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Abstract

Temporal aggregation is a method to compute a compact summary
of an input dataset that contains time varying information. Many differ-
ent application domains, such as finance and environment, record huge
amounts of data from which compact summaries have to be extracted.
Due to the massive growth of the amount of such data, fast query pro-
cessing becomes a challenge. In particular, computing instant temporal
aggregation (ITA), a special form of temporal aggregation, is an expensive
and time consuming process. To tackle these problems of processing mas-
sive datasets, various techniques and infrastructures have been proposed,
including the use of clusters or networks of commodity machines. One of
the most popular programming models recently proposed is MapReduce,
which provides a framework for automatic parallel data processing in a
cluster.

In this thesis, we propose three different algorithms that implement
the abstract programming model MapReduce in order to compute instant
temporal aggregation for a given input relation. All three approaches
are based on different strategies to compute temporal aggregation, hence
provide distinct characteristics and strengths. The first approach is a
straightforward extension of the traditional way to compute temporal ag-
gregation. The second algorithm processes small chunks of the input file
and iteratively merges the partial results to obtain the final relation. The
third approach divides the timeline into independent partitions which can
be processed in parallel. Furthermore, we report the results of a de-
tailed empirical evaluation of the algorithms using differently structured
datasets. All algorithms were implemented in Java and executed on a
small cluster on top of the MapReduce framework Apache Hadoop. Ad-
ditionally, we performed a comparison of the three MapReduce solutions
with the existing Bucket algorithm for large-scale temporal aggregation.
The experiments show that our algorithms outperform the Bucket algo-
rithm by a factor of 5 to 20.
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1 Introduction

1.1 Motivation

Nowadays, dealing with large amounts of raw data is become a common task
encountered in many situations, e.g. social networks or company management.
Numerous application have to handle gigabytes or even terabytes of data and
the user expects that tasks are completed in a reasonable amount of time. For
this reasons computation done using clusters, large networks of many commod-
ity machines connected through a network, becomes increasingly important. In
order to be able to spread the computation over many single workers, Google
introduced the new abstract programming model MapReduce [5]. Another im-
portant advantage of a cluster is that the single machines and so the hardware
are easily replaceable and far cheaper than high-end components used in state-
of-the-art servers. For this thesis the free open-source version of MapReduce
Hadoop is used to run the developed approaches that do parallel computations
on the cluster.

A technique of extracting useful information out of time varying data is
temporal aggregation. The increasing importance of this kind of aggregation
comes from the fact that computers have invaded nearly every aspects of live,
constantly monitoring time relevant data, e.g., in the environmental, medical
or financial domain. Temporal aggregation, in contrast to standard aggregation
in a relational database, does not return a single scalar value but always an
aggregation relation. The reason for this behavior is that temporal aggregation
is strongly related to the included temporal dimension. Every result value is
bound by a so called constant interval [2], a set of time instants in which the
relation remained fix, i.e. no new tuple starts or ends. In the past three different
types of temporal aggregation have been defined, Instant Temporal Aggregation
(ITA), Moving Window Temporal Aggregation (MWTA) or Cumulative Tempo-
ral Aggregation and Span Temporal Aggregation (STA) [2].

In instant temporal aggregation, the most important of the three types,
the time domain is partitioned into the finest possible time unit, namely time
instants t. Afterwards, the aggregation groups are formed, by associating tuples
from the input relation with the time instant t. To each aggregation group the
aggregation operator is applied producing an aggregation value for each specific
time instant. At the end, value equivalent, consecutive tuples are coalesced
leading to maximum time intervals. Due to their nature of involving large
amounts of tuples during the computation and partitioning the timeline in the
finest possible units, calculating the temporal aggregation result is a resource
and time intensive procedure decreasing the availability of updated results in
frontend applications.

The concept of moving window temporal aggregates was first presented by
Navathe et al. [15] and in later works also referred to as cumulative temporal
aggregation [20] [26]. In MWTA the aggregation groups are not only influenced
by tuples of the argument relation holding at a single time instant t, but by
tuples valid at a time interval [t − w, t] with offset w > 0. After applying the
aggregation function to each group, value-equivalent tuples are coalesced leading
to result tuples over maximum time intervals.

The last form of temporal aggregation is span temporal aggregation. In this
form of temporal aggregation, the constant intervals are predefined and therefore
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independent of the argument relation. The aggregation groups are formed by
grouping tuples overlapping the predefined time intervals. As a last step, the
aggregation operator is applied to each aggregation group producing the result
relation. Note that for this type of temporal aggregation no coalescing is needed,
because the constant intervals of the result relation are totally independent from
the time intervals of the argument relation.

1.2 Running Example

Consider the temporal relation shown in Figure 1. It displays six datatuples of
three different employees, having a name, a salary warring through time and the
related timestamp in which the salary is valid. Assume that the result of the
following query has to be retrieved: Q1: What is the total amount of employees
working for the company at any time since the foundation ? The resulting
relation of the aggregation query Q1 is shown at the bottom of the diagram in
Figure 1. In Table 1a the initial relation, whereas in Table 1b the final numerical
result is displayed together with the input tuples that participate to the result
tuples. For instance, the tuples r1 and r2 have the same aggregation value, but
due to the preservation of the lineage information (i.e. different tuples produce
different result tuples) they generate two separate result records. Further the
time interval [13, 15) has a aggregation result of 0, which could be omitted
without any information loss, in order to save computation time and space.
As a last point, the previously mentioned case applies also to the intervals
[−∞, T1) and [Tn,∞) where T1 is the first and Tn is the last timepoint of the
input relation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

r1 = (Ann) r5 = (Ann) r6 = (Ann)

r2 = (Joe) r4 = (Joe)

r3 = (Tim)

2
2

3
2

0
1

2
1

Figure 1: Temporal Relations Example

ID Name Salary T
r1 Ann 120 [0, 3)
r2 Joe 110 [0, 13)
r3 Tim 80 [3, 9)
r4 Joe 150 [15, 20)
r5 Ann 170 [7, 13)
r6 Ann 180 [16, 18)

(a) Example Tuples

T Count Tuples
[0, 3) 2 {r1, r2}
[3, 7) 2 {r2, r3}
[7, 9) 3 {r2, r3, r5}
[9, 13) 2 {r2, r5}
[13, 15) 0 {}
[15, 16) 1 {r4}
[16, 18) 2 {r4, r6}
[18, 20) 1 {r4}

(b) Result Relation using Count

Table 1: Initial Relation and Result

1.3 Basic Concepts of Temporal Aggregation

The basic concept used by the developed approaches consists of three steps and
was first presented by Bongki Moon et al. [14]. As a first step (Figure 2b), the
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timestamp of the read tuples is extracted and each single timepoint is associated
with a tag indicating weather it is a starting or an ending point. As a second
step, the timepoints and tags are sorted in increasing order of the values. In
order to compute the count aggregate, the entire timeline is scanned from be-
ginning to end. Further a counter is needed, which is incremented by one each
time start tag is encountered and decremented by one each time a end tag is
processed (Figure 2c).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

r1 = (Ann) r5 = (Ann) r6 = (Ann)

r2 = (Joe) r4 = (Joe)

r3 = (Tim)

(a) Input Relation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

s
s

e
s

s e e
e

s s e e

(b) Intermediate Result After Step 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

+2

2

+0

2

+1

3

−1

2

−2

0

+1

1

+1

2

−1

1

−1

(c) Final Result of ITA

Figure 2: Basic Idea of Temporal Aggregation

In Table 2 we provide some descriptions of the common notations used
throughout the subsequent chapter:

Notation Description
P = {P1, . . . , Pp} Set of Temporal Partitions
|P| = p Total Number of Partitions
P [Ts, Te] Partition with Valid Time Interval
P.Ts, P.Te The Starting and Ending Point of the Partition
P1, P2, . . . Specified Partition Number, e.g. Partition 1, Partition 2, . . .
P Unspecified Partition Number
n Total Number of Tuples in Input File
R Total Number of Available Reducers

Table 2: Notations

1.4 Contribution

Different algorithms have been proposed in order to efficiently calculate the ITA
result of a given input relation. Some of the approaches introduce the parallel
computation of the temporal aggregation. However, none of them involves the
abstract programming model MapReduce and not do consider the advantages
provided by that model. The benefits of executing the algorithm on a cluster,
consisting of hundreds of commonly machines connected through a network, are
superior computational power and the use of low-cost hardware. Further, due
to the use of a distributed file system, input relation of arbitrary length, bigger
in size than any single hard disk accessible by the cluster, can be handled.
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In this thesis we are going to present three approaches that enable computa-
tion of temporal aggregates on a Hadoop cluster. The algorithms are based on
different assumptions, but all implement the MapReduce programming model.
The main contributions can be summarized as follows:

• The first developed approach, the HTA-Standard algorithm, is based on
the basic technique presented in the work of Bongki Moon et al. [14] of
computing temporal aggregation results. It uses three MapReducer it-
erations to produce the final result relation. The first MapReducer run
tags the starting and ending points of the single valid time intervals. The
second iteration divides the timeline into partitions and applies the aggre-
gation function to the previously marked timepoints. The final iteration
changes the aggregation results according to the values transferred be-
tween the previously created temporal partitions.

• The next approach, HTA-Merge, starts by computing the aggregation rela-
tion of small chunks of the input file. These partial results are then merged
using a variable amount of MapReduce iterations. The exact number of
iterations depends on the produced amount of partial results. At the end
a single output is produced containing the final aggregation relation.

