
s1,s2 = {s1.P < s2.P} (Condition 6.6).

In order to find all matches that comply with the robust skip-till-next-match event
selection strategy, we extend the basic automaton with a backtracking mechanism. We
reuse the concept of a match window from Definition 4.3 to buffer input events.

An automaton instance is started on the first event in the match window. If the
automaton is not in the accepting state after reading all events in window W , back-
tracking applies. The automaton reverts the last transition. That is, it returns to the
previous state and removes from match buffer β the event ei that has been bound by the
reverted transition. Then, the automaton resumes reading from the match window at
event ei+1, and event ei is skipped. The backtracking mechanism allows to reclassify
ei from relevant to irrelevant.

To enable backtracking, the automaton needs to keep track of the transitions taken
and the events that triggered these transitions. We propose a so-called execution tree
to record transitions and events. The tree stores dependencies between different au-
tomaton instances that branched due to nondeterminism during the execution. Such
information allows to stop backtracking before producing matches that do not conform
to the robust skip-till-next-match strategy.
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◦

δ1, 1

δ2, 4

δ3, 5

δ4, 6 δ5, 6

Figure 6.4: Execution Tree.

Definition 6.3. (Execution Tree) LetN = (Q,∆, qs, qf ) be an automaton for a pattern,
and W be the corresponding match window over an event stream. An execution tree,
X , is a directed, acyclic graph with nodes V and edges D, where each node has at
most one incoming edge. A node represents a pair (δ, c) with δ ∈ ∆, 1 ≤ c ≤ |W |.
The special node (◦) is the root of X . An edge is a pair (δi, ci) → (δj , cj) with
(δi, ci), (δj , cj) ∈ V .

A node, (δ, c), in an execution tree records that the event at position c in the match
window W triggered transition δ. The direction of the edges represents the chronology
of the transitions taken. Hence, a path from the root to a leave node in an execution
tree represents the sequence of events matched so far. If an event triggers multiple tran-
sitions (i.e., nondeterminism occurs), X branches into multiple nodes, called siblings.
Each match window has exactly one corresponding execution tree.

Example 6.10. Figure 6.4 shows the execution tree for the automaton in Figure 6.3 and
the match window W = 〈e71, e72, e73, e74, e76, e77, e78〉. For the sake of exposition,
we omit event e75 from the match window. The execution tree specifies that event
W [1] = e71 triggered transition δ1 = (∅, s1,Θ1), W [4] = e74 triggered transition
δ2 = ({s1}, s2,Θ2), and W [5] = e76 triggered transition δ3 = ({s1, s2}, s3,Θ3).
At node (δ3, 5), the tree branches into sibling nodes (δ4, 6) and (δ5, 6), which is due
to event W [6] = e77 that triggered two transitions, δ4 = ({s1, s2, s3}, s3,Θ4) and
δ5 = ({s1, s2, s3}, s4,Θ5).

An automaton with backtracking executes as follows. For each match window, W ,
an execution tree X that contains only the root node ◦ is created. The automaton reads
the events in W one-by-one, starting at the head W [1]. If an input event e at position c
inW triggers a transition δ = (q, v,Θδ), a binding v/〈e〉 is added to match buffer β, the
automaton instance changes from state q to state q∪{v}, and a new leave node (δ, c) is
added to X . The automaton instance keeps a pointer to the new leaf node. If e triggers
multiple transitions, nondeterminism arises. For each transition but one, an automaton
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instance branches from the original automaton. Each instance takes a transition and
appends a leave node to the execution tree X . Since X is shared among all instances,
the appended nodes, (δ1, c), . . . , (δn, c), are siblings with distinct transitions, δi 6= δj ,
but equal position c. If e does not trigger any transition and the automaton instance is
not in the start state, the instance stays in its current state without updating β and X .

