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Abstract

A major task in meteorology is to continuously collect measurements about various envi-
ronmental parameters, such as temperature, rainfall, relative humidity and others. Due to
various circumstances, such as broken sensors or connection channels, the impossibility of
collecting these values generates data gaps on the time series.

This thesis work analyzes the MicroMet Preprocessor, a theoretical meteorological model
developed by Liston and Elder in 2006. It uses various techniques to filter meteorological data,
identify deficiencies and anomalies due to the previously described problems, and finally it fills
missing data segments according to various temporal interpolation algorithms ranging from
basic linear interpolation up to Multiplicative Seasonal Autoregressive Integrated Moving
Average statistical forecasting algorithms.

The major contribution of this thesis work is the proposal of several optimizations to the
MicroMet Preprocessor to achieve a better accuracy and more realistic results on seasonal
time series. Beside this, it includes some extensions to handle various special cases, making
the model able to exploit better the known data in the time series and to fill time series with
a higher frequency of data gaps.

This thesis work evaluates and compares the improvements from the original MicroMet
Preprocessor model by running the implementation of the improved model with real meteo-
rological data over a series of generated data gaps.
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1 Introduction and Problem Description

Since the antiquity, meteorology has been concerned with the scientific study of atmospheric
conditions, supporting the utopian attempt of the humanity to forecast the weather. Although
these studies have been carried on since millennia, less progress has been done until the
18th century. Only the introduction of, at that time, quick communication channels, as the
electronic telegraph in the 19th century, allowed the first great discoveries. Not until the
development of the computer in the half of the 20th century, the real breakthroughs were
achieved. Computers have allowed to process mathematical models integrating the efforts of
scientists that have been studying meteorological phenomena and developing physically based
mathematical relationships for decades. This have brought to the realization of physically
plausible high resolution terrestrial models describing meteorological distribution exploiting
the huge amount of data collected by the measurement stations trough the years.

The activity of continuously collecting measurements about various environmental param-
eters, such as temperature, rainfall, relative humidity and others, have ever been one of the
principal tasks in meteorology and the lack of complete data sets can seriously threat the
identification of important environmental relationships. Time series with missing values are
often encountered in practice due to various circumstances, such as broken of frozen sensors,
unreliable communication channels, partial data corruption and others. As an additional
drawback, the previously described problems, together with additional environmental influ-
ences, can introduce deficiencies and anomalies making the data less reliable. In many cases,
measurement stations are situated in localities, which are not easily reachable or also totally
unreachable, e.g. during winter time. The failure of such stations can often not be remedied
for days or weeks. It is therefore important to develop temporal interpolation techniques,
which are able to recreate the missing data in the time series. As Figure 1.1 shows, there are
many ways of filling missing data segments with data, but the aim is essentially to create data
that reflects best the reality and possibly obeys to known natural laws. The missing data seg-
ment is represented by the hatched area. The three light drawn lines conceptually represent
different possibilities of temporal interpolations, but only one of them actually seems to be a
plausible solution.
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Figure 1.1: Possible temporal interpolations.
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MicroMet [7] is one of such previously described meteorological distribution models. It
includes a preprocessor responsible for providing complete and continuous time series for the
future spatial interpolation, which provides spatially continuous atmospheric data. It fil-
ters time series from distinct measurement points searching for anomalies and removing the
affected data segments. These segments, together with other preexistent missing data seg-
ments, are temporally interpolated by making use of different algorithms in order to fill them
with as realistic data as possible. These algorithms range from basic linear interpolation up
to complex Multiplicative Seasonal Autoregressive Integrated Moving Average (MSARIMA)
statistical algorithms, allowing to interpolate missing data segments of up to several days of
length. MicroMet, as also other models do, concentrate the efforts on the spatial interpola-
tion, leaving the possibility for potential optimizations. Figure 1.2 conceptually shows the
data flow of the MicroMet Preprocessor.

output
time series

detect
anomalies

detect missing
segments

algorithm 1

algorithm 2

algorithm 3

input
time series

data interpolation

data filtering

Figure 1.2: Data flow diagram of the MicroMet Preprocessor.

In this thesis, several optimizations of these algorithms are going to be proposed. The opti-
mizations have been thought especially for seasonal non-stationary time series, which present
a regular seasonal cycle. The research has actually been focused on air temperature, since
air temperature represents one of the most important input parameters in meteorological-
physical models and allows to derive or estimate other parameters using natural laws. The
optimizations include improvements of the filtering algorithms, which improve the detection of
anomalous data segments, as well as improvements of the temporal interpolation algorithms,
increasing the plausibility and the reliability of the interpolated data segments. Further, some
extensions to these algorithms are proposed, in order to increase flexibility end efficacy. These
optimizations have been designed in a way, such that they can be adapted to the time series,
allowing them to fit best.

Finally, the implementation of the MicroMet Preprocessor, together with the proposed
optimizations, has allowed an empirical evaluation of the improvements and a comparison of
both preprocessor versions, proving the actual benefits. Tests have been run over multiple
time series collected by different measurement stations, presenting different sizes of missing
data segments.

To summarize, the main contributions of this thesis are:

• The optimization of the quality of the interpolated data.

• The optimization of the capability of detecting anomalous data.

• The optimization of the efficacy.

• A tool that implements and optimizes the MicroMet Preprocessor.
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The rest of the thesis is organized as follows: Chapter 2 reports research and existing
applications related to this thesis. Chapter 3 describes MicroMet and its functionalities.
Chapter 4 proposes several optimization to the MicroMet Preprocessor. Chapter 5 shows
the most relevant details about the implementation. Chapter 6 presents the results of the
evaluation and compares the improvements. Finally, Chapter 7 concludes this thesis and
presents possible future improvements.
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2 Related Work

The interpolation of missing data segments in time series is actually an old problem, but
only recently, with the evolution of powerful computers, able to handle the huge amount of
collected data from the measurement stations, it gained popularity under the researchers.
During the research that brought to the development of this work, a number of libraries and
applications were found that could somehow handle the problem, but also different theories
and research outcomes were encountered. This chapter shortly presents some research done
until now and the most relevant existing applications, discussing also their limitations and
applicability in this specific field.

