
Free University of Bolzano - Bozen
Faculty of Computer Science

Compression of Time Series Data
Using Multiple Granularities

Author:
Michael Gurschler

Supervisor:
Prof. Johann Gamper

Academic Year 2010/2011

Abstract

The project of this thesis comprises the planning, implementation and
testing of a compression algorithm for time series data with multiple gran-
ularities. The data which should be compressed comes from a system
called SolarInspector which was developed by myself. SolarInspector col-
lects lots of data from photo-voltaic inverters and other sensors, manages
and analyzes the values and stores them regularly into a database. Since
the embedded servers which collect the data have a limited hardware re-
sources it is necessary to keep only the data which is needed. Therefore my
task was to develop an algorithm which compresses the time series data
as much as possible without falsifying the data to much. I used Transact
SQL, which is Microsoft’s proprietary extension to SQL, to develop the
compression algorithm. Generally this algorithm can be used to compress
time series data of any type. Moreover it is possible to use different grades
of compression depending on the age and the type of the data.

A major challenge during the project was to find a way to aggregate
the log values without falsifying the chart. Simply taking the average
function for the aggregation would flatten the chart too much. Therefore
I had to consider also the adjacent points and based on the information
I got with them it was possible to choose the best aggregation function
(min, max, average). Several tests at the end of the development showed
that the charts resulting from the original data are nearly equivalent with
the charts resulting from data which was compressed to about a quarter
of the original size.

I

Abstract

Das Projekt dieser Diplomarbeit besteht aus der Planung, Implemen-
tierung und dem Testen eines Komprimierungs Algorithmus welcher zeitlich
bezogene Daten mit verschiedenen Detailgenauigkeiten zusammenfasst.
Die Daten welche komprimiert werden sollen kommen von einem Sys-
tem welches SolarInspector heisst und von mir entwickelt wurde. Der
SolarInspector sammelt Daten von Photovoltaik Wechselrichtern und an-
deren Sensoren, verwaltet und analysiert die Daten und speichert Diese
regelmäig in eine Datenbank. Da die verwendeten PCs nur über be-
grentzte Hardware Resourcen verfügen ist es notwendig dass nur die benötigten
Daten gespeichert werden. Deshalb war es meine Aufgabe einen Algorith-
mus zu entwickeln welcher die Daten so weit wie möglich komprimiert ohne
die Daten zu sehr zu verfälschen. Für die Entwicklung des Algorithmus
wurde T-SQL verwendet, welches Microsofts proprietäre Erweiterung für
SQL ist. Der Algorithmus kann für zeitliche Logwerte jedes Typs verwen-
det werden. Zudem ist es möglich verschiedene Detaillevels zu definieren,
abhängig von dem Alter der Daten und dem Typ der Daten.

Die gröte Herausforderung während des Projekts war es einen Weg
zu finden die Daten so zusammenzufassen dass die daraus erstellten Dia-
gramme nicht verfälscht werden. Deshalb war es nicht möglich die Datensätze
einfach durch das Ermitteln des Durchschnittwertes zu komprimieren weil
es die Kurve zu sehr glätten würde. Um dieses Problem zu beheben musste
ich auch die Punkte bevor und nach dem aktuellen Wert beachten, somit
war es möglich für jeden Punkt das Beste Verfahren zu wählen (Mini-
mum, Maximum, Durchschnitt). Verschiedene Tests am Ende der En-
twicklungsphase haben gezeigt dass die Diagramme welche mit den orig-
inalen Daten erstellt wurden nahezu identisch mit den Diagrammen sind
welche mit den Daten erstellt wurden, welche auf ein Viertel der Origi-
nalgrösse komprimiert wurden.

II

Abstract

Il progetto di questa tesi comprende la progettazione, realizzazione e
sperimentazione di un algoritmo di compressione per dati di serie storiche
con granularit multipla. I dati che devono essere compresse vengono gen-
erate da un sistema che si chiama SolarInspector, il quale stato sviluppato
da me. SolarInspector raccoglie i dati da inverter fotovoltaico altri sensori,
gestisce e analizza i valori e li memorizza in un database regolarmente.
Dato che i server che raccolgono i dati, hanno risorse hardware limitate,
necessario un sistema per salvare soltanto i dati neccesari. Quindi ho
sivluppato un algoritmo che comprime i dati di serie temporali senza
falsificando i propri valori. Ho usato Transact SQL, che un’estensione
proprietaria di Microsoft per SQL, per sviluppare l’algoritmo di compres-
sione. possibile impostare diversi gradi di compressione a seconda dell’et
e del tipo di dati.

Una delle maggiori problemi nel corso del progetto era quello di trovare
un modo per aggregare i valori di registro, senza falsificare il grafico. Pren-
dendo la funzione di media per l’aggregrazione potrebbe appiattire troppo
il grafico. Quindi ho dovuto prendere in considerazione anche i punti adia-
centi e sulla base delle informazioni che ho avuto , stato possibile scegliere
la funzione migliore aggregazione (min, max, media). Diversi test alla fine
dello sviluppo hanno mostrato che la classifica risultante e(hangl) stata
compressa a circa un quarto delle dimensioni iniziali.

III

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 1
1.3 Proposed Solution . 2
1.4 Organization of the Thesis . 3

2 State of the Art 4

3 System Architecture 6

4 The Compression Algorithm 8
4.1 Overall Strategy . 8
4.2 Structure . 8

4.2.1 Analysis Module . 9
4.2.2 Granularity Module . 10
4.2.3 Compression Module . 12
4.2.4 Selection Module . 13
4.2.5 Aggregation Module . 15

5 Experimental Evaluation 17
5.1 Setup . 17
5.2 Performance Evaluation . 18
5.3 Quality / Usability Evaluation 19

6 Conclusion and Future Work 21

7 A. Appendix: Compression Algorithms in T-SQL 23

IV

List of Figures

1 The uncompressed chart showing the input power of an inverter
over a day (11 tuples) . 3

2 The compressed chart showing the input power of an inverter
over a day (7 tuples) . 3

3 The structure of the system . 6
4 The structure of our algorithm 9
5 The day chart with the original data 19
6 The day chart with the compressed data 19
7 The chart (grouped by day) with the original data 20
8 The chart (grouped by day) with the compressed data 20
9 This procedure analyzes the log data (Analysis module) 23
10 This function gets the maximal entries per day of the given data

series (Granularity module) . 23
11 This procedure compresses the log data (Compression module) . 24
12 This procedure prepares the given data series for the aggregation