When all events inW are processed, automaton instances that reached the accepting
state contain a match in the match buffer β. The match is added to the result and
the instance terminates. For an automaton instance that is not in the accepting state,
backtracking applies. First, transition δ = (q, v,Θδ) and position c is retrieved from
the leaf node of the execution tree X . Then the automaton steps back to state q and
removes event W [c] from the binding of variable v in β. The leaf node is removed
from X and the instance points to the parent of the removed node. Finally, the instance
resumes reading events at W [c + 1]. If the instance does not lead to a match after
reading all events from W [c+ 1] to the end of W , backtracking applies again, etc.

Uncontrolled backtracking without an additional stop condition would lead to
matches that do not conform to robust skip-till-next-match, as stated in the following
lemma.

Lemma 6.1. An execution tree X leads to matches that conform to robust skip-till-
next-match if and only if for all pairs of siblings, (δi, ci), (δj , cj), the following holds:
ci = cj .

Proof. Assume that the positions ci and cj of two sibling nodes are different, and con-
sider two matches, where one corresponds to a path through node (δi, ci) and one to a
path through node (δj , cj). The two matches have a common prefix up to their parent
node. The subsequent event in the two matches (i.e., the events at position ci and cj ,
respectively) are different, and one event occurs before the other. Without loss of gen-
erality, assume that the event at ci occurs before the event at cj . The match with the
event at cj would not satisfy Definition 6.2 of the robust skip-till-next-match strategy
because it contains a prefix that, if extended by the event at position ci, is a prefix of
the match with the event at position ci.

According to Lemma 6.1, backtracking must be blocked when it reaches a leaf
node, (δi, ci), which has siblings. Backtracking at this point would replace (δi, ci) with
(δj , cj), where ci < cj (i.e., the event at position ci is skipped), and the siblings would
store different positions which contradicts the lemma. Hence, backtracking is blocked
and node (δi, ci) is removed from the tree. If backtracking reaches the last node of a
set of sibling nodes, backtracking is allowed, since all other sibling nodes have already
been removed and Lemma 6.1 is not violated. Another stop condition for backtracking
is when the child of the root node is reached. Further backtracking at this point would
revert the automaton into the start state and restart the execution at the second event
of the match window not considering all events in the event stream within a time span
of duration τ . To summarize: if backtracking reaches a node in X with siblings or
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the child of the root node, the automaton instance removes the node from the tree and
terminates.

Example 6.11. Figure 6.5 illustrates a few steps of executing the automaton in Fig-
ure 6.3. Again for the sake of exposition, we omit event e75 from the match window.
Each step shows the triggered transitions δi together with the transition graph, the cur-
rent state q, the match buffer β, and the execution tree X after the transition is taken.
For instance, in Figure 6.5(b) the automaton instance is in state {s1}, and e72 triggers
the transition ({s1}, s2,Θ2). The instance moves to state {s1, s2}, adds the binding
s2/〈e72〉 to β, and appends node (δ2, 2) to node (δ1, 1) in X . In Figure 6.5(c) back-
tracking applies, since the automaton instance is not in the accepting state after pro-
cessing the last event e78 in match window W . Node (δ2, 2) is removed from X , the
binding s2/〈e72〉 is removed from β, and the current state is reset to {s1}. The execu-
tion resumes at W [3] = e73. In Figure 6.5(e), e77 is read again and triggers two transi-
tions, i.e., nondeterminism arises. Two automaton instances exist and the execution tree
branches. In Figure 6.5(f), e78 is read and W reaches its end. The automaton instance
in state {s1,s2,s3,s4} is accepted and produces match {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉,
s4/〈e77〉}, whereas the one in state {s1,s2,s3} is not accepted. Backtracking cannot be
applied to the automaton instance, since the corresponding node (δ4, 6) in the execution
treeX has a sibling. If backtracking were applied to the instance, node (δ4, 6) would be
replaced with (δ5, 7) which contradicts Lemma 6.1. The instance would reach the ac-
cepting state with match {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉, s4/〈e78〉}which does not con-
form to robust skip-till-next-match, because its prefix {s1/〈e71〉, s2/〈e74〉, s3/〈e76〉}
can be extended by e77 that occurs earlier than e78 which yields a prefix of the match
found by the accepted instance.