The interpolation of missing data segments in non-stationary time series, independently
from its domain, has been studied by different researchers in the last few decades. So,
Brubacher and Wilson [2] were probably one of the first who studied the application of
statistical algorithms for estimating missing values in time series. Specifically, they exploited
the research made by Box and Jenkins [1] on ARIMA models to estimate the influence of
holidays on electricity demand.

Basing on the outcomes of the cited works, other researchers contributed to this methods,
like Gomez, Maravall and Peña [15], which presented and compared the usage of both the
ARIMA algorithm using the Kalman filter and the EM algorithm for interpolating missing
values. As well as Pourahmadi [11] researched in the same field. Later, Cheng and Pourahmadi
[3] have contributed to the prediction of time series with incomplete past and to the problem
of interpolation of missing values using the autoregression and moving average algorithms.
More recently, Weerasinghe [16] discussed some variations and different usages and inputs of
ARMA, ARIMA and EM algorithms for temporal interpolation on sulphur dioxide levels.

New upcoming techniques, different from ARMA/ARIMA have been studied in 2010 by
Tektas [14], which compares weather forecasting using ANFIS and ARIMA. ANFIS has
showed to be a valid alternative to some variants of ARIMA if used in some circumstances.
Although these first promising results, its suitability its still heavily discussed an researched.

All this research brought with the time to the development of several applications imple-
menting different algorithms. MeteoIO [9] is a software library that aims to facilitate access
to meteorological data over time and space by transparent re-sampling, filtering, temporal
and spatial interpolation. The result is presented as grids of interpolated data, which coin-
cide with digital elevation models given as input together with the meteorological time series.
From a technical point of view, MeteoIO and MicroMet are similar and coincide in many as-
pects. A detailed analysis of the MeteoIO source code has actually shown, that some spatial
interpolation algorithms from MicroMet have been used. Regarding the temporal interpola-
tion techniques, MeteoIO clearly lacks behind MicroMet. The capabilities of the supported
algorithms, with the linear interpolation, the nearest neighbor interpolation and a cumulative
algorithm designed specifically to be applied on rainfall measurements, are heavily limited
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and not able to provide realistic results in cases of missing data segments.

JGrass [4], together with JGrasstools [5] is an analysis system for geographic resources
based on the uDig GIS framework, specifically for management, analysis and modeling of hy-
drological and geomorphological data. As for MeteoIO, the ability of handling meteorological
time series in the correct way is essential. While it concentrates mostly on spatial interpola-
tion, it lacks the ability of getting rid of missing data segments using temporal interpolation
techniques.

An other tool, called SEST [13], developed at the University of Zurich, is primarily the
outcome of research regarding alignment and similarity of time series. This tool, in comparison
to the previously described ones, is not focusing on the application in specific fields, instead,
it aims to optimally apply on time series data from a variety of domains. Among others, it has
the capability of filling missing values using different algorithms. Beside some trivial ones, it
uses the singular value decomposition method to create the main trends in the missing data
segments.

Among the software that is able of interpolation, we also have the MatLab [8] numerical
computing environment and its open source counterpart GNU Octave [10] as well as GNU R
[12]. These applications were actually not intended to interpolate missing segments in time
series but in numerical functions. Mainly their ability resides in linear interpolation, nearest
neighbor interpolation, spline interpolation, cubic and piece-wise cubic interpolation, which
would dramatically fail if compared to the expectations for meteorological data interpolation.
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3 The MicroMet Model

3.1 Overview

MicroMet is a nearly physically based meteorological distribution model thought for high
spatial resolutions developed by Liston and Elder in 2006 [7]. MicroMet, together with EnBal,
SnowPack and SnowTran-3D aggregate to a larger and more complex meteorological model
called SnowModel [6]. SnowModel was created with the aim of simulating processes like
snow accumulation, blowing snow redistribution and sublimation, snow density evolution and
snowpack melt.

The role of MicroMet inside SnowModel is to define the meteorological forcing conditions
and their spatial distribution trough assimilation and interpolation, making use of known
relationships between meteorological parameters and area topography, in order to provide
temporally and spatially continuous atmospheric data. This data is essential to run EnBal,
SnowPack, and SnowTran-3D. So, MicroMet represents the first element of the data flow
chain inside SnowModel.

The MicroMet model is, from a functional point of view, composed of two main parts:

1. The first part consists of the so called MicroMet Preprocessor. It is responsible for the
temporal distribution and the continuity and consistency of measured meteorological
data at each measurement point. This is achieved in two steps:

a) It filters meteorological data on a temporal and on a per measurement point basis
and identifies deficiencies and anomalies due to possible defective measurement
instruments.

b) Missing and anomalous data segments are temporally interpolated and filled with
as realistic values as possible.

2. The second part is responsible for the spatial distribution of the preprocessed meteoro-
logical data. It spatially interpolates the meteorological data of a given time frame over
a specific spatial domain. Then, it applies physically based sub-models, dependently
from the meteorological parameter. This can be done with the purpose of increasing the
data realism or to derive the value of specific meteorological parameters, starting from
a combination of other, not unknown, meteorological and/or topographical parameters
on a per spatial point basis.

11



3.2 The MicroMet Preprocessor

The MicroMet Preprocessor is responsible for the consistency and continuity of the meteoro-
logical time series data collected for each measurement point, acting on deficiencies, anomalies
and missing data segments arisen due to possible defective measurement instruments. This is
a prerequisite for applying spatial interpolation algorithms as in the second main functional
part of MicroMet.

The MicroMet Preprocessor applies algorithms that filter the meteorological data on a given
time frame for a specific measurement point. Found missing and anomalous data segments
are afterwards temporally interpolated in order to achieve continuity.

These algorithms are based on the prerequisite that the raw meteorological data collected
at the measurement points is provided on a constant time increment. Furthermore, they
require the meteorological data to have a seasonal trend, or in a more specific point of view,
to have diurnal cycles. The temporal interpolation of missing and anomalous data segments
also assumes that the meteorological data of two consecutive seasonal cycles behaves similarly.