(Selection module) . 25
13 This procedure aggregates the two given tuples (Aggregation

module) . 26

List of Tables

1 The data which was logged . 10
2 The resulting tuples in the temporary table 10
3 Test data in the granularity table 11
4 The return values of the function depending on the input 12
5 Uncompressed variable log data of example 3 13
6 Compressed variable log data of example 3 13
7 Variable log data of example 4 15
8 Output of the selection module for example 4 15
9 Actions of the aggregation module for example 5 16
10 Data in the variables table . 17
11 Test data in the granularity table 18
12 Runtime test of the algorithm . 18

V

1 Introduction

1.1 Motivation

Data logging and analysis is at the core of many business and scientific processes.
This data analysis is used to collect information from machines, the surrounding,
user behaviour and many more. Often the data is measured through sensors
and used to create charts and statistics. Nowadays relational databases are used
to store the data and SQL to insert or retrieve the data.

Nearly every database contains data records with timestamps which are
collected regularly.

• Wheater stations collect data for the temperature, air pressure, wind, etc.

• CNC machines store the actual position and speed of the axes.

• Racing cars record the acceleration, speed, throttle, etc.

• Photo-voltaic monitoring systems collect the actual input power of the
inverters.

The collected data allows the user to analyze and better understand how the
system works and what could be done to improve it. But with the time the
databases will become bigger and bigger. Nowadays disk space is relatively
cheap but in specific situations it might not be possible to have more disk space.
Moreover the database queries will slow down dramatically when the database
is becoming bigger.

As the data gets older it might loose importance which means that the data
might be stored at a coarser granularity. But changing the granularity of the
data is not as simple as it seems. It is really important that charts which are
generated with the compressed data are nearly equivalent with the charts which
are generated with the original data. Therefore we decided to plan, implement
and test an algorithm which is able to compress the temporal data without
loosing too much details.

1.2 Problem Description

The photo-voltaic monitoring system called SolarInspector collects the data
from several inverters and stores it regularly. Each data record is stored with
a timestamp which indicates the point in time when this record is valid. This
allows to analyze the collected data with a temporal perspective. Using temporal
aggregation the user will get a summary of the data (in charts, or statistics).
It allows the user to identify the trend and search for problems. Such problems
might often remain invisible but with charts it is relatively simple to detect
critical patterns.

But these temporal aggregations are very time consuming since they need a
lot of computational power. The embedded PC’s which collect the data from the
inverters have only a very limited hardware (computational power and memory).

1

Therefore not the whole data can be kept in memory which slows the queries
down dramatically. Such that it is necessary to keep the database smaller by
compressing the data.

Even if a variable is logged only every 5 minutes we obtain 105120 tuples
in a year. Knowing that we can imagine how much data we will have if we log
100 variables over years. In our system an inverter has about 10 to 16 variables
(depending on the type) and has an average uptime of about 12 hours per day.
With a log interval of 150 seconds in a facility with 4 inverters we obtain about 6
million tuples per year. With the time the queries will slow down dramatically.
Moreover the size of the database increases by about 1 GB per year, which is
also a big problem for our embedded server which have a relatively small hard
disc and only a slow processor. Bigger photo-voltaic systems might have 50 or
more inverters which generate about 12 GB (50 X 250MB) per year.

Therefore we had to build something which solves such problems. Since
the data is often needed at a high detail level for a specific time it was not
possible to simply increase the log interval. Because of that it is necessary to
compress the data after some time. But the compression itself is a very critical
task since it should remove tuples and on the other hand it should not change
the charts which will be generated from the data. Deleting records or taking
the average would do so, therefore it was not an acceptable solution for this
particular problem.

1.3 Proposed Solution

A solution for the above problem would be to compress the data by aggregating
data records. We propose in this thesis an algorithm which takes care of that. It
analyzes the whole data, picks the data series which have to be compressed and
aggregates them until they correspond to the specified granularity for the age of
the records. In order to keep the algorithm fast we decided to first pick all data
series which have to be compressed with a simple query which calculates the
granularity. Such that we do not have to iterate through the whole database.
As soon as that is done we have to compress the data records of the data series
until they have the specified granularity. The first and the last point of a data
series during one day can not be deleted because that would falsify statistics
which are created with the daily uptime of the system.

An original chart which shows the input power of a photo-voltaic inverter
might look like the trend shown in figure 1. The uncompressed chart here in
this example has 11 tuples and our algorithm has to aggregate tuples in order to
obtain a very similar chart with less tuples. The minimal and maximal points in
the charts are really important but the points in the middle are less important.
Therefore it is better to aggregate them first. The figure 2 shows the same
trend in a chart with compressed data. The compressed data has only 7 tuples
(instead of 11) and the overall trend of the chart is very similar with the chart
resulting from the original data. Note that in real life there are much more
tuples in the chart therefore the compressed and uncompressed charts will look
even more similar then with just a small data set. We tested the quality and

2

the usability of our proposed compression algorithm with real data in Chapter
5.

Figure 1: The uncompressed chart showing the input power of an inverter over
a day (11 tuples)

Figure 2: The compressed chart showing the input power of an inverter over a
day (7 tuples)

The selection of the two data records which have to be compressed and
their aggregation is a very critical task for which we planned, implemented
and tested a solution in which the algorithm decides for each single pair which
aggregation strategy is the best. First we order the adjacent points according
to their time difference. After that we consider the trend of the data series
by simply analyzing the values before and after this pair. If one of the points
is a maximum or a minimum we keep that point and remove the other one.
Otherwise they will be simply aggregated by taking the average. Such that it
is possible to adapt the aggregation strategy based on the trend of the data.

1.4 Organization of the Thesis

This thesis contains four main chapters, this introduction, and the conclusion
chapter. Each of the main chapters contains its own introduction and addresses
a specific aspect.