6.4 Algorithm

Algorithm 4 implements automaton-based event pattern matching with backtracking.
It accepts an automaton N and a match window W as input and returns the set of all
matches of pattern P in W according to the robust skip-till-next-match strategy.

To enable backtracking, a set Ω of automaton instances, (q, β, x, c), is maintained,
where q is the current state, β is the match buffer, x is a pointer to the leaf node in
the execution tree X , and c is the position in W where to resume the execution. At
the beginning, Ω is initialized with a single automaton instance that is in the start state
qs and has an empty match buffer ∅; the execution tree contains only the root node ◦,
and the start position in W is 1. As long as Ω is not empty, the algorithm iterates over
the automaton instances in Ω. For each event in W from position c to the end of W ,
the current instance and all instances that branched from it due to nondeterminism are
processed (lines 6–18). For each automaton instance, (q, β, (δp, cp), c), the algorithm
iterates through all transitions that leave the current state q. For each transition δ =
(q, v,Θδ), the condition Θδ is tested (line 12). If Θδ is satisfied, a new node (δ, i) is
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Figure 6.5: Execution of SES Automaton forP3 = (〈{s1}, {s2}, {s+
3 }, {s4}〉,Θ, 100ms).
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Algorithm 4: Match(N,W )

Input: automaton N = (Q,∆, qs, qf ), match window W
Output: set of matches

1 X ← (V = {◦}, D = ∅); Ω← {(qs, ∅, ◦, 1)};
2 while |Ω| > 0 do
3 Ωbt ← ∅;
4 foreach (q, β, (δp, cp), c) ∈ Ω do
5 ΩW ← {(q, β, (δp, cp), c)}; i← c;
6 while i ≤ |W | and |ΩW | > 0 do
7 Ωe ← ∅;
8 foreach (q, β, (δp, cp), c) ∈ ΩW do
9 Ωδ ← ∅;

10 foreach δ = (qδ, v,Θδ) ∈ ∆ s.t. qδ = q do
11 β′ ← β ] {v/〈W [i]〉};
12 if I(Θδβ

′) is true then
13 Append (δ, i) as child of (δp, cp) to X;
14 Ωδ ← Ωδ ∪ {(q ∪ {v}, β′, (δ, i), c)};

15 if |Ωδ| = 0 and qc 6= qs then
16 Ωδ ← {(q, β, (δp, cp), c)};
17 Ωe ← Ωe ∪ Ωδ;

18 i← i+ 1; ΩW ← Ωe;

19 foreach (q, β, (δp, cp), c) ∈ ΩW do
20 if q = qf then
21 R← R ∪ {β};
22 else
23 (δ, c)← parent of (δp, cp);
24 if (δp, cp) is not child of root and has no siblings then
25 (qδ, v,Θδ)← δp;
26 Remove last event from binding v/~e in β;
27 Ωbt ← Ωbt ∪ {(qδ, β, (δ, c), cp + 1)};
28 Remove (δp, cp) from X;

29 Ω← Ωbt;

30 return R;

appended to the execution tree X with the current transition and the current position in
W (line 13). Next, the automaton instance moves to the target state of the transition
and the match buffer is updated with the new binding. If no transition is taken and the
current state is different from the start state, the event is ignored and the automaton
instance remains in the current state (lines 15–16). Once the end of the match window
is reached, the algorithm iterates over the processed automaton instances. For each
instance that is in the accepting state qf , the content of its match buffer β is added to
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the result set R. For each instance that is not in qf , backtracking applies. If (δp, cp)
is not a child of the root and has no siblings, the automaton instance is reverted to the
previous execution state and the position of the next event in W is set (lines 24–27).
Node (δp, cp) is removed from the execution tree X .

6.5 Experiments

In this section, we report the results of an empirical evaluation using real-world data.
The experiments have two purposes: (1) to compare the skip-till-next-match to the
robust skip-till-next-match event selection strategy and (2) to show the advantages of
our backtracking mechanism over an alternative solution.