3.2.1 The Data Filtering Step

The MicroMet Preprocessor performs three types of quality control tests by looking at the
meteorological data in order to find deficiencies and anomalies that met one of the following
conditions. Resulting data sections are treated as unreliable and therefore eliminated. The
aim is to eliminate not correctly retrieved data due to possibly defective measurement stations.

The Range Limits condition checks the data set for values outside acceptable minimum
and maximum limits. Theses values depend from the meteorological parameter the data set
is based on and from influencing environmental and topographical parameters.

The No Observed Change within Time Limits condition checks the data set for consecutive
constant values over time frames that exceed a maximum length. The maximum length of the
time frame do not necessarily depend from any meteorological, environmental or topographical
parameter.

The Rate of Change Limits condition checks the data set for consecutive values that exceed
a maximum increment limit. The maximum increment depend again from the meteorological
parameter the data set is based on and from influencing environmental and topographical
parameters. A conceptual representation is shown in Figure 3.1. The data section inside the
hatched area is going to be eliminated.
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Figure 3.1: Conceptual representation of the Rate of Change Limit condition.
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3.2.2 The Data Interpolation Step

The application of the three filtering conditions previously described in chapter 3.2.1 “The
Data Filtering Step”, together with preexistent missing data segments, results in a time series
containing several empty data segments that have to be filled in order to achieve consistency
and continuity inside the time series. Different temporal interpolation algorithms are applied
distinguishing among three cases, depending on the length of the empty data segments.

Case 1: Single Missing Time Series Point. The first case is met if the empty data segment
contains exactly one single time series data point. The missing point is filled by linearly
interpolating from the first point preceding the missing one to the first one that succeeds it.
A conceptual representation is shown in Figure 3.2. The data section inside the hatched area
has been interpolated. The interpolated points are represented as squares, while the points
used for the interpolation are represented as rhombuses.
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Figure 3.2: Conceptual representation of the Case 1 (single missing time series point)
interpolation.

Case 2: Single Missing Time Series Season. The second case is met if the empty data
segment contains exactly two or more time series data points and its length is inferior as a
single seasonal cycle. Each missing point is filled by linearly interpolating from the point
preceding the missing one of exactly one seasonal cycle to the one that succeeds it of exactly
one seasonal cycle. A conceptual representation is shown in Figure 3.3. The data section
inside the hatched area has been interpolated. The interpolated points are represented as
squares. The points used for the interpolation are represented as rhombuses.
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Figure 3.3: Conceptual representation of the Case 2 (single missing time series season)
interpolation.
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Case 3: Multiple Missing Time Series Seasons. The third case is met if the empty data
segment length equals or exceeds a single seasonal cycle. The missing points are filled by
making use of the Multiplicative Seasonal Autoregressive Integrated Moving Average statisti-
cal algorithm (MSARIMA, often also referred to as ARIMA although MSARIMA is a special
form of ARIMA). MSARIMA is used to forecast into the empty data segment by looking at
a segment of data preceding the empty one. The length of the segment used for MSARIMA
is chosen such that it corresponds to the length of the empty data segment. In an analogous
way, MSARIMA is used to backcast into the empty data segment by looking at a segment
of data succeeding it. This is resulting in two distinct values for each point in the empty
segment. The final result is determined by taking the weighted average of the two values. As
weight, the distance in time from the first known point before, respectively after, the empty
segment to the point being computed over the whole length of the empty segment is used
for the forecasted value, respectively for the backcasted value. A conceptual representation
is shown in Figure 3.4. The data section inside the hatched area has been interpolated. The
forecasted and the backcasted time series using MSARIMA are represented by a fine dotted
line. The final result instead is represented by a thick dotted line. The data segments used
for the forecasting and the backcasting are highlighted.
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Figure 3.4: Conceptual representation of the Case 3 (multiple missing time series seasons)
interpolation.
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4 Optimizations of the MicroMet
Preprocessor

4.1 Overview

This chapter proposes and discusses several possible optimizations of the original MicroMet
Preprocessor. First, it handles optimizations for the data filtering algorithms, which aim to
detect a major quantity of anomalies and make it more effective filtering them out. Then,
three main optimizations to the data interpolation algorithms are presented, in order to make
them generate more reliable and plausible data as possible while filling empty data segments.
Finally some minor optimizations are presented, which make the model more flexible and
make it better exploit the known data to correct deficiencies in time series with a higher
frequency of anomalies and data gaps.

Although Micromet assumes air temperature, relative humidity, wind speed, wind direction
and precipitation to have diurnal cycles, these optimizations have been developed with real
seasonally behaving meteorological parameters in mind, specifically on air temperature, which
is well known for his diurnal variation. An other aspect that suggested and influenced these
optimizations is the fact that MicroMet, being a part of SnowModel, is thought for climates
and conditions where snow occur, which may behave in a more stable way than different
climates.

4.2 Optimization of the Data Filtering Step

The MicroMet Preprocessor, while performing data filtering, applies three distinct methods
for detecting unreliable data segments.

While the Range Limit condition and the No Observed Change within Time Limit condition
seem to work just fine, there are some issues with the Rate of Change Limit condition,
specifically when handling a series of special cases. By simply iterating over the time series
and checking for an excess of a predefined rate of change limit between the actual inspected
point and the preceding one, the simple elimination of the inspected point without further
conditions can lead to the actual elimination of meaningful data while leaving other data,
showing enough evidence of being unrealistic, untouched. This holds also if the limit checking
is done between the actual inspected point and the succeeding one, eliminating it in case of
an excess. The following discussion is based on the first case.

The main issue in handling special cases resides in the ability of determining which of the
two points, or even if both, should be eliminated. Furthermore, practice has shown that some
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meteorological parameters, as air temperature, can undergo a significantly relative change,
causing the need of setting a relative high rate of change limit in order to avoid false positives.
It follows that spikes, which usually are created by smaller relative changes, but still show
evidence of not being coherent with reality, are not detected.

This suggests the addition of a very basic spike detection algorithm, which checks the rate
of change from the inspected point to the preceding point and to the succeeding one using a
different, smaller limit. The inspected point should be threated as a spike only if both of the
two checked rates exceed the limit and have the same direction. Using two different limits for
performing the Rate of Change Limit check depending from the behavior of the data around
the inspected point can lead to better detection of unreliable data segments, as conceptually
shown in Figure 4.1.
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Figure 4.1: Conceptual representation of the spike detection algorithm.