3

In Chapter 1 we introduced our motivation, the problems and our proposed
solution. Moreover we guide through the organization of the thesis.

In Chapter 2 we define the main concepts of data logging and discuss it
with other works which are related to a similar topic.

In Chapter 3 we explain the architecture of our system. Containing the
network architecture, the database architecture and the logical architecture.

In Chapter 4 we introduce the compression algorithm which we propose in
this thesis. We explain the overall strategy and structure of the algorithm in
his details with appropriate examples and pseudo code.

In Chapter 5 we evaluate the solution which we proposed. First we define
our setup we used for the evaluation. After that we measured the performance
and the quality / usability of our compression algorithm.

2 State of the Art

Nowadays data logging is a very important process of recoding events with an
automated computer program in order to provide an audit trail. These trails
can either help to detect and diagnose possible problems or just to help in
understanding the activity of the system during the shown timespan. The data
is usually collected through sensors, analyzed and stored into a database. It is
commonly used in scientific experiments and monitoring systems. In the early
years of the computers the computational power and the disk space have been
very expensive therefore only the important data was logged. In the last 10
years the computers became much faster and cheaper. Therefore people started
to log wherever possible at a higher resolution than ever before. This data
can then be analyzed in order to create statistics or charts, or simply to detect
possible problems.

Common applications for data logging are weather stations which log the
wind speed / direction, the temperature, the humidity, the solar radiation, etc.
Another application which makes excessive use of data logging is the vehicle
/ crash testing. And also the monitoring of computerized numerical control
(CNC) machines (position, speed, pressure) uses data logging for the analysis
and better understanding.

The data logging is now changing more then ever before. The old model
of a stand alone data logger which collects and monitors data is no longer up
to date. Modern data loggers will not just collect data and monitor it. They
analyze the data immediately and alarm the user in case of problems and create
automatic reports. The loggers often send the data directly to a webserver or
host their own web pages in a local network. [1]

There are different ways to store the data. The most common ones are the
range temporal data logging and the timestamp data logging.

In Range temporal data logging the values are logged with a timestamp and
another parameter which indicates for how long they are valid. This is most
commonly used when the values which have to be logged do not change fre-
quently. Such that it is possible to capture the value with just one tuple as

4

long as it remains unchanged. With this type of data logging it is possible to
determine the exact value of the variable at each timespan. Generating charts
and statistics is more expensive then with the timestamp data logging.

In Point temporal data logging each tuple has the value of the variable and
the timestamp to which it belongs. It is most commonly used for values which
are changing very frequently. The data model is very simple which makes it
easy to generate charts out of the data. But it is not possible to get the exact
value from a given timestamp since the values are only captured in an interval.
Depending on how fast the values are changing and on the log interval it is
possible to guess the value between two points.

With the increase in data which is collected, temporal aggregation has be-
come a very important task in data analysis. Computing these temporal aggre-
gates is usually costly and a bigger problem then just aggregating traditional
data. Each tuple in the database consists of a timestamp, an interval in which
it is valid (optional) and other parameters which have been logged. Such data
is usually stored with multiple levels of temporal granularities such that older
data is stored at a coarser granularity and more recent data is stored with a
higher detail.

In the last years there has been much research on temporal aggregation using
multiple granularities [2] [4] [8] [6].

A related work to this thesis is [2], which presents an effective way to ag-
gregate temporal data with multiple granularities. In that paper they provide
specialized index schemes for maintaining dynamically the temporal aggregates.
Our works differs from their, because they are just maintaining the index for
the temporal aggregates, we instead are compressing the existing data directly.
Sure, both ways of aggregating the data have practical meanings and can be
used different scenarios.

5

3 System Architecture

We divided the project in three parts as shown in figure 3. The embedded
servers, the master server and the clients.

The embedded servers are to so called data loggers which collect the data
from the sensors (in this case inverters via a serial connection), analyze it and
store it into the local database. They run a web server on the local network
which allows the clients to analyze and manage the system. The embedded
servers synchronize their data regularly with the data from the master server.
Such that they can be remote controlled and updated automatically.

The master server is running in the world wide web and manages the data
from the embedded servers. It provides a web page for the clients which allows
them to monitor the logged values, alarms and other things.

The clients can access their data over a webpage, either locally directly from
the embedded server or over the internet from the master server.

Figure 3: The structure of the system

All data is stored in a Microsoft SQL Server 2008 R2 database (on the
embedded server and also on the master server). The websites (ASP.NET) are
hosted in the Internet Information Server (IIS) and even the charts are created
without flash, silverlight or any other plugins. In order to provide the whole
functionality in the server we used the following frameworks / libraries:

• The .NET Framework which provides the standard classes for the devel-
opment and also the special classes like the SerialPort

• LightCore, a lightweight dependency injection container which can also
be used as a service locator

• MathParser, a parser which is able to solve mathematical expressions,
which we used to calculate variables with the values from the inverters

• Telerik.Web.UI, a library which contains useful controls for the web de-
velopment with ASP.NET (Charts, DataGrids, etc)

6

In this section we will show the main relevant tables and relations of our
database.

• Devices: Contains all devices which are attached to the embedded server.
Each device is composed by and id (PK), a name, a description, the com
port on which it is attached and it’s address, it’s serial number, and the
FK of the Type to which it belongs.

• VariableUnits: Contains all units the variables could be of (Hz, Volt,
Ampere, Watt). Each variable-unit is composed by an id (PK), and a
name

• Variables: Contains all variables which could be logged into the database.
Each variable is composed by an id (PK), a name and a has unit (in a n:1
relation with the id of table VariableUnits)

• VariableLogs: Contains all log values of the variables. Each variable-log
is composed by a timestamp, the device (in a n:1 relation with the id
of the table Devices), the id of the string (the string is a concatenation
of multiple photo-voltaic modules, an inverter can have 1 or more), the
variable (in a n:1 relation with the id of the table Variables) and the value.

• VariableLogGranularities: Contains all granularities of the variable logs.
Each variable log granularity is composed by an id (PK), the id of the
variable (in a n:1 relation with the id of the table Variables), the minimal
age of the tuples to fall in this granularity section and the maximal entries
per hour in this granularity section.