6.5.1 Setup and Data

We implemented the automaton-based algorithm with and without backtracking as well
as an automaton-based solution that first computes all possible matches followed by a
post processing step to eliminate matches that do not comply to robust skip-till-next-
match. All algorithms are implemented in C. The event stream is stored in an Oracle
database, Enterprise Edition 11.1, which is accessed over the OCI API. The experi-
ments were performed on a PC with four AMD Opteron 285 processors with 1.8 and
2.6 GHz and 16 GB memory, on which a 64-bit Linux 2.6.32 is installed. We use two
different real-world data sets. The NYSE data set contains 1M share trades in stock
markets [49] of 34 hours. The Onco data set contains 341055 chemotherapy events
from the Department of Hematology at the Hospital Meran-Merano.

We use different types of patterns. For the experiments with varying number of
variables, we use pattern Pvars = (〈{v1}, {v2}, . . . , {vk}〉, Θ, τ), where the number
of variables varies from k = 3, . . . , 12. The duration is τ = 30 ms with the NYSE
data and τ = 462 days with the Onco data. For the experiments with varying length
of τ , we use pattern Pτ = (〈{v1}, . . . , {v8}〉,Θ, τ), where τ varies from 10–55 ms in
steps of 5 ms with the NYSE data and from 231–319 days in steps of 11 days with the
Onco data. The variables in both patterns specify events with a downwards trend in
one attribute (Google stock trade price and white blood cell count, respectively). Fur-
thermore, we use the following four miscellaneous patterns. Pattern P1 = (〈{v1}, . . . ,
{v+

10}〉, Θ, τ) finds 10 or more events with increasing values in one attribute. Pat-
tern P2 = (〈{v1}, . . . , {v+

5 }, {v
+
6 }〉, Θ, τ) finds five or more events with increasing

values in one attribute followed by one or more events that may cause nondeterminism.
Pattern P3 = (〈{v+

1 }, {v2}, {v+
3 }, {v4}, {v+

5 }, {v6}, {v+
7 }〉, Θ, τ) roughly resem-

bles the double-bottom pattern common in stock market analysis [53], i.e., decreasing
values (v1,v2) followed by increasing values (v2,v3,v4), then again decreasing values
(v4,v5,v6), and finally increasing values (v6,v7). Pattern P4 = (〈{v1, w1}, {v2, w2},
{v3, w3}, {v4, w4}, {v+

5 , w
+
5 }〉, Θ, τ) finds five or more events of two distinct types,

both with increasing values in one attribute that occur interleaved. In P1, . . . , P4 we use



84 Chapter 6. Improving the Skipping of Noise

0

20

40

60

80

100

3 4 5 6 7 8 9 10 11 12

M
is

s
e

d
 M

a
tc

h
e

s
 [

%
]

# of Variables

Onco
NYSE

(a) Varying # of Variables.

0

20

40

60

80

100

3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t 
D

e
c
re

a
s
e

 [
%

]

# of Variables

Onco
NYSE

(b) Varying # of Variables.

0

20

40

60

80

100

231|10 253|20 275|30 297|40 319|50

M
is

s
e

d
 M

a
tc

h
e

s
 [

%
]

τ [days|ms]

Onco
NYSE

(c) Varying Max. Duration.

0

20

40

60

80

100

231|10 253|20 275|30 297|40 319|50

T
h

ro
u

g
h

p
u

t 
D

e
c
re

a
s
e

 [
%

]

τ [days|ms]

Onco
NYSE

(d) Varying Max. Duration.

0

20

40

60

80

100

P1 P2 P3 P4

M
is

s
e

d
 M

a
tc

h
e

s
 [

%
]

Patterns

NYSE
Onco

(e) Misc. Patterns.

0

20

40

60

80

100

P1 P2 P3 P4

T
h

ro
u

g
h

p
u

t 
D

e
c
re

a
s
e

 [
%

]

Patterns

NYSE
Onco

(f) Misc. Patterns.