• The third algorithm, HTA-Partition, uses only a single MapReduce iter-
ation to complete the final result. The timeline is again partitioned into
several parts and tuples crossing the bounds of those partitions are split
into single units. This technique allows an autonomous parallel processing
of the various partitions, keeping the number of iteration to one.

• All developed algorithms are implemented in Java and executed on a clus-
ter running the MapReduce implementation Hadoop. Further differently
structured input file with increasing amount of tuples were used as input
relation, recording the execution times of the approaches.

• The developed algorithms are further compared to the Bucket & Balance
Tree approach developed by Moon et al. [14]. The combination of both
approaches is needed, because the Bucket algorithm prepares the input
files for the main memory based Balance Tree approach, which computes
the final temporal aggregation relation.

1.5 Organization of the Thesis

The thesis is structured in the following way: in Section 2 we discuss the rele-
vant related work, together with some technical details about the MapReduce
framework Hadoop. At the beginning of Section 3 we shortly introduce the ba-
sic calculation concept of temporal aggregation together with an example and
explain some general terminology and functions used throughout the subsequent
chapters. The rest of the section describes the first algorithm HTA-Standard and
the exact step by step processing of the example relation (subsection 1.2). In
Section 4 we describe the MapReduce iterations of the second algorithm, HTA-
Merge, together with some implementation details. Section 5 illustrates the
MapReduce run of the third developed algorithm, HTA-Partition. Section 6
shows the results of the experimental evaluation using two different real-world
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scenarios with increasing amount of tuples as input relation. Further the ad-
vantages and disadvantages of the single approaches are highlighted referring
to the measured execution times. In addition we provide the promising results
of the comparison with another temporal aggregation algorithm. The thesis
concludes with some final remarks in Section 7 and an outlook regarding future
work, including possible improvements and extensions.

2 Related Work

2.1 Temporal Aggregation

The work of Tuma [23] extends the approach of computing aggregates in a re-
lational database of Epstein [7] and suggests an evaluation process for temporal
aggregates. First, the constant intervals are computed needing a scan of the
argument relation. Next, the aggregation groups are formed to which later on
the aggregation operator can be applied. Tuples overlapping a constant interval
are selected and partitioned by the constant time interval they cross into the
aggregation groups. At the end, the result relation is formed by associating the
resulting aggregation values with the argument relation. This approach needs
two scans of the input relation, one in order to compute the constant inter-
vals and the second to compute the aggregate function, leading to a worst case
running time of O(mn), where m is the amount of result tuples and n is the
magnitude of the argument relation.

Another approach which reuses and refines the evaluation method of Tuma
is the work of Kline et al. [11]. They use a tree like structure, called aggregation
tree, to store partial aggregation results in main memory. The aggregation tree
is incrementally constructed while scanning the argument relation once. The
leaf nodes of the tree represent the constant intervals of the resulting temporal
aggregation. The final aggregation relation is formed, by traversing the tree
from the root ([0,∞]) to the leaf-nodes in depth-first order, summing up all
encountered partial aggregation values. The run time of the algorithm depends
on the sort order of the input relation. Since the tree is not balanced, a or-
dered argument relation leads to a linked list and a worst time complexity of
O(n2). Another drawback leading to an drastic increment in the run-time of
the algorithm is the dependency on the available main memory. In the case, the
whole tree can not be held entirely in main memory, the computation causes
page swapping and therefore a lot of disk-seeks.

Moon et al. [14] addressed the balancing problem of the aggregation tree
of Kline. They split the five aggregation operators into two groups, namely
count, sum and avg on one side and min and max on the other side. The
distinction is done according to the computational effort needed to keep track
of the aggregation values. For each group of aggregation operator a different
algorithm was proposed, for the first group a balanced tree based method and
for the later one a merge-sort variant. The tree based algorithm stores the start
and end timestamps together with the two partial aggregation value starting and
ending at that timestamp. To allow a dynamic run-time balancing of the tree,
each node contains an additional color tag as used by the red-black tree insertion
algorithm. The balancing handles the problem of the aggregation tree according
the creation of linked list if the input relation is sorted by the timestamps leading
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to a run-time of O(n2). The result relation is then computed by an in-order
traversal of the tree aggregating the values of all nodes encountered. Storing
information of the constant intervals not only in the leave nodes, but also in
the internal nodes, reduces the amount of nodes hold in main memory by about
half the nodes required by the aggregation tree algorithm. The merge-sort
based algorithm uses a bottom-up approach to calculate the aggregation values.
It uses a divide-and-conquer strategy to recursively merge two intermediate
results ending up with the final aggregation result. Both proposed algorithms
have a time complexity of O(n log n) for a argument relation of n tuples. Moon
et al. proposed also a solution to address the main memory limitation of the
aggregation tree. The time-line of the input relation is partitioned into buckets
and the aggregation operator is applied to each bucket independently. The
partial aggregation results of long-lived tuples, tuples spanning more than one
bucket, are kept in a separate meta-array. As a last step the partial aggregation
results of the buckets and the meta-array have to be combined leading to the
final aggregation relation.

The so called SB-tree or segmented B-tree proposed by Yang et al. [26] is
a balanced, disk based index structure that allows lookups of temporal aggre-
gate values by time-instants in O(h) time, where h is the height of the SB-tree.
Additionally, the tree supports efficiently incremental insertions and deletions
making it more attractive in comparison to materialized database views main-
taining temporal aggregates. Together with the algorithms computing instant
temporal aggregation and cumulative temporal aggregation Yang et al. [26] de-
veloped also modified versions of their SB-tree. The JSB-tree or joint SB-tree
uses two SB-trees to further increment the effectiveness of lookups, even though
the time complexity does not change. For the min and max aggregation oper-
ator they implemented another version of the SB-tree, the so called MSB-tree.
The mayor tradeoff of this approach is that the size of the increases and there-
fore incrementing the operation time by a constant factor in comparison to the
SB-tree.

Böhlen et al. [3] proposed a completely different attempt to efficiently com-
pute temporal aggregates. Their model named GTA (general temporal aggrega-
tion), extends the framework of Klug [12], which provides a two parameter based
method to calculate non-temporal aggregation, in order to allow computations
of temporal aggregates. The GTA framework clearly separates the partial result
relation g that contains a partial result tuple for each data record included in
the result relation, from the aggregation groups rg over which the aggregation
functions F = {f1/C1, . . . , fk/Ck} are computed. In contrast, in the traditional
approach both aspects are determined by the grouping attributes. A mapping
function θ : r → g is then used to associate a set of argument tuples, called ag-
gregation group rg, with a partial result tuple g1 ∈ g. The extensive flexibility
of the GTA model originates from the strict division of the partial result relation
g, which only purpose is the grouping of the result relation and the argument
relation r. This allows an expression of different forms of aggregation, like ITA,
MWTA and STA using a unified general model.

Due to the computational complexity of computing temporal aggregates and
the vast increment in size of the amount of tuples to process, in the past years
the idea of parallel processing came up. Ye et al. [27] presented in their work two
algorithms based on the aggregation tree of Kline and Snodgrass [11]. The two
proposed procedures use the divide-and-conquer strategy and are designed for a
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shared-memory architecture [21]. The first approach simply partitions the tuples
according to their group-by attributes and distributes the resulting partitions
among the available cores of the multicore machine. Each thread maintains its
own aggregation tree allowing concurrent application of the aggregate operations
on data, but forcing each processor to check all tuples in the argument relation.
The second algorithm uses only one aggregation tree for each attribute value,
shared by all processors. The input relation is partitioned into several sections,
subsequently distributed and checked by the single threads of the multicore
machine. Due to the fact that all processors use only a shared aggregation tree
the update operations have to be executed sequentially.

Gendrano et al. [9] [8] presented in their work another aggregation tree based
parallel strategy. They presented five new algorithms based on the master-slave
principle and computing temporal aggregates on a shared-nothing architecture.
The first approach simply extends the aggregation tree algorithm of Kline and
Snodgrass [11] by parallelizing disk I/O. The argument relation is partitioned
among the worker nodes, which compute the constant intervals and send them
to the central coordinator responsible for constructing the aggregation tree and
returning the final result. The second algorithm is a refinement of the first by
introducing computational parallelism. Each worker node constructs their own
aggregation tree reading part of the input relation and forwards the partial tree
to the coordinator which merges them into one result tree. The third solution
constructs again partial aggregation trees for each worker node. Then the ag-
gregation values are pushed to the leave nodes of the tree and all intermediate
nodes are discarded leading to a local representation of the constant intervals.
After evenly partitioning the local tree (’local partition set’), the coordinator
receives all leave nodes and equally subdivides the partitions creating a so called
’global partition set’. A fixed partition is assigned to each worker-node, which
can now use the broadcasted global information together with the local leave
nodes to exchange missing leave-nodes. Afterwards, each worker nodes merges
the received leave nodes with the local leave nodes. When all workers are done,
the coordinator can produce the result relation by collecting the partial results
in sequential order. Another approach presented allows a pairwise merge of the
leave nodes of two by the coordinator randomly picked worker-nodes. The tem-
poral aggregation is finished, when all involved worker-nodes have merged their
result leading to the result relation. The last variant of the algorithm presented
discharges the final collection and merging process returning a distributed set
of partial results.