Note that these tables are only a part of the database. There are much more
tables which are not relevant for this thesis.

For the communication between the embedded server and the master server
we used the Windows Communication Foundation (WCF). WCF is an API
of the .NET Framework which can be used to build connected, service oriented
applications with web services. For our project we used the SOAP protocol with
a HTTP binding. Communication happens only one way, from the embedded
server to the master server. Because of security and technical reasons it is not
possible to access the embedded servers from the internet.

For the development of the compression algorithm I used Microsoft’s and
Sybase’s proprietary extension to SQL, called Transact - SQL or even shorter
T-SQL. T-SQL contains useful functions like the if statement, loops, variables
and much more. Such that it is possible to manipulate the data automatically
using stored procedures and functions.

7

4 The Compression Algorithm

4.1 Overall Strategy

For the compression of time series data using multiple granularities this thesis
proposes an algorithm which is applicable for different types of log data. The
main idea is to aggregate points in the time series which are the least important,
meaning that they are no points of maximum or minimum and that the time
distance to the next point is small. The data is first analyzed to find the data
series and their days where they have to be merged. This partial result are then
compressed one after the other. Thus, the main steps of the algorithm are as
follows:

1. Analyze the whole data and check whether a data series has to be com-
pressed on a specific day. Store the data series / day pairs which have to
be compressed in a temporary table (T1) for further usage

2. Process the first data series / day pair in the temporary table and aggre-
gate the least important tuples until the granularity of the data series is
coarse enough

3. Repeat step 2 as long as there are data series in the temporary table which
have to be compressed

The main intuition behind this strategy was to keep the amount of data with
which we have to deal as small as possible. Therefore we decided to introduce
the first step which picks only a few data series (the ones which have to be
compressed) out of the whole data. If the whole data has to be compressed this
step might not be needed but usually there is only a small subset of the data
series which have to be compressed since such compression algorithms should
run regularly (once a day / once a week).

4.2 Structure

Our compression algorithm is structured in different modules (as shown in figure
4 which have clear responsibilities because each type of data might require a
different tuple selection or aggregation procedures. Because of this modularity
it is relatively easy to adapt the algorithm.

8

Figure 4: The structure of our algorithm

4.2.1 Analysis Module

The analysis module is responsible for the initial analysis of the data. Which
means that it first of all determines the timespans where specific time series
have to be compressed. This module is making use of the granularity module
to obtain the granularities with which a variable has to be stored depending on
the age of the data records.

1. Analyze the whole data in the database and group each data series by day

• Get the maximal entries per day for this data series

• Check whether the data series has to be compressed meaning that
its granularity is coarse enough

2. Write all remaining data series into a new temporary table (T1) (unique
rank, timestamp, number of tuples, expected number of tuples, device id,
variable id, string id)

3. Call the compression module which will continue with the work

Algorithm 1 is the most important part of the analysis module. It analyzes
the data series by day and writes the data series which have to be compressed
in a new temporary table (T1). The information will then be used by the
compression module. For the code in T-SQL see Figure 9 in the Appendix.

Algorithm 1 The algorithm which analyzes the data

1: dSToCompress := New collection of data series
2: dS := Get all data series grouped by day
3: for i = 0 to number of dS − 1 do
4: actualSerie := dS[i]
5: noTuples := Get number of tuples in actualSerie]
6: maxNoTuples := Get max. number of tuples for actualSerie
7: if noTuples > maxNoTuples then
8: Add actualSerie to dSToCompress
9: end if

10: end for
11: return dSToCompress

9

Example 1: This example shows the generated output of the analysis mod-
ule. Table 1 contains the raw data which should be compressed and Table 2 is
the temporary table (T1) which is used by the module to add the data series
which have to be compressed.

Timestamp VariableId DeviceId StringId Value

11.10.2011 09:20 1 2 -1 66

11.10.2011 09:22 1 2 -1 67

11.10.2011 09:22 2 2 -1 12

11.10.2011 09:24 1 2 -1 69

11.10.2011 09:25 2 2 -1 15

11.10.2011 09:26 1 2 -1 72

11.10.2011 09:28 1 2 -1 75

.....

11.10.2011 19:58 1 2 -1 287

Table 1: The data which was logged

Now imagine that there are much more variable logs (2012 tuples) for the
variable with the id 1. Meaning that it has to be compressed. Variable 2 has
only 2 logs therefore there is no need to compress it. The table 2 shows the
generated output of the analysis module which is stored in the temporary table
(T1).

Rank Timestamp Entries MaxEntries DeviceId VariableId

1 11.10.2011 09:20 2012 706 2 1

Table 2: The resulting tuples in the temporary table

4.2.2 Granularity Module

The granularity module is responsible for the management of the granularities
depending on the variables and the age of the data records. It will be used by
the analysis and compression module. The granularities can be specified directly
in this module or also in an additional table. When this module is called it will
return the maximal number of data records per day depending on the given
variable, the age and the length of the data series.

1. Calculate the age of the data series in days

2. Calculate the length of the data series in hours

3. Read the apropriate granularity of the given variable and age from the
database

4. Verify if the resulting entries per hour are correct. If there is no matching
entry in the database (ex. data is younger then the first granulation age)
return the maximal value of int

10

5. Calculate the maximal entries for the data series and return it

Algorithm 2 returns the maximal entries / tuples for a data series which corre-
sponds to the given data. For the code in T-SQL see Figure 10 in the Appendix.

Algorithm 2 The algorithm which determines the granularity of a data series

1: ageInDays := Get age of dataSerie in days
2: lengthInHours := Get length of dataSerie in hours
3: entriesPerHour := IntMaxV alue
4: maxGranularityAge := 0
5: //Go through all specified granularities and pick the max. entries per hour
6: for i := 0 to numberOfGranularities− 1 do
7: if granuarities[i].age <= ageInDays and granularities[i].age >

maxGranularityAge and granularities[i].dataSerie = dataSerie then
8: maxGranularityAge := granularities[i].age
9: entriesPerHour := granularities[i].entriesPerHour

10: end if
11: end for
12: maxEntriesInDataSerie := lenghtInHours ∗ entriesPerHour
13: return maxEntriesInDataSerie

Example 2: In this example we show how the granularities are retrieved
from the database and what is actually returned when the call that function.
The table 3 contains a test data in the granularities database. We added 2 time
spans (30 days and 180 days) after which the data has to be compressed.