Figure 6.6: Skip-till-next-match vs. Robust Skip-till-next-match

the Google stock trade price and the white blood cell count, plus the Apple stock trade
price and the red blood cell count in P4. With the NYSE data the maximal duration, τ ,
is 30 ms in P1 and P2, 20 ms in P3, and 50 ms in P4. With the Onco data τ is 462 days
in P1, 231 days in P2, 308 days in P3 and 77 days in P4.

6.5.2 Skip-till-next-match vs. Robust Skip-till-next-match

We compare the skip-till-next-match strategy (basic automaton) to the robust skip-till-
next-match strategy (automaton with backtracking). Our hypothesis is that the former
strategy finds substantially more matches than the latter one, though at the cost of a
smaller throughput. We measure the number of matches missed with skip-till-next-
match as the percentage of the number of matches found with robust skip-till-next-
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NYSE Onco

P1

bt 1 1

all+pp 731331 3473

P2

bt 2 10

all+pp 1017279 66877

P3

bt 39 32

all+pp 94376 1904820

P4

bt 1 1

all+pp 168534 333950

Table 6.1: Bt vs. All+pp – Intermediate Matches for Misc. Patterns

match. Similar, the decrease of the throughput with robust skip-till-next-match is mea-
sured as the percentage of the throughput with skip-till-next-match.

Figure 6.6 shows the missed matches with skip-till-next-match in the left column
and the throughput decrease in the right column. The first observation is that the per-
centage of missed matches can be substantial. On the other side, the throughput can
also decrease substantially. The second observation is that the percentage of missed
matches increases with the number of variables in the pattern, whereas it is roughly
constant with increasing duration τ . The reason is that with increasing number of
variables and constant τ , the number of matches decreases while the possibilities of
missing matches increase. With increasing τ and constant number of variables, both,
the number of matches and the possibilities of missing a match increase.

6.5.3 Backtracking vs. Find All + Post Processing

In this experiment, we compare the algorithm with backtracking (bt) to an automaton-
based event pattern matching algorithm that finds all possible matches and eliminates
the matches that do not conform to robust skip-till-next-match in a post processing
step (all+pp). Both algorithms find the same matches. Our hypothesis is that bt pro-
duces a higher throughput and less intermediate results than all+pp. We measure the
throughput and the maximal number of intermediate matches per match window. Inter-
mediate matches are accepted automaton instances. In bt accepted automaton instances
are already the final result, whereas in all+pp they still need to be filtered in the post
processing step.

Figure 6.7 shows the throughput of both algorithms, and Figure 6.8 shows the max-
imal number of intermediate matches. In Figures 6.7(c) and 6.8(c) the curve for all+pp
stops at 45 ms, because we had to abort the experiment due to excessive memory swap-
ping. The first observation is that the algorithm with backtracking produces a higher
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Figure 6.7: Bt vs. All+pp – Throughput.

throughput in all experiments. For some patterns the throughput differs more than
two orders of magnitude as in Figures 6.7(a) and 6.7(c). The second observation is
that all+pp produces orders of magnitudes more intermediate matches than bt. This
can especially be seen in Table 6.1, that contains the maximal number of intermediate
matches per match window for the miscellaneous patterns. The algorithm bt produces
between three and five orders of magnitude less intermediate matches than all+pp.
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Figure 6.8: Bt vs. All+pp – Intermediate Matches.

6.6 Summary

In this chapter, we proposed a robust skip-till-next-match event selection strategy that
improves skipping of noise in event pattern matching and finds matches which are
missed by skip-till-next-match due to its greedy behavior. In contrast to skip-till-next-
match, robust skip-till-next-match does not fail to identify irrelevant events in the event
stream that prevent the detection of matches. To achieve this, all constraints in the
pattern together with a complete match are considered when determining whether input
events are relevant or irrelevant. We formally defined the skip-till-next-match strategy
and the robust skip-till-next-match strategy. We proposed a backtracking mechanism
that extends automaton-based event pattern matching to find all matches according to
robust skip-till-next-match. We conducted extensive experiments using real-world data
to show the effectiveness of our approach. The results show that the number of missed
matches with skip-till-next-match can be quite substantial. In terms of runtime, our
approach outperforms an alternative solution that first produces all possible matches
followed by a post processing step.