2.2 MapReduce

Using the functional programming construct MapReduce as a programming
paradigm to process large raw data in parallel is first presented in 2004 by
Dean et al. [5]. Programs implementing this highly scalable model run on large
shared-nothing [21] clusters distributing the workload on hundreds or even thou-
sands of connected nodes [25]. Further they are provided with fault tolerance
and efficient use of disk space and optimized network transfers [6]. The MapRe-
duce programming model, introduced in [18], is basically defined by the two
main methods, map and reduce. The map tasks read the partitioned input file
in parallel and completely independent, process the data and generate a set of
intermediate key-value pairs. Next, in the so called shuffle-phase, the key-value
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pairs are assigned to different reduce-tasks and sorted by the key attributes.
The reduce functions receives a subset of the intermediate key-value pairs, hav-
ing the same key and processes the associated values. The resulting key-value
pairs are stored on the disk depending on the user defined code. More detailed
information can be found in subsection 2.3.

Another way of benefiting from the MapReduce programming model was
explored by Chu et al. [4]. In contradiction to the work of Dean et al. [5] where
the MapReduce principle is used to allow a processing of data by a cluster
Chu et al. [4] focused on single machine computation working with multicore
processors. In addition to the basic methods, they have also in common the
idea of splitting the input data and declaring one master, which coordinates
map and reduce tasks and multiple workers, which process the assigned work.
One of the main differences in this two architectures is the reliability of data
exchange. In a cluster, the exchange of data over a network is unreliable and
has to be considered in the architectural structure of the framework, whereas in
a multicore environment this drawback can be omitted.

Some work was done on comparing the MapReduce approach to parallel
DBMSs (e.g. Vertica, DBMS-X) [22] [16], the goal being to understand the
differences between the two approaches on performing large-scale data analysis.
Both systems provide a high-level programming environment to express the
desired tasks. In addition, they state that almost any parallel processing task
can be expressed as either a set of database queries or a set of MapReduce
jobs. The results of the performance tests clearly stated that both parallel
database systems have a significant performance advantage over the MapReduce
implementation Hadoop. This substantial gap in the execution times is due to
the architectural differences. A parallel DBMS is designed to effectively query
large data sets, whereas the main purpose of MapReduce styled systems are
complex analytic and ETL tasks.

A combination of a MapReduce based system and a DBMS was presented by
Abouzeid et al. [1]. The resulting framework, HadoopDB, replaces the standard
storage layer HDFS (Hadoop Distributed File System) used by Hadoop with a
DBMS-style optimized storage for structured data. Basically, Hadoop is used to
connect multiple single node database systems using the MapReduce framework
as a task coordinator and network communication layer. The system preservers
the fault tolerance, scalability and flexibility of Hadoop, while taking advantage
of the performance and efficiency of parallel databases by pushing most of the
query processing inside the database engine.

A successful attempt to outsource the computation to the GPU is presented
in the work of [10]. They implemented a modified MapReduce framework called
Mars, which hides the programming complexity of the GPU behind a MapRe-
duce interface.

2.3 Hadoop

In this subsection we are going to describe in detail the popular MapReduce
implementation Hadoop [24] [19]. We provide a general overview of the features
and the single stages the framework uses during the processing of the data. The
different general techniques together with helpful hints about the customization
of the single MapReduce methods in Hadoop and so to trigger the desired be-
havior of the framework were taken from the books of Donald Miner et al. [13]
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and Perera Srinath et al. [17].

HDFS: The Hadoop Distributed File System (HDFS) is a custom file system
design to store very large files, having many similarities with other existing
distributed file systems. An important difference comparing HDFS to a local
filesystem is that the default block size instead of being around 512 B, is by
default 64 MB. This decreases the seek time of transferring a large file over the
network compared to the transfer time. Further it uses streaming data access
patterns, i.e. writing the data once and reading multiple times. Another benefit
is that HDFS allows storing a single file over more than one physical media, i.e.
a file can be larger than any single disk in the cluster. Further the system
provides fault tolerance and increases availability by replicating the blocks to
physically separated machines in the cluster.

Nodes: Hadoop uses two basic types of nodes in the cluster, a Namenode as
master and several Datanodes as workers. The filesystem is managed by the
Namenode which also maintains the filesystem tree and the metadata for all the
files and folders in the tree. Further, the Namenode also knows the Datanodes
that store the data blocks of a given file. Due to the fact, that the filesystem
HDFS can not be used without a Namenode, an obliteration of the machine
running that node would lead to a total information loss. For this reason, it
is possible to start a so called Secondary Namenode on a physically different
machine as a backup that takes over in case of failure.

The Datanodes are the workers in the cluster, which receive assigned data
and maintain blocks from the Namenode or other Datanodes. Further, they
periodically notify the Namenode about the locally stored blocks.

In addition, the Namenode runs a Jobtracker, which is responsible for coor-
dinating all job executed on the cluster. This is done by scheduling single task
to run on the so called Tasktrackers executed on every Datanode in the cluster,
which continuously report the progress to the Jobtracker. Further, if a task on a
Datanode fails, the Jobtracker is responsible for rescheduling the assigned work
using a different Tasktrackers and so a different Datanode.

Input File: A Hadoop input file is typically stored in HDFS providing the
advantages previously described. Hadoop gives the user the possibility to choose
different input-formats, which mainly influence the creation of the InputSplits
described in the next Subsection. Further the format determines the reading
method the so called RecordReader subsequently used by the mapper to read
the data records from the assigned InputSplit, i.e. reading the file line by line
or reading a whole chunk at once. The InputFormat can be a few large files,
many small files or even an accessible database.

InputSplit: As mentioned before the InputFormat influences the InputSplit,
which is a logical (not physical) chunk of the input file. The InputSplit has a
defined byte length (default 64 MB, same as the HDFS block size) and can be
further divided into single records. Due to the logical split, a InputSplit does not
contain the actual data of the input file, but only references to storage locations.
The division of the file in smaller parts allows several map-tasks to operate in
parallel on the same file. The previously defined InputFormat is also responsible
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for guaranteeing the integrity of the data contained in each InputSplit, i.e. a
text based InputForamt divides the records in such a way that the lines are not
broken.

Mapper: The custom mapper can consists of three basic phases, the setup,
the mapping and the cleanup. The mapper starts with the customizable setup
method, only executed once for each InputSplit processed by the task. As a
next step, the selected RecordReader is used to initialize the input parameters
of the mapping-function. The mapper uses these parameters to construct and
emit intermediate key-value pairs.Once the InputSplit is entirely processed, the
cleanup method can for example be used to delete temporal data.

Shuffle: Immediately after the first mapping tasks have completed, the gener-
ated intermediate key-value pairs are exchanged and forwarded to the assigned
reducers. In this so called shuffle phase the customizable partitioner and com-
parator influence the final destination of the intermediate keys. The purpose of
the user defined partitioner is to assign to each key-value pair a valid reduce-
task taking into consideration information retrieved from the key part. As a
sideeffect, key-value pairs having the same key are assigned to the same reducer
regardless which mapper is the origin. Further there are two possible appli-
cation for the comparator, first as a sort-comparator influencing the order of
the key-value pair and second as a group-comparator grouping key-value pairs
according to a portion of a composite key.

Reduce: The customizable reducer receives a subset of intermediate key-value
pairs all having either the same key or in case of a composite key having a
common key-part. The sorted values are then processed by the reduce-function
producing final key-value pairs written to the output file. A reducer-task, similar
to the mapper, uses three phases possibly customized by the user, namely the
setup, reduce and cleanup-phase.

Output File: The specifiable OutputFormats correspond to the InputFormats
previously described. Each reducer produces exact one output file stored on
the HDFS. The selected format influences the method used to write the file,
for example single text lines. If the implemented solution needs more than
one MapReduce-run the selected OutputFormat determines the structure of the
mapper for the subsequent iteration.

3 Hadoop Temporal Aggregation - Standard

The first approach, the HTA-Standard algorithm, needs 3 MapReduce iterations
to compute the temporal aggregates. The appendix ’standard’ references to
to the calculation technique used to determine the result of the aggregation
operator. The algorithm considers the fact, that the aggregation value can
only change when a new tuple starts or ends. The time instants are the main
attributes used during the first iteration in order to group the key-value pairs
and assign a reduce-task. As a first step, the amount of starting and ending
tuples at each timepoint is determined.
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The second iteration partitions the timeline into various segments, called
partitions and sorts the time instants within each partition. Then the algorithm
goes through all the pairs overwriting the current counter value with the result
got by adding the value of the previous pair to the current counter value. At
the end of each partition the last counter value is transferred to all consecutive
partitions by creating a special so called ’transfer’ key-value pair.

The third iteration sums up all values contained in the ’transfer’ key-value
pairs and adds the result to all timepoints in the partition generating the final
result relation.

3.1 Iteration 1: Extract Starting and Ending Timepoints

A detailed graphical illustration of the first iteration, including the data of the
running example, can be found in Figure 5.

3.1.1 Map

As a first step, the input file is split into so called InputSplits. These fixed-sized
chunks of the input file are distributed across the cluster nodes and processed
in parallel by the Hadoop framework.

Definition 1. (Mapper) Let r be the currently processed tuple read from the
assigned InputSplit having scheme (A1, . . . , An, Ts, Te), with r.Ts as starting and
r.Te as ending timepoint of the valid time interval [Ts, Te) with Ts < Te. Then
the map-function is defined in the following way:

Mapper(r)→ {(r.Ts, ’s’)} ∪ {(r.Te, ’e’)}

The mapper (Figure 3) reads a tuple r, having scheme [A1, . . . , An, Ts, Te],
form the assigned InputSplit. Afterwards, the timepoint r.Ts together with the
character ’s’, indicating that the included timepoint is a starting point, form a
intermediate key-value pair. The ending point of the tuple r.Te is also used to
create a new key-value pair, that the char ’e’ used to tag the pair to contain an
ending timepoint. Notice, the amount of pairs is two times the total amount
of tuples in the input file. Assume the file contains n data records, than the
amount of intermediate key-value pairs is 2n.