The MicroMet Rate of Change Limit condition shows other difficulties in handling excesses
that occur immediately after an empty data section. When the rate of change limit is exceeded
between the first point after an empty data segment and the inspected point, which is the
second point after the empty data segment, and does not behave like a spike, the inspected
point is eliminated leaving the probably unrealistic first point untouched. After letting Mi-
croMet apply the Case 1 (single missing time series point) linear interpolation algorithm, we
get a similarly unrealistic situation as before. The conceptual representation in Figure 4.2(a)
shows that, by applying the MicroMet Rate of Change Limit condition, the point represented
as a square gets eliminated, while the unrealistic point, represented as a rhombus, is leaved
unchanged. As shown in Figure 4.2(b), after the point represented as a square gets eliminated,
the MicroMet Case 1 (single missing time series point) linear interpolation algorithm creates
again an ambiguous situation.
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Figure 4.2: Conceptual representation of handling Rate of Change Limit excesses that occur
immediately after an empty data section.

The same issue is encountered in situations where more rate of change limit excesses follow
each other. In these cases, not all unrealistic points are eliminated, since every second point is
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skipped. Again, by applying the Case 1 (single missing time series point) linear interpolation
algorithm, we get a similarly unrealistic situation as before. The conceptual representation
in Figure 4.3(a) shows that, by applying the MicroMet Rate of Change Limit condition, the
unrealistic points represented as squares get eliminated, while the point, represented as a
rhombus, is leaved unchanged, although it should be eliminated too. As shown in Figure
4.3(b), after the points represented as squares get eliminated, the MicroMet Case 1 (single
missing time series point) linear interpolation algorithm creates again an ambiguous situation.
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Figure 4.3: Conceptual representation of handling Rate of Change Limit excesses that follow
each other.

The two previously described issues can easily be resolved by eliminating the first point
after an empty data segment instead of the actual inspected point (i.e. the second point
after the empty data segment) in case of a rate of change limit excess. Remember that, as
described before, this is only necessary if the inspected point is not a spike, since spikes are
already detected by the previously introduced spike detection algorithm, also if occurring
immediately after an empty data segment.

The conceptual representation in Figure 4.2(c) shows the correct method of solving the
first issue by eliminating the first point and leaving the correct one, represented as a square,
unchanged. Figure 4.3(c), instead shows the correct method of solving the second issue by
eliminating the points represented as squares and as rhombuses. In this case the interpolation
is done using the MicroMet Case 2 (single missing time series season) interpolation algorithm.

In some rare cases, where a data segment, containing exactly two points that exceed the
rate of change limit, is found between two empty data segments, either eliminating the first
one or the second one can lead to a suboptimal solution. Since the reliability on both points
is expected to be low, the elimination of both points is the best solution.

4.3 Optimization of the Data Interpolation Step

The MicroMet Preprocessor applies distinct algorithms by distinguishing among three cases
for temporally interpolating empty data segments. Optimizations are proposed for each one
of the three cases.

4.3.1 Case 1: Single Missing Time Series Point

The MicroMet Case 1 (single missing time series point) linear interpolation algorithm does
actually not show any flaws or practical problems and does also not provide much room for
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optimizations. There are, although, two special cases, which it is not able to handle. These
occur when an empty data segment containing exactly one point is found at the beginning
or/and at the end of the time series, i.e. the first or/and the last points in the time series are
missing. In these cases, a linear interpolation between the point preceding the missing one
and the point succeeding it is not possible, since either one or the other would lie outside the
time series bounds.

The above discussed limitation can be overcome by linear extrapolation, making use of two
points, both either preceding or succeeding the missing one. Figure 4.4 shows a conceptual
representation of the Case 1 (single missing time series point) interpolation optimization,
where the missing segment is found at the beginning of the time series. The data section
inside the hatched area has been interpolated. The interpolated point is represented as a
square. The points used for the interpolation are represented as rhombuses. The situation,
where the missing segment is found at the end of the time series is analogous.
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Figure 4.4: Conceptual representation of the Case 1 (single missing time series point) inter-
polation optimization.

4.3.2 Case 2: Single Missing Time Series Season

The MicroMet Case 2 (single missing time series season) interpolation algorithm comes up
with multiple issues, which not only limit the reliability of the interpolated data, but also the
ability of actually generating data for the empty data segments in some unusual situations.

Since each missing point is filled by linearly interpolating from the point preceding the
missing one of exactly one seasonal cycle to the one that succeeds it of exactly one seasonal
cycle, it is possible that one or more of the needed points for the interpolation are missing
as well. A simple workaround would be to use points preceding, respectively succeeding,
the missing point of two, or is necessary of more, seasonal cycles. Such a solution would
although generate less stable and possibly unrealistic data, beside introducing the possibility
of generating additional spikes, as represented in Figure 4.5. The hatched areas represent
the empty data segments. The interpolated points are represented as squares. The points
used for the interpolation are represented as rhombuses. In the example a spike has been
generated, which is shown in the shaded area.

A better solution is to require all the points used for the interpolation which precede,
respectively succeed, the empty data segment, to be in a single data segment, i.e. following
directly each other. This results in a more stable trend and in less or smaller spikes. Before
doing the interpolation, the algorithm should check if the two data sections containing the
points supposed to be used for the interpolation are continuous, otherwise use sections one
more seasonal cycle away. This procedure should be repeated until either two valid segments
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Figure 4.5: Conceptual representation of an issue with a possible optimization.

are found, the bounds of the time series are reached or a predefined limit of iterations are
reached. Note that the successful interpolation is possible only if the first case applies. The
limit of times the above procedure can be repeated until giving up, should be small as between
two and four. Figure 4.6 conceptually represents the proposed solution. The hatched areas
represent the empty data segments. The interpolated points are represented as squares. The
points used for the interpolation are represented as rhombuses. In comparison to Fugire 4.5
no spikes have been generated anymore, although we still have unsmooth transitions between
the interpolated data and the preexistent data.
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Figure 4.6: Conceptual representation of the optimization.