CHAPTER 7

Conclusion

In this thesis we presented a new event pattern matching problem, termed sequenced
event set (SES) pattern matching, that specifies a sequence of sets of events (SES pat-
tern), rather than a sequence of single events as in previous work. While the order of the
input events that match with the same event set is irrelevant, i.e., any permutation of the
input events is matched, the order of the input events that match with distinct sets must
strictly adhere to the order of the sets in the pattern. We introduced and formally de-
fined the SES pattern matching problem. To solve the SES pattern matching problem,
we presented SES automata and a corresponding algorithm. A further improvement of
the evaluation of SES pattern queries is achieved by a two-phase evaluation strategy
that consists of a cheap preprocessing phase followed by the more expensive pattern
matching phase. We proposed a solution to improve the skipping of noise in the in-
put stream during event pattern matching through a robust skip-till-next-match event
selection strategy.

For query evaluation, a SES pattern is translated into a SES automaton, and the
automaton is executed. A SES automaton is a nondeterministic finite state automa-
ton enriched with a match buffer that collects bindings during the execution of the
automaton. We analysed the runtime complexity of the SES automaton-based algo-
rithm, where we distinguished four cases considering different patterns. The runtime
depends on the number of variables and the amount of Kleene plus in the pattern as
well as on the number of events in a match window. Regarding the size of the event
stream, the runtime is linear. In extensive experiments, we showed that our algorithm
clearly outperforms a brute force approach that matches sequences of sets of events by
using a set of automata, each of which matches a sequence of single events. The brute
force algorithm essentially corresponds to straightforward extensions of the automata

89
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in [4, 28, 31]. Furthermore, we validated experimentally the results from our runtime
complexity analysis.

In the two-phase evaluation strategy for event pattern matching, the preprocessing
phase is very cheap compared to the expensive pattern matching phase. In the pre-
processing phase, incoming events are buffered in a match window, which allows to
apply different pruning techniques, such as filtering, partitioning, and testing for nec-
essary match conditions, and aids a lazy evaluation of a pattern matching algorithm.
Our evaluation strategy is general enough to be used with other existing event pattern
matching algorithms besides SES automata. We conducted extensive experiments us-
ing two real-world data sets and two existing event pattern matching algorithms, more
precisely our SES automaton-based algorithm that finds matches according to the skip-
till-next-match event selection strategy and ZStream [46] that is based on join-trees and
finds all possible matches (skip-till-any-match). The results show that our framework
significantly increases the throughput for both algorithms.

We proposed a robust skip-till-next-match event selection strategy to improve the
skipping of noise in the input stream. Skip-till-next-match greedily matches incom-
ing events if they satisfy the constraints in the pattern along with the events matched
so far; events that violate the constraints are eliminated as noise. Due to this greedy
behavior, skip-till-next-match can miss matches that satisfy the pattern query. More
specifically, a match is not found if an input event occurs within the time span of the
match, satisfies the constraints in the pattern together with the current partial match
consisting of the events matched so far, but violates contraints with future events yet
to be matched. Instead of considering only past events for the identification of noise,
we consider all constraints in the pattern together with a complete match. To com-
pute pattern queries with the robust skip-till-next-match event selection strategy, we
presented a backtracking mechanism for automaton-based event pattern matching al-
gorithms [4, 28]. We conducted extensive experiments using real-world data to show
the effectiveness of our approach. The results show that the number of missed matches
with skip-till-next-match can be quite substantial. In terms of runtime, our approach
outperforms an alternative solution that first produces all possible matches followed by
a post processing step to filter out non-compliant matches.