Function: Mapper(r[A1, . . . , An, Ts, Te])

Input: The tuple r read from the InputSplit
Output: The intermediate key-value pairs produced from the input tuple r

begin
Emit(r.Ts, ’s’);
Emit(r.Te, ’e’);

Figure 3: HTA-Standard : Mapper (Iteration 1)

Example 1. In the example at Figure 5 a InputSplit consists of the tuples r1, r2

and r3 which are sent to the map-task of node 1. The time interval of tuple r1

is split into the values 0 and 3 which are then associated with the corresponding
char leading to two intermediate key-value pairs (0, s) and (3, e). The tuples
r2 and r3 are processed using the same methodology and generate the pairs
(0, s), (13, e) and (3, s), (9, e) respectively.
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3.1.2 Shuffle

As a next step, the default partition function divides the set of intermediate
keys into subsets by computing the default hash of the key T , modulo the total
numbers of available reducers. Due to the hash function, pairs with the same
key end up in the same subset and due to the modulo function the amount of
reducers is flexible, while guaranteeing the validity of the assignments. Before
processed by the reducer, each subset of intermediate keys is sorted using the
default method provided by the framework.

Example 2. Since in the example only 2 nodes and therefore 2 reducers are
available, the modulo function used by the default partitioner leads to a sepa-
ration of even and odd timepoints T , i.e. a even number generates the result 0
and a odd number the result 1.

3.1.3 Reduce

Definition 2. (Reducer) Let T be the timepoint used as a key during the map
phase and V = {v1, . . . , vm} be the set of associated values all having T as
associated key with the cardinality m. Then the reduce-function is defined as
follows:

Reducer(T, V )→ (T, f1(V ))

where the time instant T remains unchanged and the joint value is the result of
the following function f1:

f1(V ) =
∑

v∈V ∧
v=’s’

1 +
∑

v∈V ∧
v=’e’

(−1)

As a next step, the custom reducer function (Figure 4) receives a subset of
key-value pairs (T, V ), with V = {v1, . . . , vm}, all having the same time value
T . The reducer now goes through all the values in V , updating the counter c
according to the char contained in vi ∈ V . After all values have been processed,
an output tuple is created using the unchanged timepoint T and the final counter
c. The cardinality of V depends directly on the data in the input file and is
within the interval (1 ≤ |V | ≤ n), where n is the amount of tuples in the input
file, i.e. from one tuple starting or ending at the timepoint T to all tuples
starting and/or ending at T .

Example 3. The reducer in node 1 now receives all intermediate key-value pairs
having a even timepoints sorted by their values. The two pairs (0, s) and (0, s)
have the same timepoint value which leads to a single output tuple containing
the timeinstant 0 and the determined result 2. This value means that at this
timepoint two tuples are starting. The same is done with the other pairs leading
to the result that at timepoint 16 another tuple starts and at each timepoint 18
and 20 one tuple ends. Therefore, the following key-value pairs are generated:
(16, 1), (18,−1), (20,−1).
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Function: Reducer(T, {v1, . . . , vm})
Input: A subset of intermediate key-value pairs with the same timepoint value T
Output: Writes output tuple to the output file

begin
c← 0;
foreach v ∈ {v1, . . . , vm} do

if v = ’s’ then
c← c + 1

else
if v = ’e’ then

c← c− 1

Output(T, c);

Figure 4: HTA-Standard : Reducer (Iteration 1)

ID T
r1 [0, 3)
r2 [0, 13)
r3 [3, 9)
r4 [15, 20)
r5 [7, 13)
r6 [16, 18)

Node 1

Node 2

Map
(0, s)
(3, e)
(0, s)
(13, e)
(3, s)
(9, e)

Map
(15, s)
(20, e)
(7, s)
(13, e)
(16, s)
(18, e)

Reduce
(0, s)
(0, s)
(16, s)
(18, e)
(20, e)

Reduce
(3, s)
(3, e)
(7, s)
(9, e)
(13, e)
(13, e)
(15, s)

Output
(0, 2)
(16, 1)
(18,−1)
(20,−1)

Output
(3, 0)
(7, 1)
(9,−1)
(13,−2)
(15, 1)

Key: TimePoint
Value: Start/End

Key: TimePoint
Value: Count

Figure 5: Graph of HTA-Standard Algorithm (Iteration 1)

3.2 Iteration 2: Partition Timepoints & Generate Trans-
fer Values

3.2.1 Map

Before the second iteration, graphically illustrated in Figure 10, the partitions
file (subsubsection 6.1.1) is produced. Assume that the file is successfully created
and is available to all Datanodes in the cluster.

Definition 3. (Mappe) Let T be the timepoint and c be the counter value of
the previously iteration. Further assume, that P [Ts, Te] is the partition to which
the currently processed time instant T belongs, having [Ts, Te] as associated time
interval and that the total amount of partitions is equal to p. Then the map-
function of the second iteration is defined as follows:

Mapper(T, c)→ {([P, T, p], c}
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where the current partition P ∈ P and P [Ts, Te] encloses the current timepoint
T such that P.Ts ≤ T < P.Te.

The iteration starts with the map-function shown in Figure 6. The key-value
pairs (T, c) generated by the first iteration are read from the file separating again
the timestamp T from the counter c. As a next step the partitions file is used
to retrieve the partition P [Ts, Te] to which the timestamp T belongs, fulfilling
the condition P.Ts ≤ T < P.Te. Then a new pair is formed using the unique
identification number of the partition P , the current timestamp T and the total
amount of partitions p as key and the unchanged counter c as value. Notice, the
amount of key-value pairs remains the same, only the amount of data stored in
the key is augmented.

Function: Mapper(T, c)

Input: The tuples read from the output file of the 1. iteration
Output: The intermediate key-value pairs produced from the input tuple (T, c)

Let P be the set of partitions stored in the partitions file;
Let p be the total number of partitions;
begin

P ∈ P with Pr.Ts ≤ r.T < Pr.Te;
Emit([P, T, p], c);

Figure 6: HTA-Standard : Mapper (Iteration 2)

Example 4. For the example assume that the output file generated by node 1
during the first iteration, containing tuples of form (T, c), is again been processed
by the same node. The partition, shown in Figure 7, of the single timeinstants
is looked up leading to the result that timepoint 0 belongs to partition P1
and the points 16, 18, 20 to partition P4. Further we can see that the total
number of partitions p is equal to 4. This information is used to form the
following key: [1, 0, 4], [4, 16, 4], [4, 18, 4], [4, 20, 4]. At the end the intermediate
key-value pairs are formed combining the key with the respective counter values
c: ([1, 0, 4], 2), ([4, 16, 4], 1), ([4, 18, 4],−1), ([4, 20, 4],−1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

P1 [0− 5) P2 [5− 10) P3 [10− 15) P4 [15− 20]

Figure 7: Temporal Partitions of Example

3.2.2 Shuffle

The second iteration uses a custom partition function (Figure 8), because while
forming the subsets of the intermediate keys the function cannot consider the
whole key but only the assigned partition number P , i.e. if they have the
same partition number they end up in the same subset regardless the different
timestamp T . This means that all key-value pairs having the same partition
number are assigned to the same reduce-task. Another important fact that has
to be considered by the partition function is that the reducer processing a certain
partition can not be arbitrarily selected by the framework. In order to divide
the final aggregation relation into consecutive output files, successive partitions
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are assigned either to the same reducer or if available to the chronological next
reducer. Notice, the first partition number is 1, but Hadoop numerates the
available reducers starting from 0, which forces the decrement by 1 during the
calculations of the partition function. The partitioner calculates the amount of
temporal partitions that have to be assigned to each of the reduce tasks in order
to evenly distribute the workload without introducing the error. This offset is
calculated by dividing the total amount of partitions p, stored in the key part of
each intermediate key, by the total amount of available reduce-tasks R. Now the
unique partition number of the currently processed key-value pair is divided by
the determined offset, getting a valid reducer-task number num. In the case
that p = R meaning that p

R = 1, each reducer receives exactly one partition. In
the case that p

R > 1 the single partitions are distributed among the available
reducer-tasks.

The default behavior of Hadoop is to group the key-value pairs according to
the key attribute. Since this algorithm uses a composite key, a custom group-
comparator is used in order to ensure that the pairs are grouped solely by the
partition number P . The effect of this method is that all keys with different
timestamps T , but the same partition number P are gathered together leading to
a subset of the following form: [P, {T1, . . . , Tm}, p], {v1, . . . , vm}. An additional
sideeffect of the comparator is that the timepoints T are sorted from earlier to
lather.

Function: Partitioner([P, T, p], R)

Input: The key of the current key-value pair and the total number of reducers
Output: The assigned reducer number

begin
offset← p

R ;

num← b (P−1)
offset c;

return num;

Figure 8: HTA-Standard : Partitioner (Iteration 2)

Example 5. Due to the fact that in the example we use 2 reducers and have a
total amount of partitions p = 4, the calculated offset is as follows: p

R = 4
2 = 2.

Next, the partition number of the first pair is divided by the offset b (P1−1)
2 c = 0

assigning it to the reducer of node 1. The same is done for the next key-value

pair with the following result b (P−1)
offsetc = b (P4−1)

2 c = 1 sending it to node 2.
The partitioner continuous until all pairs have been processed. At the end,
this leads to a partitioning of the intermediate key-value pairs where node 1
receives P1 and P2 and node 2 gets P3 and P4. Further the group-comparator
groups the timepoints according to the assigned partition number creating the
sets [(1, {0, 3}, 4], {2, 0})] and [(2, {7, 9}, 4], {1,−1})] for node 1.