Min age in days VariableId Entries per hour

30 1 36

30 2 36

30 3 72

30 4 72

180 1 24

180 2 24

180 3 48

180 4 48

Table 3: Test data in the granularity table

With the specified granularities from table 3 we can now use the GetMax-
EntriesOfDay function which returns the maximal entries per day for the given
variable, startup and shutdown time. Since the entries per day depend on the
age of the data we now assume that we have today the 11.10.2011.

11

VariableId StartupTime ShutdownTime Value
1 09.09.2011 08:15 09.09.2011 18:32 360
3 09.09.2011 08:15 09.09.2011 18:32 720
1 02.01.2011 07:52 02.01.2011 19:13 264
3 02.01.2011 07:52 02.01.2011 19:13 528

Table 4: The return values of the function depending on the input

4.2.3 Compression Module

The compression module is the main part of the algorithm. It is responsible for
the merging / aggregation of the data records. It receives the data series which
have to be compressed and the days on which they have to be compressed.
Using the granulation module it can then get the specific granularity for the
given items. It makes use of the selection module which selects two adjacent
points which should be merged next. Finally it uses the aggregation module
which aggregates the two given points.

1. Select and delete the first data series / day pair in the temporary table
(T1) which was filled by the analysis module

2. Get the next two tuples which should be aggregated with the selection
module

3. Aggregate these two tuples with the aggregation module

4. Repeat step 2 until the number of tuples in the data series is less or equal
the max number of tuples in this data series (information from T1)

5. Repeat step 1 until there are no data series / day pairs left for compression

Algorithm 3 is the most important part of the compression module. It goes
through each data series and compresses it with the selection and aggregation
module until the granularity is coarse enough. For the code in T-SQL see Figure
11 in the Appendix.

Algorithm 3 The algorithm which compresses the data series

1: for i := 0 to number of data series to compress - 1 do
2: actualDS := dataSeries[i]
3: while max number of entries ¡ number of entries do
4: nextPair := Get next pair to compress
5: Aggregate nextPair (AggregationModule)
6: end while
7: end for

Example 3: This example shows the data before (Table 5) and after (Table
6) the compression. The granularity is set to 3 entries per hour.

12

Id Timestamp VariableId DeviceId StringId Value

1 2011-10-11 08:00:00 1 2 -1 12

2 2011-10-11 08:05:10 1 2 -1 10

3 2011-10-11 08:10:02 1 2 -1 8

4 2011-10-11 08:15:40 1 2 -1 11

5 2011-10-11 08:20:20 1 2 -1 12

6 2011-10-11 08:25:10 1 2 -1 9

7 2011-10-11 08:30:01 1 2 -1 14

8 2011-10-11 08:35:05 1 2 -1 13

9 2011-10-11 08:40:22 1 2 -1 8

10 2011-10-11 08:45:11 1 2 -1 11

Table 5: Uncompressed variable log data of example 3

Id Timestamp VariableId DeviceId StringId Value

1 2011-10-11 08:00:00 1 2 -1 12

2 2011-10-11 08:07:26 1 2 -1 9

5 2011-10-11 08:20:20 1 2 -1 12

7 2011-10-11 08:30:01 1 2 -1 14

9 2011-10-11 08:40:22 1 2 -1 8

10 2011-10-11 08:45:11 1 2 -1 11

Table 6: Compressed variable log data of example 3

The resulting compressed data which we see in table 6 was generated by the
following steps:

• Aggregate tuples 4 and 5. Tuple number 5 is a maximum value therefore
delete tuple 4.

• Aggregate tuples 5 and 6. Tuple number 5 is a maximum value therefore
delete tuple 6.

• Aggregate tuples 2 and 3. Both are neither minimal or maximal values.
Update tuple number 2 with the average values from both and delete tuple
3.

• Aggregate tuples 7 and 8. Tuple number 7 is a maximum value therefore
delete tuple 8.

4.2.4 Selection Module

The selection module selects the data tuples which should be aggregated first.
This module is used by the compression module which tells this module which
data series should be compressed. Then this module will order all tuples in
this data series according to their time difference (points with the smallest time
difference go first). The result will then be stored into another temporary table
(T3). Each pair consists of the id of the first tuple and the id of the second

13

tuple. Such that the compression module can aggregate the pairs one after the
other until the granularity of the data series is coarse enough.

1. Write all tuples of the given data series on the indicated day ordered by
the timestamp in a temporary table (T2)

2. Select the ids of the first and last tuples in the series

3. Order all adjacent tuples by their time difference (first and last tuples are
excluded) and write their ids in a temporary table (T3)

The algorithm 4 writes the tuples of the actual data series in a new temporary
table (T2) and prepares them for further use. In the next step it orders the
tuple pairs according to their time difference and writes them in another tem-
porary table (T3). Moreover it ensures that the first and last tuples are never
aggregated since that might falsify the generated statistics (ex. startup time,
shutdown time). For the code in T-SQL see Figure 12 in the Appendix.

Algorithm 4 The algorithm which prepares the data series for aggregation

1: diffT imespan :=get max value of timespan
2: firstId := −1
3: //Iterate over all tuples (except first and last) in the data series
4: for i := 1 to number of tuples in data series - 2 do
5: //check if this pair has a smaller difference
6: actualDifference := tuples[i + 1].time− tuples[i].time
7: if actualDifference < diffT imespan then
8: diffT imespan := actualDifference
9: firstId := i

10: end if
11: end for
12: return firstId and firstId + 1

Example 4: In this example we show how the tuples which have to be
compressed are selected. The algorithm returns the adjacent tuples / pair with
the smallest time difference. The table 7 contains the data series whichs pair
with the smallest time difference should be selected.