Future Work. Previous work including ours used the skip-till-next-match event se-
lection strategy to skip noise and to restrict the result set to a subset of all possible
matches of a pattern in an event stream. As we showed in our work, skip-till-next-
match might fail to identify events as noise and therefore can miss matches that satisfy
the pattern query. Furthermore, skip-till-next-match does not guarantee to find the most
useful matches. For example, if the pattern specifies multiple stock trades with a price-
increasing trend, skip-till-next-match does not guarantee to find matches with the most
price-increasing trades within the time span specified in the pattern. However, such
matches might be the most useful ones for the analysis of event streams. It would be



91

interesting future work to investigate an event selection strategy that, while skipping
noise, finds the most useful matches in an event stream. This work would consist of
the formal definition of the event selection strategy as well as the development of algo-
rithms and data structures that efficiently find matches according to such a strategy.

Regarding optimizations and extensions of the algorithms presented in this thesis,
we plan to work on the following aspects.

First, the number of states in a SES automaton tends to be exponential in the size
of the pattern because there exist a state for each subset of the sets specified in a pat-
tern. The current SES automaton implementation maps each state to a distinct data
structure in memory. This can be problematic when multiple SES automata are exe-
cuted simultaneously, which might happen in a multi-user environment. Therefore, we
plan to develop algorithms and data structures for SES automata that allow a significant
reduction of the space requirements.

Second, the necessary match conditions presented in the two-phase evaluation
strategy are limited to the skip-till-next-match and skip-till-any-match event selection
strategies. Possible future work is the adaptation of the necessary match conditions and
their testing to the (partitioned) contiguity event selection strategy.

Third, the main drawback of the backtracking mechanism for the robust skip-till-
next-match event selection strategy is the decrease in the throughput. Future work will
consist of the investigation of runtime optimizations for the backtracking mechanism.

Fourth, in this thesis, we considered streams with events that are totally ordered by
their occurrence time. Simultaneous events are not allowed. However, event streams
with simultaneous events are encountered in real-world applications, for instance, when
events originate from different sources or when the granularity of the occurrence time
in the events is too coarse. Simultaneous events in the event stream can cause matches
not to be found during the matching process if they are not properly processed. We plan
to develop event pattern matching algorithms that consider simultaneous events based
on the methods presented in this thesis.
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skip-till-next-match, 7, 24, 71
stock trade market, 5
substitution, 22
summary statistics, 52, 56

transition condition, 29
transition function, 29
two-phase evaluation, 51

union of two sets of bindings, 35

variable, 21


	Acknowledgments
	Abstract
	Introduction
	Event Pattern Matching
	Sequenced Event Set Pattern Matching
	Event Selection Strategies
	Contributions
	Organization of the Thesis

	Related Work
	Complex Event Processing
	Publish/Subscribe
	Data Stream Management
	Miscellaneous

	Sequenced Event Set Pattern Matching
	Introduction
	Definition of SES Pattern Matching
	Summary

	Automaton-based Evaluation
	Introduction
	Definition of SES Automaton
	Construction of a SES Automaton
	Translation of a Single Set in the Pattern
	Concatenation of SES Automata 

	Execution of a SES Automaton
	Algorithm
	Complexity Analysis
	Analysis of Single Set
	Analysis of Complete Pattern

	Experiments
	Setup and Data
	Brute Force Algorithm
	SES Automaton vs. Brute Force
	Varying the Size of the Match Window
	Varying the Size of the Event Stream

	Summary

	Two-Phase Evaluation Strategy
	Introduction
	Lazy Evaluation using Match Windows
	Filtered Match Windows
	Candidate Match Windows
	Partitioned Match Windows

	Algorithm
	Experiments
	Setup and Data
	Scalability in the Pattern
	Scalability in the Data

	Summary

	Improving the Skipping of Noise
	Introduction
	Robust Skip-till-next-match
	Formal Definition
	Properties

	Automaton with Backtracking
	Algorithm
	Experiments
	Setup and Data
	Skip-till-next-match vs. Robust Skip-till-next-match
	Backtracking vs. Find All + Post Processing

	Summary

	Conclusion
	Bibliography
	Index