As previously described, there are two situations where the interpolation is not possible:
when, searching for continuous data sections, the bounds of the time series are reached or a
predefined limit of iterations are reached. Both situations have in common that either one
needed data segment or both have not been found. In the case where only one consistent
data segment has been found, either preceding or succeeding the empty data segment, the
interpolation can still be done by introducing a similar technique as for the Case 1 (single
missing time series point) optimization. Instead of filling the empty data segment by linearly
interpolating each point between two points on different sides, it is possible to do it by linearly
extrapolating from two points on the same side. Again, as before, if necessary, the data
segments used for the interpolation can be more than one seasonal cycle away from the empty
data segment, but, in order to achieve better results, they should distance from each other
a single seasonal cycle. Figure 4.7 conceptually represents the proposed optimization. The
hatched areas represent the empty data segments. The interpolated points are represented
as squares. The points used for the interpolation are represented as rhombuses.

The last MicroMet Case 2 (single missing time series season) interpolation algorithm is-
sue has already been seen in Figure 4.6. Independently from the application of the until
now discussed optimizations or not, the algorithm is not able to avoid unsmooth transitions
between the interpolated data and the preexistent data. The extent of the problem depend
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Figure 4.7: Conceptual representation of the optimization.

mostly from the stability of the climate and the relative difference between the meteorological
data of consecutive seasonal cycles. Figure 4.8 gives a better conceptual representation of the
problem. The interpolated points are represented as squares, while the points used for the
interpolation are represented as rhombuses.
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Figure 4.8: Conceptual representation of an issue with the Case 2 (single missing time series
season) interpolation algorithm.

The proposed solution to this problem consists in fitting the interpolated data on the time
series, such that the transition between the interpolated data and the preexistent data behave
smoothly like it does one seasonal cycle away, in either direction, from the transition point.

This can be done using a three step approach:

1. Extend the scope of the data segment that is going to be interpolated by two points, one
on each side. After the interpolation, this results in a total of two pairs of overlapping
points. Note that these two additional points get interpolated in the same way as all
the other ones in the data segment. This first step is conceptually represented in Figure
4.9(a). The interpolated points are represented as squares. The points that have been
added to the data segment and overlap with the two preexisting points are represented
as rhombuses.

2. Adjust the value of all the interpolated points by the same extent such that, either on
one or the other side, the values of the overlapping points coincide. This second step is
conceptually represented in Figure 4.9(b). The interpolated points are represented as
squares. The points that have been added to the data segment and overlap with the
two preexisting points are represented as rhombuses. The value of the left one coincides
with the preexistent point. The light drawn points show the situation before the first
adjustment.

3. Adjust the value of every interpolated point by the weighted difference between the two
overlapping points whose values do not coincide. The weight is the distance between
the point being adjusted and the two overlapping points whose values coincide, over the
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whole length of the data segment. This third step is conceptually represented in Figure
4.9(c). The interpolated points are represented as squares. The points that have been
added to the data segment and overlap with the two preexisting points are represented
as rhombuses. Now the value of both ones coincide with the preexistent points. The
light drawn points show the situation before the second adjustment.
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Figure 4.9: Conceptual representation of the adjustment steps.

This solution, since it requires known data on both sides of the empty data segment, is not
directly applicable where the empty data segment lies directly at the beginning or at the end
of the time series. In these cases it is only possible to extend the scope of the data segment
that is going to be interpolated by one point. The value of the interpolated points can then be
adjusted as described before, making coincide the two overlapping points. At this point, the
transition between the interpolated data and the preexistent data already behave smoothly,
without the need of applying the second adjustment described above, although its application
would not be possible. Figure 4.10 conceptually shows the adjustment in this situation. The
interpolated points are represented as squares. The point that has been added to the data
segment and overlap with the preexisting point is represented as a rhombus. The light drawn
points show the situation before the adjustment.
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Figure 4.10: Conceptual representation of the adjustment in special cases.

4.3.3 Case 3: Multiple Missing Time Series Seasons

Although the MicroMet Case 3 (multiple missing time series seasons) interpolation algorithm
and MSARIMA itself do substantially not show any deficiencies, there is still some room for
improvements. As described in Chapter 3.2.2 “Case 3: Multiple Missing Time Series Seasons”
MSARIMA uses a data segment of the same length of the empty data segment in order to do
the forecasting/backcasting. In many cases it can be observed that MSARIMA does a more
reliable forecasting/backcasting if the used data segment is increased by a factor of around
five. This is, after all, also a requirement for the improvements that are going to be proposed
in the following paragraphs.

In many cases, it can also be observed, that the average amplitude of the MicroMet Case
3 (multiple missing time series seasons) interpolated data segments tend to slightly increase
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or decrease when compared to the preceding and succeeding data. Also the values at the
local extrema seem not to coincide with the preceding data, as conceptually shown in Figure
4.11. The interpolated segment is represented by the hatched area. The dotted lines show
the average extrema for the interpolated segment and for the preceding data.
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Figure 4.11: Conceptual representation of possible MSARIMA behaviors.

The suggested solution is to adjust the interpolated segment, acting on the local extrema, in
order to make it fit better with the the data around it. The first step consists in determining
the extrema, e.g. the local maximums, in the interpolated segment and in the two segments
used by MSARIMA. The optimal value for each maximum inside the interpolated segment
would be where the value coincides with the linear interpolation between the average of the
local maximums preceding the interpolated segment and the average of the local maximums
succeeding it. While calculating the average on both sides, it is usually more convenient, for
achieving better results, to use only the two or three maximums for each side, which are close
to the interpolated segment. Following, the optimal adjustment for each maximum inside the
interpolated segment is the difference between actual value and optimal value. See Figure
4.12 for clarifications. The interpolated segment is represented by the hatched area. a is the
optimal adjustment.
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Figure 4.12: Conceptual representation of the adjustment.