14

Id Timestamp VariableId DeviceId StringId Value

1 2011-10-11 08:00:00 1 2 -1 12

2 2011-10-11 08:05:10 1 2 -1 10

3 2011-10-11 08:10:02 1 2 -1 8

4 2011-10-11 08:15:40 1 2 -1 11

5 2011-10-11 08:20:20 1 2 -1 12

6 2011-10-11 08:25:10 1 2 -1 9

7 2011-10-11 08:30:01 1 2 -1 14

8 2011-10-11 08:35:05 1 2 -1 13

9 2011-10-11 08:40:22 1 2 -1 8

10 2011-10-11 08:45:11 1 2 -1 11

Table 7: Variable log data of example 4

FirstId SecondId

4 5

Table 8: Output of the selection module for example 4

4.2.5 Aggregation Module

The aggregation module aggregates two given data tuples. Because of the mod-
ularity of the solution we proposed, this module can be exchanged easily. Such
that it is possible to use different modules depending on the type of the data
and the computational power of the database server.

1. Analyze the adjacent tuples (one tuple before the pair and one after the
pair)

2. Choose the appropriate aggregation type and calculate the aggregation
value

3. Update the first tuple and set the new value and timestamp

4. Delete the second tuple

5. Remove the actual pairs from the temporary tables (T2 and T3)

Algorithm 5 aggregates the two tuples with the given ids with an aggregation
function according to their adjacent points. For the code in T-SQL see Figure
13 in the Appendix.

15

Algorithm 5 The algorithm aggregates the given tuple-pair

1: Fir :=Get first tuple of pair
2: Sec :=Get second tuple of pair
3: Pre :=Get predecessor of first
4: Suc :=Get successor of second
5: if (Fir > Pre and Fir > Sec and Fir > Suc) or (Fir < Pre and Fir < Sec

and Fir < Suc) then
6: //The first entry is a min or max
7: Delete Sec from Log table
8: else if (Sec > Pre and Sec > Fir and Sec > Suc) or (Sec < Pre and

Sec < Fir and Sec < Suc) then
9: //The second entry is a min or max

10: Delete Fir from Log table
11: else
12: //First and second are neither min or max. Aggregate them by taking

the average
13: Avg :=Get average value of Fir and Se
14: AvgDateT ime :=Get average date time of Fir and Sec
15: Update Fir in database with the new AvgV alue and AvgDateT ime
16: Delete Sec from Log table
17: end if

Example 5: In this example we show how this algorithm behaves differently
based on the input. Table 9 shows the value of previous, first, second, and next
tuples and based on them the action done by the module.

Previous First Second Next Action

2 4 3 2 Delete Second

2 4 5 2 Delete First

5 4 4 2 Update First, Delete Second

Table 9: Actions of the aggregation module for example 5

16

5 Experimental Evaluation

5.1 Setup

In order to prove whether the algorithm we proposed in this thesis provides
an acceptable result we created several tests. Such that we have been able to
compare the result of test queries with data which was compressed in different
granularities. Moreover we tested the performance of the solution we proposed.

For all our tests we used the following setup:

• Windows 7 x64 - core i7 860 @ 2,8Ghz - 8 GB Ram

• Microsoft SQL Server 2008 R2

• 4 inverters

• Data of a year (about 1.000.000 variable logs)

• 12 different variables (see Table 10

• Multiple granularities based on the variable and the age of the log (see
Table 11)

Id (PK) Name VariableUnit Id

1 DailyEnergy 1

2 Frequency 2

3 GridCurrent 3

4 GridPower 1

5 GridVoltage 4

6 ILeak 3

7 InputCurrent 3

8 InputVoltage 4

9 Temperature 5

10 TotalEnergy 1

11 PowerLeak 1

12 InputPower 1

Table 10: Data in the variables table

17

Variable Id Min age in days Entries per hour

1 30 36

2 30 36

6 30 36

9 30 36

10 30 36

3 30 72

4 30 72

5 30 72

7 30 72

8 30 72

11 30 72

12 30 72

1 180 24

2 180 24

6 180 24

9 180 24

10 180 24

3 180 48

4 180 48

5 180 48

7 180 48

8 180 48

11 180 48

12 180 48

Table 11: Test data in the granularity table

5.2 Performance Evaluation

In order to prove the performance we created several scenarios. First of all we
measured the runtime of the algorithm when compressing the whole data set
(see Table 12).

Data Runtime
Completely uncompressed 3 hours 48 minutes

Only half of data compressed 1 hour 23 minutes
Only last day to compress 27 seconds

No data to compress 21 seconds

Table 12: Runtime test of the algorithm

The runtime performance of our solution is acceptable. Usually such algo-
rithms should be run regularly (every night, every week). And even if there is
more data to compress the algorithm is relatively fast.

18

5.3 Quality / Usability Evaluation

In order to prove that the compression of the data does not affect the overall
look of the chart to much we tested it by comparing the chart resulting from the
original data with the one resulting from the compressed data. The figure 5 was
generated with the original / uncompressed data. The figure 6 was generated
with the compressed data. Both charts show the input power of an inverter over
11 hours. We see that the chart which was generated with the compressed data
is very similar with the one which was generated from the original data. Only a
few details are lost but the peaks are still the and the overall look is the same.

Figure 5: The day chart with the original data

Figure 6: The day chart with the compressed data

19

Since our solution keeps all the maximal and minimal points we can generate
charts which are grouped by day, month, or year without loosing any informa-
tion. In figure 7 we see the chart which was generated with the original data
and in figure 8 we see the chart which was generated with the compressed data.
They show the produced energy grouped by day over a month. Both charts are
equal. And this is exactly what was the target for this thesis.

Figure 7: The chart (grouped by day) with the original data

Figure 8: The chart (grouped by day) with the compressed data

20

6 Conclusion and Future Work

This thesis introduced the compression algorithm for time series data using
multiple granularities. It showed that it is applicable for different types of data
and that it is scalable for large data-sets. The main focus on the algorithm was
to merge / compress the data series without changing the result too much. Such
that it was necessary to not just focus on single points but we had to consider
the overall trend of the curve in order to choose the right aggregation strategy.
We proposed different aggregation strategies which can be used depending on
the type of the data which should be compressed. Usually the aggregation
strategy which also considers the adjacent points should fit best for data where
the result has to be very close to reality. If it is a performance critical task where
the result must not be of such a high quality then the aggregation module could
be exchanged with another one.