3.2.3 Reduce

Definition 4. (Reducer) Let P be the identification number of the currently
processed partition and the set {T1, . . . , Tm} the set of timestamps all having
the same P . Further assume that p is the total number of partitions and V =
{v1, . . . , vm} is the set of values related to the key. Then the reduce-function is
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defined as follows:

Reducer([P, {T1, . . . , Tm}, p], V )→
m⋃
i=1

([P, Ti, p], ci) ∪
p⋃

l=P+1

([l,−1, p], cm)

where Ti ∈ {T1, . . . , Tm} and the counter ci = ci−1 + vi ∈ V with c0 = 0.

The reduce-task (Figure 9) receives the sorted subset of the intermediate keys
and starts processing the contained key-value pairs. Since all keys in the subset
are grouped by the partition number P.N and the total amount of partition p
is globally the same, both variables remain constant within each subset. As a
first step the function initializes the counter cprev to 0 and adds the variable
cprev to the counter ci, not modifying its value. The counter ci, together with
the key-part consisting of the partition number P.N , the timestamp Ti and the
total amount of partitions p, form the key-value pair written to the output file.
Then the counter ci is maintained by overwriting cprev ← ci. In the following
iterations of the loop the counter value cprev is added to the current value vi and
a new output tuple is written to the file. Once the tuple was written the current
counter c becomes cprev and the next key-value pair is processed until the end
of the subset is reached i.e. i = m, where m = |T | = |V | is the cardinality of
the subset of timestamps.

After all the timestamps of one partition are processed, the reducer generates
some additional so called ’transfer’ key-value pairs. An additional pair has to
be constructed for every subsequent partition P = P +1, until the upper bound
p is reached. So the partition number P + 1 = l together with the timestamp
−1, the total amount of partitions p and the last counter value cm form a new
transfer key-value pair. The algorithm continuous until the last transfer tuple
containing p as partition number is written to the output file. The amount of
additional generated tuples depends directly from the total number of partitions
used by the algorithm. Since the amount of partitions p is known the upper
bound of the total number of transfer keys generated by all available reducers
is equal to p(p− 1) = O(p2).

Function: Reducer([P, {T1, . . . , Tm}, ptot], {v1, . . . , vm})
Input: A subset of intermediate key-value pairs with the same partition number P
Output: Writes output tuple to the output file

begin
cprev ← 0;
for i = 1 to m do

c← vi + cprev;
Output([P, Ti, p], c);
cprev ← c;

if c 6= 0 then
l← P + 1;
while l ≤ p do

Output([l,−1, p], c);
l← l + 1;

Figure 9: HTA-Standard : Reducer (Iteration 2)
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Example 6. In the example Node 1 starts by processing the first subset
[(P1, {0, 3}, 4], {2, 0})]. The reducer uses the partition number P1, the first
timestamp T1 = 0, the total amount of partitions p = 4 and the unchanged
counter ci = 2 to form the first output tuple: ([P1, 0, 4], 2). Next, the counter
ci = 2 is maintained and the next timepoint and associated value is processed.
This leads to the following output tuple: ([P1, 3, 4], 2), where 3 is the new time-
point Ti and ci = vi + cprev = 0 + 2 = 2 is the result of the previous state
of the counter cprev = 2 and the current counter value vi = 0. The algorithm
continuous until all timeinstants contained in the subset are processed and due
to the non-zero value of the last counter some transfer keys have to be gener-
ated. The first transfer key consists of the consecutive partition of P1 which is
P1 + 1 = P2, the timestamp −1, the total amount of partitions p and as value
the last status of the counter cm = 2. The following transfer pairs contain the
same values except the partition number which is continuously increased by 1
until it reaches the total amount of partitions P4 = p. Then the next subset is
processed until all assigned work is done.

Node 1

Node 2

Input

(0, 2)
(16, 1)
(18,−1)
(20,−1)

Input

(3, 0)
(7, 1)
(9,−1)
(13,−2)
(15, 1)

Map

([P1, 0, 4], 2)
([P4, 16, 4], 1)
([P4, 18, 4],−1)
([P4, 20, 4],−1)

Map

([P1, 3, 4], 0)
([P2, 7, 4], 1)
([P2, 9, 4],−1)
([P3, 13, 4],−2)
([P4, 15, 4], 1)

Reduce

([P1, {0, 3}, 4], {2, 0})
([P2, {7, 9}, 4], {1,−1})

Reduce

([P3, 13, 4],−2)
([P4, {15, 16, 18, 20}, 4], {1, 1,−1,−1})

Output

([P1, 0, 4], 2)
([P1, 3, 4], 2)
([P2,−1, 4], 2)
([P3,−1, 4], 2)
([P4,−1, 4], 2)
([P2, 7, 4], 1)
([P2, 9, 4], 0)

Output

([P3, 13, 4],−2)
([P4,−1, 4],−2)
([P4, 15, 4], 1)
([P4, 16, 4], 2)
([P4, 18, 4], 1)
([P4, 20, 4], 0)

Key: Partition,
TimePoint,

TotalPartitions
Value: Count

Key: Partition,
TimePoint,

TotalPartitions
Value: Count

Figure 10: Graph of HTA-Standard Algorithm (Iteration 2)

3.3 Iteration 3: Integrate Transfer Values

The graphical illustration including the example relation of the final iteration
is shown in Figure 13. As a first step, the output file of the previous iteration
is split into the single InputSplits and read by the map-function.

3.3.1 Map & Shuffle

Definition 5. (Mapper) Let P be the identification number of the partition, T
be the timestamp, p be the total amount of partitions and c be counter deter-
mined by the previous MapReduce iteration. Then the map-function is defined
as follows:

Mapper([P, T, p], c)→ {([P, T, p], c}
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The mapper (Figure 11) does not change any values, it only reads and emits
the key-value pairs and forwards the data to the partition-function. Due to
the unchanged structure of the key-value pairs, the same principles for the
partitioner (Figure 8) and the group comparator as in the previous iteration
are reused. This means, that the set of key-value pair is again split into subsets
of equal partition number P and sorted by timestamp T . Since all transfer key
contain a negative timestamp the sorting phase causes them to be on the top of
the list of keys having the same partition number P .

Function: Mapper([P, T, p], c)

Input: The tuple read from the output file of the 2. iteration
Output: The intermediate key-value pairs produced from the input tuple

begin
Emit([P, T, p], c);

Figure 11: HTA-Standard : Mapper (Iteration 3)

Example 7. The Mapper reads the tuples one by one and restores the key-value
pair structure. The partition function is the same as in the previous iteration,
which due to the same partition numbers calculates the same offset and assigns
the same partition number to the same reducers. This means, that P1 and P2
are processed by node 1, whereas P3 and P4 by node 2. During the shuffle phase
the group comparator groups the pairs according to the partition number cre-
ating the subset [(P1, {0, 3}, 4], {2, 2})] for P1 and [(P2, {−1, 7, 9}, 4], {2, 1, 0})]
for P2. We can see that the transfer key-value pair was moved at the beginning
of the subset because of the negative timepoint Ti = −1.

3.3.2 Reduce

Definition 6. (Reducer) Let T = {T1, . . . , Tk, Tk+1, . . . , Tm} be the set of times-
tamps all having the same partition number P , p be the total number of parti-
tions and V = {v1, . . . , vk, vk+1, . . . , vm} be the set of values associated with the
timestamps in T . The subset T ′ = {T1, . . . , Tk} contains k negative timestamps
and the subset V ′ = {v1, . . . , vk} is composed of the k values associated with the
the k negative timestamps. Then the reduce-function is defined as follows:

Reducer([P, T, p], V )→

{[P.Ts, Tk+1], inc} ∪
m⋃

i=k+1

([Ti, Ti+1], inc+ vi) ∪ {[Tm, P.Te], inc+ vm}

where inc+vi is the result of the temporal aggregation valid for the time interval
[Ti, Ti+1] with inc being the result of f2 defined as follows:

inc = f2(V ′) =

k∑
i=1

vi

The subset of intermediate keys is now received by the reduce-function (Fig-
ure 12), which calculates the final value of the aggregation and their valid time-
intervals. As a first step, the reduce-task initializes the time-interval t consisting
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of a start-timestamp Ts and an end-timestamp Te, the counter c, the increment
inc and a boolean variable used to handle the special case occurring when the
first key-value pair is processed. Then, the reducer starts processing the times-
tamps Ti. Due to the contained negative timepoint, all additionally generated
transfer keys are located at the beginning of each subset, allowing the function
to sum up the related values vi, as long as the timestamp Ti remains negative.
Along with the sum stored in the variable inc the boolean variable ’first’ is set
to true. This boolean variable is used to recognize the first key-value pairs not
being a transfer key. Once the transfer keys are processed and the timestamps
Ti starts to be positive, the computation of the aggregation values and the build-
ing of the related valid time-intervals can start. As a next step, it is checked if
the current timestamp Ti is larger as the starting point of the timeinterval t.Ts.
Since this is the first iteration of the loop and the interval t still contains the ini-
tialization value, the check will be evaluated to be true. The next test involves
the boolean variable ’first’. If the variable is true, meaning that there were
transfer keys at the beginning of this partition, the startpoint of the interval
t.Ts is overwritten with the startpoint of the current partition P.Ts. Otherwise,
if the boolean variable is false, meaning that no data tuples are entering the cur-
rent partition, nothing has to be done and the part is skipped. The background
of this special case is that, if there are no tuples entering the partition the first
encountered timestamp is the start of the aggregation relation, otherwise the
result relation starts at the beginning of the partition. Assuming that at the
beginning of the reducer some transfer-keys were processed, the startpoint of
the time interval t.Ts becomes equal to P.Ts. Next, a check is done testing
if the sum of the counter c and the increment inc is different than 0. If not,
no output tuple has to be produced. Assuming that the sum is different than
0, the current timestamp Ti becomes the endpoint of the timeinterval t and a
new output tuple is written to the file consisting of the timeinterval t and the
aggregation result (c + inc). Once the tuple is written, the current timestamp
Ti previously used as endpoint of the interval, becomes the starting point of the
next interval. Further, the value vi associated with the timestamp previously
outputted is maintained using the counter c. In the second iteration of the loop
a repetition of the same timestamp value causes only a update of the counter
c using the current value vi. A timestamp bigger than the previous one causes
the previously described procedure leading to a generated output tuple.