The application of the optimal adjustment on every maximum in the interpolated segment
would generate distortions in the time series, especially in the proximity of the bounds of the
interpolated segment. The application of the optimal adjustment should be limited to the
maximums that distance more than about one third of a seasonal cycle from both bounds. On
the rest of the maximums inside the interpolated segment the weighted optimal adjustment
should be applied. As weight, the distance from the nearest bound to the maximum point,
which is going to be adjusted, over one third of a seasonal cycle should be used. In this way,
the value of the maximums that reside near to the bounds of the interpolated segment are
adjusted by a much smaller amount than the value of the maximums that are more far away.
See Figure 4.13 for clarifications. The interpolated segment is represented by the hatched
areas. The maximums inside the simple hatched area are going to be adjusted using the
optimal adjustment. After the adjustment, its values will coincide with the interpolation
of the maximum averages on both sides. The maximums inside the cross hatched area are
adjusted using the weighted optimal adjustment. After the adjustment, its values will not
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coincide with the interpolation of the maximum averages on both sides, but will be closer to
it as before. a is one third of a seasonal cycle. b is the distance from the nearest bound to
the maximum point.
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Figure 4.13: Conceptual representation of the adjustments.

Having determined the adjustment for the maximums, also the points around them have to
be adjusted. For each maximum, the points that distance no more of one fourth seasonal cycle
from both sides have to be adjusted. The adjustment that has to be applied to a maximum
has to be applied trough a weight also to the points inside the two segments of one fourth
seasonal cycle length. As weight, by taking e.g. the segment preceding the maximum, the
distance from the segment’s bound, which most distances from the maximum, to the point,
which is going to be adjusted, over one fourth seasonal cycle, has to be used. The weight is
calculated in an analogous way for the segment succeeding the maximum point. A conceptual
representation of the adjustment is shown in Figure 4.14. The two segments of one fourth
seasonal cycle length are represented by the hatched areas. The light drawn points represent
the situation after the adjustment. a is one fourth of a seasonal cycle. b is the distance from
the segment’s bound, which most distances from the maximum, to the first point, which is
going to be adjusted. c is the adjustment of the value of the maximum point.
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Figure 4.14: Conceptual representation of the adjustment of a maximum point.

The previously described optimization of the local maximums has to be analogously applied
on the local minimums. This way the interpolated segment becomes more coherent with the
time series data preceding and succeeding it, making it look less artificial and more realistic.

A major difficulty in applying the described optimization resides in the fact that mete-
orological data actually do not behave like a clear sine wave as shown in the conceptual
representations until now, but presents many slight variations and multiple local extrema per
seasonal cycle. This makes it difficult to distinguish between the various extrema and detect
only those which are relevant for the previously described optimization. An example is shown
in Figure 4.15.

A possibility of detecting the relevant extrema, is to do it by exclusion, iterating trough the
time series and marking the points either as excluded or as extrema until all points in the time
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Figure 4.15: Example of real meteorological data showing air temperature.

series are marked in either way. This procedure has to be performed separately for detecting
either maximums or minimums. In order to detect maximums, while continuously iterating
trough the time series, the point with the lowest value which is not already marked is taken.
In order to detect minimums, the unmarked point with the highest value is taken. If the point
is the only one inside a predefined interval, it has to be considered an extreme and marked
as such, in the other case it can be marked as excluded. The interval previously mentioned,
in an optimal case, would range from one seasonal cycle before the point to one seasonal
cycle after the point, but since the detected extrema usually not distance each other exactly
one seasonal cycle, the interval should be smaller in order to avoid undetected extrema. The
interval ranging from two thirds seasonal cycles before the point to two thirds seasonal cycles
after the point has shown to work just reliably enough without compromising the quality of
the result and still being able to detect all extrema in almost all the situations.

4.3.4 Efficacy Optimizations

Additionally to the already presented main optimizations to the MicroMet Preprocessor, there
are some smaller optimizations that contribute to the flexibility and the ability of the model
to exploit better the known data in the time series and fill time series with a higher frequency
of data gaps.

In situations, where certain combinations of missing data segments occur, such that the
interpolation of a specific missing data segment depend from data segments, which themselves
contain missing data, and therefore from the ability of successfully interpolating other missing
data segments, the MicroMet Preprocessor may not be able to interpolate all the missing
data segments. Since, essentially, the interpolation of a specific missing data segment can
depend on data that itself is going to be interpolated, the simple multiple application of the
interpolation algorithms can solve this issue. A possible situation is conceptually represented
in Figure 4.16. The hatched areas represent the empty data segments. Under the assumption,
the limit of iterations for finding useful data segments for the Case 2 (single missing time series
season) interpolation is set to two, a unique application of the Case 2 (single missing time
series season) algorithm would not be able to fill all the missing data segments. It would
first interpolate the segment in the middle, then the segment on the right and leaving the left
segment unfilled. Only in a second application the algorithm would fill the left segment and
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so outputting a continuous time series.

After the first consecutive application of the three interpolation algorithms, they should
consecutively be applied again and again until no change to the time series is done anymore.
It is important that the three interpolation algorithms are applied consecutively, since a
multiple application of the first algorithm followed by a multiple application of the second and
a multiple application of the third, would still leave missing data segments, which otherwise
could be filled. Although the described procedure is expected to terminate, it is still reasonable
to set an upper limit to the times the algorithms can be applied.
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Figure 4.16: A possible situation where a unique application of the Case 2 (single missing
time series season) algorithm is not able to fill all the missing data segments.
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5 Implementation

The optimized MicroMet Preprocessor has been implemented entirely using Java. Since an
optimized MicroMet Preprocessor is not reasonable as a standalone application, it has been
thought and implemented as a black box application surrounding the core functionalities,
which can easily be integrated or used as an external library in other applications handling
with the problem of missing data segments in time series. These core functionalities have
been programmed entirely in Java without auxiliary libraries or dependencies. So also the
MSARIMA algorithm has been entirely coded without the usage of external libraries, this
allows better customization and can make the code more flexible for integration in other
applications.

The application, as it can be seen in Figure 5.1, after doing a series of checks regarding the
validity of the time series, consecutively applies the filtering and the interpolation algorithms.

output
time series

validity
check

RL

RoCL

NoCL

Case 1

Case 2

Case 3

input
time series

data interp
o lation

data filtering

Figure 5.1: Data flow diagram of the application.