We implemented the compression algorithm with T-SQL, Microsoft’s and
Sybase’s extension for the SQL standard, in a Microsoft SQL Server 2008 R2
database system. But it could also be implemented in other database systems
as well.

Future work could include the following tasks. First of all the aggregation
strategies could be extended to not just consider the adjacent point but to con-
sider the overall trend of the data. Another possible task would be to optimize
the algorithm to obtain a better performance.

21

References

[1] Scott South and Adam Krumbein, The Future of Data Acquisi-
tion: Will the Internet’s Cloud-Computing Replace the Data Logger?
http://www.stevenswater.com/articles/future_of_datalogging.aspx

[2] Donghui Zhang, Dimitrios Gunopulos, Vassilis J. Tsotras and Bernhard
Seeger, Temporal Aggregation over Data Streams using Multiple Granulari-
ties Computer Science Department, University of California

[3] M. R. Henzinger, S. Rajagopalan and P. Raghavan, Computing on Data
Streams. TechReport 1998-011, DEC, 1998

[4] D. Zhang, A. Markowetz, V.J. Tsotras, B.Seeger and D. Gunopulos, Efficient
Computation of Temporal Aggregates with Range Predicates. Proc. of PODS,
2001

[5] B.Moon, I.F. Vega Lopez and V. Immanuel, Efficient Algorithms for Large-
Scale Temporal Aggregation. IEEE Transactions on Knowledge and Data
Engineering, 2003

[6] C. Bettini, X. S. Wang and S. Jajodia, Time Granularities in Databases,
Data Mining and Temporal Reasoning. Springer, 2000

[7] N. Kline and R.T. Snodgrass, Computing temporal aggregates. Proceedings
of 11th International Conference on Data Engineering (ICDE95), Taiwan
1995

[8] C. Bettini, X. S. Wang and S. Jajodia, Temporal Semantic Assumptions and
Their Use in Databases. IEEE TKDE 10(2), 1998

22

7 A. Appendix: Compression Algorithms in T-
SQL

CREATE PROCEDURE [dbo] . [AnalyzeData]
AS
BEGIN
SET NOCOUNT ON;
IF EXISTS(SELECT TABLENAME FROM INFORMATION SCHEMA.TABLES WHERE

TABLENAME = ’ temporaryTable1 ’) DROP TABLE temporaryTable1 ;
SELECT rank () OVER (ORDERBY MIN(Timestamp) + (Dev ice Id ∗1068) + (

Var i ab l e Id ∗671) + (St r ing Id ∗586)) as ’Rank ’ , MIN(Timestamp) AS
’ Timestamp ’ , COUNT(∗) AS ’ Ent r i e s ’ , [dbo] . [GetMaxEntriesOfDay

] (Var iab l e Id , Str ingId , MIN(Timestamp) , MAX(Timestamp)) AS ’
MaxEntries ’ , Device Id , Var iab l e Id , S t r i ng Id INTO
temporaryTable1 FROM VariableLogs

GROUPBY Device Id , Var iab l e Id , Str ingId , DATEPART(YEAR, Timestamp
) , DATEPART(MONTH, Timestamp) , DATEPART(DAY, Timestamp)

HAVINGCOUNT(∗) > [dbo] . [GetMaxEntriesOfDay] (Var iab l e Id , Str ingId ,
MIN(Timestamp) , MAX(Timestamp))

END

Figure 9: This procedure analyzes the log data (Analysis module)

CREATE FUNCTION [dbo] . [GetMaxEntriesOfDay] (@VariableId INT,
@StringId INT, @StartUpTime DATETIME, @ShutdownTime DATETIME)

RETURNS INT
AS
BEGIN

DECLARE @AgeInDays INT
DECLARE @LengthInHours INT
DECLARE @EntriesPerHour INT
SELECT @AgeInDays = [dbo] . [GetAgeInDays] (@StartupTime)
SELECT @LengthInHours = DATEPART(HOUR, @ShutdownTime) −

DATEPART(HOUR, @StartUpTime)
IF @LengthInHours = 0

SELECT @LengthInHours = 1 ;
SELECT TOP(1) @EntriesPerHour = EntriesPerHour FROM

Var iab l eLogGranu la r i t i e s
WHERE Var iab l e Id=@VariableId
AND AgeInDays <= @AgeInDays
ORDERBY AgeInDays DESC;

IF @EntriesPerHour IS NULL
RETURN 2147483347;

RETURN @LengthInHours ∗ @EntriesPerHour ;
END

Figure 10: This function gets the maximal entries per day of the given data
series (Granularity module)

23

CREATE PROCEDURE [dbo] . [CompressDataSeries]
AS
BEGIN
IF EXISTS(SELECT TABLENAME FROM INFORMATION SCHEMA.TABLES WHERE

TABLENAME = ’ temporaryTable1 ’) DROP TABLE temporaryTable1 ;
SELECT rank () OVER (ORDERBY MIN(Timestamp) + (Dev ice Id ∗1068) + (

Var i ab l e Id ∗671) + (St r ing Id ∗586)) as ’Rank ’ , MIN(Timestamp) AS
’ Timestamp ’ , COUNT(∗) AS ’ Ent r i e s ’ , [dbo] . [GetMaxEntriesOfDay

] (Var iab l e Id , Str ingId , MIN(Timestamp) , MAX(Timestamp)) AS ’
MaxEntries ’ , Device Id , Var iab l e Id , S t r i ng Id INTO
temporaryTable1 FROM VariableLogs

GROUPBY Device Id , Var iab l e Id , Str ingId ,
DATEPART(YEAR, Timestamp) , DATEPART(
MONTH, Timestamp) , DATEPART(DAY,
Timestamp) HAVINGCOUNT(∗) > [dbo] . [
GetMaxEntriesOfDay] (Var iab l e Id ,
Str ingId , MIN(Timestamp) , MAX(Timestamp
))

DECLARE @CurrentRank INT; DECLARE @MaxRank INT;
SELECT @CurrentRank = 1
SELECT @MaxRank = MAX(Rank) FROM temporaryTable1
WHILE @CurrentRank <= @MaxRank
BEGIN