As soon as all timestamps Ti contained in the subset are processed, a fi-
nal output tuples is produced in the case the last written time interval t has
a smaller ending point than the endpoint of the partition P.Te and the last
aggregation value (c + inc) is different from 0. This additional key-value pair
extends the time-interval of the last output tuple in order to reach the ending
timestamp of the partition P.Te. Notice, this does not corrupt the result re-
lation, this is needed because the endpoint of the partition is not present as a
key-value pair in the assigned subset. The problem could also be fixed by gen-
erating some additional key-value pairs marking the endpoint of the currently
processed partition. The total amount of output tuples is equal to the number
of different timestamps excluding the transfer keys, plus up to one tuple per
partition generated in the last special case previously mentioned.

Example 8. The reducer of node 1 starts by processing the subset
[(P1, {0, 3}, 4], {2, 2})] with the partition number P1. We can see that there
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Function: Reducer([P, {T1, . . . , Tm}, p], {v1, . . . , vm})
Input: A set of IKV-Pairs with the same assigned Partition Number
Output: Writes KV-Pairs to the Output File

begin
t[Ts, Te]← [0, 0];
c← 0;
inc← 0;
first← false;
for i = 1 to m do

if Ti < 0 then
inc← vi;
first← true;

else
if Ti > t.Ts then

if first then
t.Ts ← P.Ts;
first← false;

if (c + inc) 6= 0 then
t.Te ← Ti;
Output(t, (c + inc));

t.Ts ← Ti;
c← vi;

else
c← vi;

if (c + inc) 6= 0 ∧ t.Te < P.Te then
t.Te ← P.Te;
Output(t, (c + inc));

Figure 12: HTA-Standard : Reducer (Iteration 3)

are no contained transfer keys, which enables us to write the first output tuple
by simply connecting the two timestamps t = [0, 3) and associate them with the
aggregation value (c+inc) = (2+0) = 2. The algorithm continuous, because the
endpoint is smaller than the partition endpoint, i.e. t.Te < P.Te = 3 < 5 and
(c+inc) 6= 0. Therefore an additional tuple is created containing the endpoint of
the partition P1, i.e. ([3, 5), 2). Next the subsequent partition P2 is processed
having [(P2, {−1, 7, 9}, 4], {2, 1, 0})] as subset. At the beginning of the partition
a transfer key is present leading to inc = 2 and ’first’ = true. Therefore, the
first output tuple contains as starting point of the interval t the partition start
point t.Te = P.Ts = 5, the endpoint t.Ts = Ti = 7 and the aggregation value
(c+ inc) = (0 + 2) = 2. The second tuple written to the output file is ([7, 9), 3),
where the aggregation result is determined by (c + inc) = (1 + 2) = 3. As a
last step, the algorithm determines that t.Te < P.Te = 9 < 10 and (c+ inc) 6= 0
leading to a last additional output tuple ([9, 10), 2).

4 Hadoop Temporal Aggregation - Merge

The second developed algorithm, HTA-Merge, is design in a way that no initial-
ization phase is required, omitting all parameters such as min, max, count and
mode needed by the other two approaches. Moreover, the algorithm has no need
for the partitions file, saving computation time and storage space. In order to be
able to process the input tuples without partitioning the timeline the algorithm
uses a variable amount of iterations. The exact amount depends on the number
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Node 1

Node 2

Input

([P1, 0, 4], 2)
([P1, 3, 4], 2)
([P2,−1, 4], 2)
([P3,−1, 4], 2)
([P4,−1, 4], 2)
([P2, 7, 4], 1)
([P2, 9, 4], 0)

Input

([P3, 13, 4],−2)
([P4, 15, 4], 1)
([P4, 16, 4], 2)
([P4, 18, 4], 1)
([P4, 20, 4], 0)
([P4,−1, 4],−2)

Map

([P1, 0, 4], 2)
([P1, 3, 4], 2)
([P2,−1, 4], 2)
([P3,−1, 4], 2)
([P4,−1, 4], 2)
([P2, 7, 4], 1)
([P2, 9, 4], 0)

Map

([P3, 13, 4],−2)
([P4, 15, 4], 1)
([P4, 16, 4], 2)
([P4, 18, 4], 1)
([P4, 20, 4], 0)
([P4,−1, 4],−2)

Reduce

([P1, {0, 3}, 4], {2, 2})
([P2, {−1, 7, 9}, 4], {2, 1, 0})

Reduce

([P3, {−1, 13}, 4], {2,−2})
([P4, {−1,−1, 15, 16, 18, 20}, 4],

{2,−2, 1, 2, 1, 0})

Output

([0, 3), 2)
([3, 5), 2)
([5, 7), 2)
([7, 9), 3)
([9, 10), 2)

Output

([10, 13), 2)
([13, 15), 0)
([15, 16), 1)
([16, 18), 2)
([18, 20), 1)

Key: Partition,
TimePoint,

TotalPartitions
Value: Count

Interval: [Start - End)
Value: Count

Figure 13: Graph of HTA-Standard Algorithm (Iteration 3)

of reduce-tasks and is within the interval [2 . . . log2(O2)], where O2 is the num-
ber of output-files created by the second iteration of the algorithm. This means
as the number of reducers increases, the workload of the single reduce-functions
decreases, while the amount of repetitions of the third iteration increases. The
first iteration uses as main reference the offset within the input file to partition
the key-value pairs and distribute them among the available reduce-tasks. The
result of the reduce-function is a partial aggregation relation involving only a
chunk of the input file. Notice that at this point there can be multiple partial
results in each produced output file. The second iteration uses the unique name
of the input file in order to merge all fractions of the result relation contained
in each input file to one result relation per file. The third iteration has to merge
the partial results spread over the previously produced output files into a single
result file. Therefore, the algorithm uses a common key for two consecutive files
to force all contained tuples to be processed by the same reduce-task leading to
a merged output file. The iteration is called as long as the previous run created
more than one output file. This is done by forcing the Hadoop framework to
reduce the number of reduce-tasks by half after every iteration leading to a log-
arithmic (log2) decrement in the number of partial output files. In other words,
we iteratively merge two consecutive files until only one output file remains.

4.1 Iteration 1: Process Chunks of Input File

The graphical illustration of the first iteration, including the processing of the
example relation, can be found in Figure 18. As a first step, the input file is
split into 64 MB chunks, which are assigned to the different map-tasks. Each
of those InputSplit has a certain byte-offset within the input file, which can be
retrieved by the mapper.

4.1.1 Map

Definition 7. (Mapper) Let r be the currently processed tuple read from the
assigned input split having scheme (A1, . . . , An, Ts, Te), where r.Ts is the starting
and r.Te is the ending timepoint of the valid time interval [Ts, Te) with Ts < Te.
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Further assume that o is the byte-offset within the input file determined by the
Hadoop-framework. Then the map-function is defined in the following way:

Mapper(r)→ {([o, r.Ts], ’s’)} ∪ {([o, r.Te], ’e’)}

The first iteration starts with a custom map-task (Figure 14) reading the
tuples r from the assigned InputSplit having a certain byte offset o within the
file. Each input tuple has the scheme [A1, . . . , An, Ts, Te] where Ai is an non
temporal attribute and r.Ts and r.Te are the starting and ending points of the
valid time interval. This time-interval is split into its starting timestamp r.Ts
and ending timestamp r.Te and the byte-offset o is retrieved from the system.
A new key-value pair is generated using the offset o and the timestamp r.Ts as
key and the char ’s’ as value, marking the key to contain a starting point. The
same procedure is applied to the other timepoint r.Te, except the char in the
value part is a ’e’. In total the mapper, having as input n tuples, creates 2n
intermediate key-value pairs.

Function: Mapper(r[A1, . . . , An, Ts, Te])

Input: The tuple r read from the InputSplit
Output: The intermediate key-value pairs produced from the input tuples r

Let o be the byte-offset of the assigned InputSplit in the Input File;
begin

Emit([o, r.Ts], ’s’);
Emit([o, r.Te], ’e’);

Figure 14: HTA-Merge: Mapper (Iteration 1)

Example 9. For the example assume that r1 and r2 have an offset of 0 and
r3 and r4 an offset of 64 respectively. Further assume that the mapper of node
1 receives the tuples r1 to r4 and the remaining records r5 and r6, having an
offset of 128 are processed by node 2. The mapper receives r1 with the interval
[0, 3), separates the timepoints Ts = 0 and Te = 3 and generates the following
two key-value pairs: ([0, 0], s) and ([0, 3], e). Tuple r2 is processed in the same.
The records r3 and r4 have a different offset o = 64, leading to the following
intermediate key-value pairs: ([64, 3], s), ([64, 9], e), ([64, 15], s) and ([64, 20], e).