For simplicity, the application has been coded as a command line program. All inputs, as
well as all outputs are read from and written to files, which are passed to the application
using parameters. Beside the application’s main input, the time series, which is read from
file, it expects a configuration file specifying the parameters for the interpolation algorithms,
the limits for the filtering algorithms, as well as some additional options.

The processed inputs are again outputted to file. In order to facilitate the analysis of the
outputted time series, avoiding the inconvenience of a graphical user interface, the application
generates an HTML file which visualizes the output using an open source JavaScript library
called Dygraphs. Dygraphs produces vertically and horizontally zoom-able charts allowing to
interact with the visualization.

Further, in order to allow evaluation, the application expects as input also a reference time
series, which is supposed to be free of missing data gaps, as a comparison to the interpolated
time series. The outputted HTML file can be created with both time series overlapping each
other, the interpolated and the reference one, showing either the full range of the time series,
or only the interpolated segments.

Depending on the configuration, the application also outputs the average difference between
the interpolated points and the reference time series for each segment.
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Figure 5.2 and 5.3 show screen shots of the rendered HTML file using Dygraphs. The
interpolated segment shown on Figure 5.2 has been interpolated using the Case 2 (single
missing time series season) algorithm. The interpolated segment shown on Figure 5.3 has
been interpolated using the Case 3 (multiple missing time series seasons) algorithm. The
dark line represents the reference time series, while the light line represents the interpolated
data section.

Figure 5.2: Screen shot of the rendered HTML using Dygraphs.

Figure 5.3: Screen shot of the rendered HTML using Dygraphs.
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6 Empirical Evaluation

6.1 Methodology and Data Sets

As part of the research, this chapter discusses the outcomes of the MicroMet Preprocessor
optimizations. The scope is to demonstrate, in an empirical way, that the optimizations made
to the MicroMet Preprocessor actually produce better results and more realistic interpolated
data that are closer to reality than the original MicroMet Preprocessor. The evaluation has
been organized in three experiments.

For this purpose, real meteorological data has been used. The time series used for the
experiment 1 and 2 have been measured in several places around Southtyrol and describes
the air temperature in degree Celsius between January 2008 and November 2010 in a 10 or
30 minutes interval using a precision of one fractional digit. The characteristics of those time
series are shown in Table 6.1.

Time series #
[measurement
point]

# of missing
data segments

# of points
in each miss-
ing data seg-
ment

Minimal #
of points be-
tween missing
data segments

Interval in
time between
each point

Length in
time of each
missing data
segment [in-
terpolation
algorithm]

1 [Bozen] 501 6 300 10 min. 1 h. [Case 2]
2 [Bozen] 457 36 300 10 min. 6 h. [Case 2]
3 [Bozen] 414 72 300 10 min. 12 h. [Case 2]
4 [Bozen] 375 108 300 10 min. 18 h. [Case 2]
5 [Bozen] 350 138 300 10 min. 23 h. [Case 2]
6 [Bozen] 154 145 870 10 min. 24 h. [Case 3]
7 [Bozen] 80 289 1734 10 min. 48 h. [Case 3]
8 [Bozen] 54 433 2598 10 min. 72 h. [Case 3]
9 [Bozen] 42 577 3462 10 min. 96 h. [Case 3]

10 [Branzoll] 350 72 300 10 min. 12 h. [Case 2]
11 [Branzoll] 297 138 300 10 min. 23 h. [Case 2]
12 [Branzoll] 63 289 1734 10 min. 48 h. [Case 3]
13 [Branzoll] 31 577 3462 10 min. 96 h. [Case 3]

14 [Ladurns] 408 72 300 10 min. 12 h. [Case 2]
15 [Ladurns] 346 138 300 10 min. 23 h. [Case 2]
16 [Ladurns] 74 289 1734 10 min. 48 h. [Case 3]
17 [Ladurns] 37 577 3462 10 min. 96 h. [Case 3]

18 [Radein] 406 24 100 30 min. 12 h. [Case 2]
19 [Radein] 344 46 100 30 min. 23 h. [Case 2]
20 [Radein] 74 96 578 30 min. 48 h. [Case 3]
21 [Radein] 36 192 1154 30 min. 96 h. [Case 3]

Table 6.1: Characteristics of the time series used for the evaluation.

The implementation of the MicroMet Preprocessor has been run over these time series

28



with a series of generated missing data segments, both with and without the optimizations
proposed in this thesis work. The missing data segments have been created in such a way,
that the original MicroMet Preprocessor, which is not capable of handling a number of special
cases, is still able of interpolating all of them. Moreover, only Case 2 (single missing time
series season) and Case 3 (multiple missing time series seasons) algorithms have been tested,
since the Case 1 (single missing time series point) optimizations actually do not improve
data quality but only makes it possible to handle a number of special cases. The optimized
preprocessor has been run using the following configuration for the Case 3 (multiple missing
time series seasons) optimization:

• For the MSARIMA input, a factor of five times the missing data segment length has
been used.

• The number of extrema used for the averages of both sides of the missing data segment
have been limited to two.

• The size of the interval, where the weighted optimal adjustment has to be applied, has
been set to eight hours.

• The size of the intervals on both sides of each extrema, where the interpolated data has
to be adjusted, has been set to six hours.

• The size of the interval used for exclusion while detecting the extrema has been set to
sixteen hours on both sides.

For details see Chapter 4.3.3 “Case 3: Multiple Missing Time Series Seasons”. This con-
figuration has been chosen such that it fits best for the time series measured in Bozen.

The interpolated segments of the outcomes of both runs have been compared with the
original integral time series. For the experiment 1, the average of the difference between
each interpolated and original point inside every segment has been calculated. Finally the
arithmetic mean of all the segment’s averages has been computed. The unit of the outcome is
◦C. Further, the maximum difference for every time series has been included in the evaluation.
For experiment 2, the frequency distribution per measurement point of the differences has
been used.