DECLARE @Day DATETIME; DECLARE @DeviceId INT; DECLARE
@StringId INT; DECLARE @VariableId INT; DECLARE
@Entries INT; DECLARE @MaxEntries INT; DECLARE
@PairsInTemp3 INT; DECLARE @FirstItemId INT; DECLARE
@SecondItemId INT

SELECT @Day = Timestamp , @DeviceId = Device Id , @StringId =
Str ingId , @VariableId = Var iab l e Id , @Entries =

Entr ies , @MaxEntries = MaxEntries FROM temporaryTable1
WHERE RANK = @CurrentRank ;

EXEC [dbo] . [PrepareDataSer iesForAggregat ion] @Day=@Day,
@DeviceId=@DeviceId , @StringId=@StringId , @VariableId=
@VariableId

SELECT @PairsInTemp3 = COUNT(∗) FROM temporaryTable3
WHILE @Entries > @MaxEntries
BEGIN
IF @PairsInTemp3 = 0
BEGIN

EXEC [dbo] . [PrepareDataSer iesForAggregat ion]
SELECT @PairsInTemp3 = COUNT(∗) FROM

temporaryTable3
END
SELECT TOP(1) @FirstItemId = Id1 , @SecondItemId=Id2 FROM

temporaryTable3
EXEC [dbo] . [AggregateItems] @FirstId = @FirstItemId ,

@SecondId = @SecondItemId
SELECT @Entries = @Entries −1;

END
SELECT @CurrentRank = @CurrentRank + 1
END
DROP TABLE temporaryTable1
END

Figure 11: This procedure compresses the log data (Compression module)

24

CREATE PROCEDURE [dbo] . [PrepareDataSer iesForAggregat ion]
@Day DATE,

@DeviceId INT,
@StringId INT,
@VariableId INT

AS
BEGIN

SET NOCOUNT ON;
DECLARE @MinId INT
DECLARE @MaxId INT

IF EXISTS(SELECT TABLENAME FROM INFORMATION SCHEMA.TABLES
WHERE TABLENAME = ’ temporaryTable2 ’) DROP TABLE
temporaryTable2 ;

select rank () OVER (ORDERBY Timestamp) as ’Rank ’ ,
Id , Timestamp , Value into temporaryTable2 from
VariableLogs WHERE Timestamp >= @Day AND
Timestamp < DATEADD(DAY, 1 , @Day) AND Device Id
= @DeviceId AND St r ing Id = @StringId AND
Var i ab l e Id = @VariableId

SELECT @MinId = MIN(Id) , @MaxId = MAX(Id) FROM
temporaryTable2

IF EXISTS(SELECT TABLENAME FROM INFORMATION SCHEMA.TABLES
WHERE TABLENAME = ’ temporaryTable3 ’) DROP TABLE
temporaryTable3 ;

SELECT t1 . Id AS Id1 , t2 . Id AS Id2 INTO temporaryTable3 FROM
temporaryTable2 t1 , temporaryTable2 t2 WHERE

t2 . Rank = t1 . Rank + 1 AND t1 . Id != @MinId AND t2
. Id != @MaxId

ORDERBY ([dbo] . [GetSeconds] (t2 .Timestamp) − [dbo
] . [GetSeconds] (t1 .Timestamp))

END

Figure 12: This procedure prepares the given data series for the aggregation
(Selection module)

25

CREATE PROCEDURE [dbo] . [AggregateItems]
@FirstId INT, @SecondId INT

AS
BEGIN
DECLARE @PreviousValue FLOAT

DECLARE @FirstValue FLOAT
DECLARE @SecondValue FLOAT
DECLARE @NextValue FLOAT
DECLARE @Rank INT
SELECT @Rank = Rank FROM temporaryTable2 WHERE Id=@FirstId ;
SELECT TOP(1) @PreviousValue = Value FROM temporaryTable2

WHERE Rank < @Rank ORDERBY Rank DESC;
SELECT TOP(1) @FirstValue = Value FROM temporaryTable2

WHERE Id=@FirstId ;
SELECT TOP(1) @SecondId = Value FROM temporaryTable2 WHERE

Id=@SecondId ;
SELECT TOP(1) @NextValue = Value FROM temporaryTable2 WHERE

Rank > @Rank + 1 ORDERBY Rank ASC;

IF (@FirstValue > @PreviousValue AND @FirstValue >
@SecondValue AND @FirstValue > @NextValue)

OR (@FirstValue < @PreviousValue AND @FirstValue <
@SecondValue AND @FirstValue < @NextValue)

BEGIN
−− The f i r s t item i s e i t h e r min or max
DELETEFROM VariableLogs WHERE Id=@SecondId ;
DELETEFROM temporaryTable2 WHERE Id=@SecondId ;
DELETEFROM temporaryTable3 WHERE Id2=@SecondId ;
RETURN;

END

IF (@SecondValue > @PreviousValue AND @SecondValue >
@FirstValue AND @SecondValue > @NextValue)

OR (@SecondValue < @PreviousValue AND @SecondValue
< @FirstValue AND @SecondValue < @NextValue)

BEGIN
−− The second item i s e i t h e r min or max
DELETEFROM VariableLogs WHERE Id=@FirstId ;
DELETEFROM temporaryTable2 WHERE Id=@FirstId ;
DELETEFROM temporaryTable3 WHERE Id2=@FirstId ;
RETURN;

END

DECLARE @AverageDateTime DATETIME
DECLARE @AverageValue FLOAT
SELECT @AverageDateTime = CAST(AVG(CAST(Timestamp AS float)

) AS datet ime) , @AverageValue = AVG(Value) FROM
VariableLogs WHERE Id=@FirstId OR Id=@SecondId

UPDATE VariableLogs SET Timestamp = @AverageDateTime , Value
= @AverageValue WHERE Id = @FirstId ;

DELETEFROM VariableLogs WHERE Id=@SecondId ;
UPDATE temporaryTable2 SET Timestamp = @AverageDateTime

WHERE Id = @FirstId ;
DELETEFROM temporaryTable2 WHERE Id=@SecondId ;
DELETEFROM temporaryTable3 WHERE Id2=@SecondId ;

END

Figure 13: This procedure aggregates the two given tuples (Aggregation module)

26