4.1.2 Shuffle

The HTA-Merge algorithm uses a custom partitioner (Figure 15) very similar to
the default one implemented by Hadoop. The main difference is that only the
hash of the byte offset o, modulo the total amount of available partition-tasks
R is used in the assignment of a valid reduce task. The partitioner assigns pairs
having the same offset o to the same reducer and contemporaneously evenly
distribute the intermediate keys among all reducers, adjusting the individual
workload. The custom group-comparator groups the available key-value pairs,
consisting of the composite key [o, T ], by byte-offset o and sorts the grouped
timestamps T in increasing order. This leads to subsets of intermediate keys of
the form ([o, {T1, . . . , Tm}], {v1, . . . , vm}).

Example 10. In our example we have three different offsets which are 0, 64
and 128 and two available reducers. Therefore one reducer has to process two
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Function: Partitioner([o, T ], R)

Input: The key of the current key-value pair and the total number of reducers
Output: The assigned reducer number

begin
num← hash(o) mod R;
return num;

Figure 15: HTA-Merge: Partitioner (Iteration 1)

subsets of intermediate key-value pairs, whereas the other reducer receives only
one subset. We assume that the partition function assigns pairs having a offset
o = 0 and o = 64 to node 1 and the remaining to node 2. The now applied
group-comparator groups the pairs according to their contained offset leading
to the following first group: ([0, {0, 0, 3, 13}], {s, s, e, e}). The set {0, 0, 3, 13}
contains the sorted timepoints all having o = 0 and the set {s, s, e, e} contains
the associated values vi. The same is done for all intermediate key value pairs
in the system.

4.1.3 Reduce

Definition 8. (Reducer) Let T = {T1, . . . , Tm} be the set of timestamps all
having the same byte-offset o and V = {v1, . . . , vm} be the set of values as-
sociated with the timestamps in T . Further let T ′ = {Tj , Tj+1 . . . , Tj+l} ⊂ T
and |T ′| = l be a maximum sequence of consecutive identical timepoints, i.e.
Ti = Ti+1 for i = j, . . . , (j+ l). The subset V ′ = {vj , vj+1 . . . , vj+l} is the set of
values associated with T ′ having the same cardinality l. Then the reduce-function
is defined as follows:

Reducer([o, T ], V )→
m−1⋃
i=1

([Ti, Ti+1], ci))

where ci is the value returned by the function f3 with c0 = 0.

ci = f3(V ′) =
∑

v∈V ′∧
v=’s’

(c+ 1) +
∑

v∈V ′∧
v=’e’

(c− 1)

At the end of the first iteration the reducer-function, shown in Figure 17 is
called. The task starts by receiving a subset of intermediate key-value pairs all
having the same byte-offset o and all timestamps Ti ∈ T sorted in increasing
order. As a first step, the counter c and the time-interval t having a start-
timestamp t.Ts and an end-timestamp t.Te are initialized. Then a loop starts
processing all timestamps Ti ∈ T and their associated values vi ∈ V . As a next
step, a check is done testing if the current timestamp Ti is greater than the
initialization value of the starting point of the interval t.Ts. Assuming that the
timestamp is bigger than 0, the currently processed timepoint Ti becomes the
ending point of the interval t.Te and a new output tuple is created containing
t and the counter c as aggregation value. Once the tuple is written to the
file, the previous ending point of the interval t becomes the starting point and
the counter c is updated using the UpdateCounter(vi, c, 1) (Figure 16) function.
This function unifies the counter c and the increment inc using the mathematical

23



method determined by v, i.e. if the value v is equal to ’s’ the counter c and
the increment inc are added, otherwise if the value v is equal to ’e’, they are
subtracted. In the second iteration of the loop the new timestamp, assumed to
have the same value as the previously processed, triggers only an update of the
counter c without generating a new output tuple. Instead a bigger timestamp
Ti causes the function to follow the previously explained steps producing a new
output tuple with interval t = [Ti−1, Ti) and value c.

Function: UpdateCounter(v, c, inc)
begin

if v = ’s’ then
return (c + inc)

if v = ’e’ then
return (c− inc)

Figure 16: Update Counter Function

Function: Reducer([o, {T1, . . . , Tm}], {v1, . . . , vm})
Input: A subset of intermediate key-value pairs with the same byte-offset o
Output: Writes output tuple to the output file

begin
c← 0;
t[Ts, Te]← [0, 0];
for i = 1 to m do

if Ti > t.Ts then
if c 6= 0 then

t.Te ← Ti;
Output(t, c);

t.Ts ← Ti;
c← UpdateCounter(vi, c, 1);

else
c← UpdateCounter(vi, c, 1);

Figure 17: HTA-Merge: Reducer (Iteration 1)

Example 11. We assume that the reducer receives the following subset of
intermediate key-value pairs: ([0, {0, 0, 3, 13}], {s, s, e, e}). Since T1 and T2 are
both 0 the reducer only has to update the counter c without writing any output
tuple, which leads to c = 2 because the associated values of the timestamps are
’s,s’. The next timepoint T3 = 3 forms the timeinterval t = [0, 3) and produces
a new tuple (t, c) = ([0, 3), 2) written to the output file. Next, T3 becomes the
starting point of the interval and the counter c is updated using the following
parameters: vi = e, c = 2, leading to a decrement of the counter c = 1. The last
timestamp T4 = 13 of the first subset being bigger than T3 = 3 causes the same
steps as before generating the output tuple (t, c) = ([3, 13), 1). The reducer of
node 1 continuous with the next assigned subset if any.

4.2 Iteration 2: Merge Partial Result within Single Files

As previously mentioned, the second iteration of the algorithm reads the single
output files and merges the multiple partial temporal aggregation results to
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Node 1

Node 2

ID T

r1 [0, 3)
r2 [0, 13)
r3 [3, 9)
r4 [15, 20)

r5 [7, 13)
r6 [16, 18)

Map

([0, 0], s)
([0, 3], e)
([0, 0], s)
([0, 13], e)
([64, 3], s)
([64, 9], e)
([64, 15], s)
([64, 20], e)

Map

([128, 7], s)
([128, 13], e)
([128, 16], s)
([128, 18], e)

Reduce

([0, {0, 0, 3, 13}], {s, s, e, e})
([64, {3, 9, 15, 20}], {s, e, s, e})

Reduce

([128, {7, 13, 16, 18}], {s, e, s, e})

Output

([0, 3), 2)
([3, 13), 1)
([3, 9), 1)
([15, 20), 1)

Output

([7, 13), 1)
([16, 18), 1)

Key: Offset,
TimePoint

Value: Start/End

Interval: [Start - End)
Value: Count

Figure 18: Graph of HTA-Merge Algorithm (Iteration 1)

one partial result per file. The main reference of the iteration is the unique
identification number of the input file, from which the tuples are retrieved.
This guarantees that key-value pairs formed from the tuples of the same input
file are assigned to the same reduce-task. The detailed process of the second
iteration is shown in the graph in Figure 22.

4.2.1 Map

Definition 9. (Mapper) Let id be a unique identification number generated
using the name of the input file and let [Ts, Te] be the time interval produced
by the previous iteration with Ts < Te. Further assume that c is the previously
calculated aggregation result valid during the associated time-interval. Then the
map-function is defined in the following way:

Mapper([Ts, Te], c)→ {([id, Ts, c], ’s’)} ∪ {([id, Te, c], ’e’)}

As a first step, the map-function (Figure 19) reads a tuple r from the as-
signed InpuSplit of the input file. Then, an unique identification number id
is created, using the filename of the input file indicated as source, as main
reference. This means, that map-tasks reading from different input files gener-
ate different identification numbers, whereas map-tasks processing InputSplits
from the same input file generate the same id number. As a last step, two
intermediate key-value pairs are formed using the id, the timestamp Ts and Te
respectively and the counter c as key. The character forming the value of the
pair is determined by the type of timestamp used in the key, meaning that a
starting timestamp is associated with the char ’s’ and an ending timestamp with
’e’.

Example 12. In our example, the mapper starts by reading the first tuple
([Ts, Te], c) = ([0, 3), 2) created by the previous iteration. We assume that the
identification number generated by the mapper is id = In1. As a next step, the
time interval is split into the timepoints Ts = 0 and Te = 3. The identification
number id = In1, the timestamps Ts = 0 and Te = 3 and the counter value
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Function: Mapper([Ts, Te], c))

Input: The tuples read from the output file of the 1. iteration
Output: The intermediate key-value pairs produced from the input tuple ([Ts, Te], c)

begin
Let id be the unique identifier of the Input File;

Emit([id, Ts, c], ’s’);
Emit([id, Te, c], ’e’);

Figure 19: HTA-Merge: Mapper (Iteration 2)

c = 2 form the key and the respective chars ’s’ and ’e’ the value of the two
produced key-value pairs: ([In1, 0, 2], s) and ([In1, 3, 2], e). The other tuples
contained in the InputSplit of node 1 are processed in an analogous manner.

4.2.2 Shuffle

The partitioner, shown in Figure 20, assigns valid reducers to the single in-
termediate key-value pairs, only considering the unique identification number
id. The function does not use the hash-value of the id number, because every
reduce task has to process only one subset of intermediate keys. Notice, the
case that there are more different id numbers than available reduce tasks is not
possible, because the amount of reducers remains constant until the end of this
iteration. The partitioner calculates the reducer number num by using the for-
mula: id mod R. This function is the key part of the second iteration, because
it forces the intermediate keys from the same file to be assigned to the same
reducer, merging the partial results within each file. The group-comparator
groups the set of key-value pairs by identification number id and the timestamp
are sorted by increasing values. Notice, additionally to the subset of timestamps
T and the corresponding subset of values V a new subset is contained in each
group of key-value pairs, namely the subset of associated counter values C with
|C| = |T | = |V |. This leads to the following general structure of the subset
assigned to a reduce task: ([id, {T1, . . . , Tm}, {c1, . . . , cm}], {v1, . . . , vm}).