The optimizations made to the MicroMet Preprocessor, not only aim to improve the quality
of the interpolated data, but aim also to the ability of working correctly on time series
presenting a high frequency of missing data segments. In the experiment 3, in order to
test these kind of optimizations, both the optimized and the original MicroMet Preprocessor
have been used to interpolate trough 100 time series with randomly generated missing data
segments. These time series had, between 19,49% and 23,14%, and on average 21,48% of
missing points. These points were distributed over an average of 477 missing data segments.
The size of the missing data segments have been limited to 24 hours and interpolated using
only the Case 1 (single missing time series point) and Case 2 (single missing time series
season) algorithms, since the Case 3 (multiple missing time series seasons) algorithm actually
does not make it possible to handle special cases, but improves data quality. The number
of preprocessing cycles has not been limited. The limit of iterations for finding useful data
segments for the Case 2 (single missing time series season) interpolation has been set to two
(See Chapter 4.3.4 and 4.3.2).
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6.2 Results

The previously described evaluation methods for testing the interpolated data quality have
been applied on a number of different time series with different sizes of missing data segments.
The actual results are shown in Figure 6.1 and 6.2.

Experiment 1. Figure 6.1 shows the average and the maximum difference between each in-
terpolated and original point, both for the optimized and the original MicroMet Preprocessor,
for each time series. It is possible to infer that the Case 2 (single missing time series season)
optimizations achieve a relatively big improvement on missing data segments shorter than
twelve hours, while on longer segments, up to 24 hours, the improvement is smaller but still
significant. Instead, the Case 3 (multiple missing time series seasons) optimizations tend to
achieve better results while increasing the segments length.
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Figure 6.1: Average differences.

Experiment 2. Figure 6.2, shows the frequency distribution of all the differences between
the interpolated and original points for all the time series for each measurement point. It
is possible to see that the frequency of small differences, between 0.0 ◦C and 2.0 ◦C have
generally increased, in comparison to the original MicroMet Preprocessor, while the frequency
of all other bigger differences have decreased.
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Figure 6.2: Frequency distribution of the differences.

The results of the evaluation show that the optimized MicroMet Preprocessor actually
produces on average better results than the original MicroMet Preprocessor in the great
majority of the tested situations. It also can be noted that the results of the tests done on
time series measured in Bozen are slightly better than the results of the other tests. This
is due to the fact that, as previously mentioned, the Case 3 (multiple missing time series
seasons) configuration has been optimized for them.

Experiment 3. As previously described, in order to test the special case handling, both the
optimized and the original MicroMet Preprocessor have been used to interpolate trough mul-
tiple time series with randomly generated missing data segments. The optimized MicroMet
Preprocessor has been able to interpolate over 100% of the missing data, returning a con-
tinuous time series. The original MicroMet Preprocessor instead has been able to cover on
average only 50,87% of the missing points by filling 57,38% of the missing data segments.

It should also be considered that the high frequency of missing data segments did not
influence the quality of the data produced by the original MicroMet Preprocessor and the
optimized MicroMet Preprocessor in the cases where it did not make use of its special case
handling capabilities. Instead, the remaining data generated in special cases by the optimized
MicroMet Preprocessor, about 49,13%, has shown to be not as good. A direct comparison
of its quality with the previously reported results can not be done, since the missing data
segments were generated of random length. Further, it should be noticed that time series
with such a high frequency of missing data segments are not realistic an are not expected to
be found in practice.
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7 Conclusion and Future Work

The main goal of this thesis project was to implement the MicroMet Preprocessor meteorolog-
ical model in an application capable of interpolating missing data segments in seasonal time
series, further, to optimize its algorithms to produce more accurate data that reflects better
the reality and to extend them making the application more flexible and capable of handling
a larger number of situations. This goal has been successfully attained and the application
has been pulled trough a series of tests to prove the actual improvement from the original
MicroMet Preprocessor. The tests have shown that the optimized MicroMet Preprocessor
achieves better results than the original model in the majority of the cases and that also
its capability of interpolating time series with a high density of missing data segments has
benefited.

Although the previously presented results already show that the interpolated data quality
benefits from the presented optimizations, there is still margin for improvement.

The Case 3 (multiple missing time series seasons) optimization actually do not differ from
the original algorithm when it comes to special cases. Both need a relatively big segment
on both sides of the missing data segment in order to run MSARIMA, and there may be
situations where these segments are either not continuous or not available. Such situations
occur when a missing data segment, on which Case 3 (multiple missing time series seasons)
should be applied, is found near to the time series bounds or when a data segment between
two missing data segments, both for Case 3 (multiple missing time series seasons) application,
is too small to run MSARIMA. It is also to consider that the Case 3 (multiple missing
time series seasons) optimization need a bigger MSARIMA input data segment than the
original MicroMet algorithm. A possible improvement could be to interpolate the missing data
segment by doing either the forecasting or the backcasting, instead of doing both, and finally
apply a similar adjustment as in the Case 2 (single missing time series season) optimization.
The optimal adjustment should then be calculated by extrapolation instead of interpolation
between the extrema. If in some situations this still does not make it possible to interpolate,
the algorithm could fall back and switch off the interpolated data adjustment, decreasing also
the size of the needed data segment for MSARIMA. Of course, also a combination of the two
possibilities would work.

MSARIMA and also the general ARIMA model are well known statistical algorithms, which
actually aim to analyze, describe and represent existing time series. The model can be fitted to
a specific time series by adjusting various variable parameters. Inverting this procedure, under
some assumptions, allows to use the previously analyzed data to do forecasting. Both the
optimized and the original MicroMet Case 3 (multiple missing time series seasons) algorithm
do not adapt these parameters before forecasting, instead, they both use fixed values that
have shown to work in an acceptable way on these kind of time series. The estimation of
these parameters would lead to an additional improvement, although, depending on the time
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series, it probably could be not very significant.

As for MSARIMA, the Case 3 (multiple missing time series seasons) optimization has
several parameters that could be adjusted. Finding a way, for choosing the right values, such
that they fit best to the time series would additionally improve the interpolated data quality.

A last interesting topic for further research could be the application of the optimized Case
3 (multiple missing time series seasons) algorithm to missing data segments, whose length is
less than a seasonal cycle. As it is possible to see from the previously presented results, the
Case 3 (multiple missing time series seasons) algorithm is more accurate on 24 hours gaps
than the Case 2 (single missing time series season) algorithm on 23 hours gaps. This fact
suggests the possibility for further improvement.
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