Function: Partitioner([id, T, c], R)

Input: The key of the current key-value pair and the total number of reducers
Output: The assigned reducer number

begin
num← id mod R;
return num;

Figure 20: HTA-Merge: Partitioner (Iteration 2)

Example 13. We assume that the partition-function is evaluated as follows:
num = id mod R = id1 mod 2 = 0, assigning all key-value pairs with a id = id1
to the reducer of the node 1. This subset of intermediate key-value pairs
having a common id number is grouped by the group-comparator in the fol-
lowing way: ([id, T, C], V ), where id = id1, T = {0, 3, 3, 3, 9, 13, 15, 20}, C =
{2, 2, 1, 1, 1, 1, 1, 1} and V = {s, e, s, s, e, e, s, e}. We can see, that for example
the first key-value pair emitted by the mapper has been split up and distributed
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over the different subsets: ([In1, 0, 2], s) ⇒ id = In1, T1 = 0, c1 = 2, v1 = s.
The same procedure is applied to all other key-value pairs in the system.

4.2.3 Reduce

Definition 10. (Reducer) Let id be the unique identification number of the
source-input file and the time-interval T = {T1, . . . , Tm} the set of timestamps
all having the same id. Further assume that C = {c1, . . . , cm} is the set of
previously calculated aggregation values and V = {v1, . . . , vm} is the set of chars
associated with the timestamps in T . Further let T ′ = {Tj , Tj+1 . . . , Tj+l} ⊂ T
and |T ′| = l be a maximum sequence of consecutive identical timepoints, i.e.
Ti = Ti+1 for i = j, . . . , (j + l). The subset V ′ = {vj , vj+1 . . . , vj+l} and C ′ =
{cj , cj+1 . . . , cj+l} are the respective set of values and counter values associated
with T ′ having the same cardinality l. Then the reduce function is defined as
follows:

Reducer([id, T, C], V )→
m−1⋃
i=1

([Ti, Ti+1], ai)

where ai is the value returned by the function f4 with a0 = 0.

ai = f4(V ′, ai−1, C
′) =

∑
v∈V ′∧
v=’s’∧
c∈C′

(ai−1 + c) +
∑

v∈V ′∧
v=’e’∧
c∈C′

(ai−1 − c)

The user defined reduce-function shown in Figure 21 receives the assigned
subset of the intermediate keys all having the same identification number id
and therefore having the same source file. The construction of the valid time
interval t and the calculation of the related partial aggregation value c is done
in the same way as in the previous iteration of the algorithm. However, the
function UpdateCounter(vi, c, ci) used to update the counter c, while having a
fixed increment of 1 in the first iteration, now has to consider a variable length
of the increment parameter. The amount to increment depends on the counter
value ci, which is associated with the currently processed timestamp Ti.

Function: Reducer([id, {T1, . . . , Tm}, {c1, . . . , cm}], {v1, . . . , vm})
Input: A subset of intermediate key-value pairs with the same identification number id
Output: Writes output tuple to the output file

begin
c← 0;
t[Ts, Te]← [0, 0];
for i = 1 to m do

if Ti > i.Ts then
if c 6= 0 then

t.Te ← Ti;
Output(t, c);

t.Ts ← Ti;
c← UpdateCounter(vi, c, ci);

else
c← UpdateCounter(vi, c, ci);

Figure 21: HTA-Merge: Reducer (Iteration 2)
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Example 14. In our example the first assigned subset is the following:
([id1, {0, 3, 3, 3, 9, 13, 15, 20}, {2, 2, 1, 1, 1, 1, 1, 1}, {s, e, s, s, e, e, s, e}). The pro-
cessing starts with T1 = 0 and the related values c1 = 2 and v1 = s triggering
the first update of the counter c = 2. Next, the timepoint T2 = 3 together
with c2 = 2 and v2 = e is taken generating first an output tuple ([0, 3], 2) and
then decrementing the counter c = 0, because c = c − c2 = 2 − 2 = 0. Then
the two timepoints T3 = 3 and T4 = 3, having the same value as the previous
timepoint, do not generate a new output tuple, but only change the value of
the counter, i.e. v3 = v4 = s, c3 = 1 and c4 = 1 incrementing the counter c by
c = c + c3 + c4 = 2. The next timepoint T5 = 9 causes the generation of the
next output tuple ([3, 9], 2). The reducer continuous until all timepoints in the
subset are processed writing to the output file the merge result of the tuples in
the source file.

Node 1

Node 2

Input

([0, 3), 2)
([3, 13), 1)
([3, 9), 1)
([15, 20), 1)

Input

([7, 13), 1)
([16, 18), 1)

Map

([In1, 0, 2], s)
([In1, 3, 2], e)
([In1, 3, 1], s)
([In1, 13, 1], e)
([In1, 3, 1], s)
([In1, 9, 1], e)
([In1, 15, 1], s)
([In1, 20, 1], e)

Map

([In2, 7, 1], s)
([In2, 13, 1], e)
([In2, 16, 1], s)
([In2, 18, 1], e)

Reduce

[In1, {0, 3, 3, 3, 9, 13, 15, 20},
{2, 2, 1, 1, 1, 1, 1, 1}],
{s, e, s, s, e, e, s, e}

Reduce

[[In2, {7, 13, 16, 18},
{1, 1, 1, 1}],
{s, e, s, e}

Output

([0, 3), 2)
([3, 9), 2)
([9, 13), 1)
([15, 20), 1)

Output

([7, 13), 1)
([16, 18), 1)

Key: FileID,
TimePoint,

Count
Value: Start/End

Interval: [Start - End)
Value: Count

Figure 22: Graph of HTA-Merge Algorithm (Iteration 2)

4.3 Iteration 3: Merge Partial Result Files

The third iteration (Figure 24) is called only if the second iteration used more
than one reduce-task, i.e produced more than one output file. This MapReduce
iteration is repeated as long as the previous run created more than one output
file. This is done by forcing the Hadoop framework to reduce the number
of reduce-tasks by half after every iteration, leading to a logarithmic (log2)
decrement in the number of partial result files.

4.3.1 Map

Definition 11. (Mapper) Let id2 be a identification number of two consecutive
input file and let [Ts, Te] be the time interval produced by the previous iteration
with Ts < Te. Further assume that c is the previously calculated aggregation re-
sult valid during the associated time-interval. Then the map-function is defined
in the following way:

Mapper([Ts, Te], c)→ {([id2, Ts, c], ’s’)} ∪ {([id2, Te, c], ’e’)}

28



As a first step, the map-function (Figure 23) reads a tuple r from the as-
signed InputSplit. As a next step, a new identification number id2 is generated,
still using the name of the source file as main reference. The key difference is
that these numbers are formed in such a way, that mappers reading from the
InputSplit of two consecutive files come up with exactly the same identifier.
This can be done, because the output files of the previous iteration are consec-
utively numerated and so the numeration can be estimated, i.e. if the previous
run used 4 reduce-tasks the output file produced by them are numerated from
’out 1’ to ’out 4’. The resulting number id2, together with the timestamp T
and the counter value c, form the key of the key-value pair. At the end, a char
identifying the timestamp as starting or ending point is connected to the key.

Function: Mapper([Ts, Te], c))

Input: The tuple r read from the InputSplit
Output: The intermediate key-value pairs produced from the input tuples ([Ts, Te], c)

Let id2 be the common identifier of two sequential Partial Input File;
begin

Emit([id2, Ts, c], ’s’);
Emit([id2, Te, c], ’e’);

Figure 23: HTA-Merge: Mapper (Iteration 3)

Example 15. For the example we assume, that the identification number id2,
commonly used by both mappers, has the value In1. The rest of the procedure
is basically the same as in the previous iteration. The tuple ([0, 3), 2) is read,
the timeinterval is split Ts = 0 and Te = 3 and the two resulting key-value pairs
([In1, 0, 2], s) and ([In1, 3, 2], e) are sent to the partitioner. The same is done
for all other tuples contained in the input file.

4.3.2 Shuffle

The rest of the third iteration reuses the functions of the second iteration as
previously defined. The partitioner (Figure 20) assigns, based on the identifica-
tion number id2, a valid reducer number to the single key-value pairs and the
group-comparator groups the composite keys by the identification number id2

and sorts the timestamps T .

Example 16. Notice, that due to the common number id2 = In1 all interme-
diate key-value pairs from both nodes are sent to the reducer of node 1. This
is an essential step of the final merging process of two files, each containing a
partial result of the final relation.

4.3.3 Reduce

For this MapReduce iteration of the HTA-Merge algorithm the reduce func-
tion of the second iteration can be completely reused. The valid time interval is
created by using two different consecutive timestamps [Ti, Ti+1). As before, con-
secutive timestamps with the same value cause only an update of the counter,
without generating a result tuple. The updating of the counter c is done as in
the second iteration, i.e. the two values ci and c are added or subtracted de-
pending on the assigned char in the value part vi. At the end of the MapReduce
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cycle, the amount of produced output-files is retrieved. In case there are still
multiple output files the MapReduce cycle starts again, continuously reducing
the number of reduce-tasks and files by half. Otherwise, if only one result file
remains the final aggregation relation is available and the algorithm stops.

Node 1

Node 2

Input

([0, 3), 2)
([3, 9), 2)
([9, 13), 1)
([15, 20), 1)

Input

([7, 13), 1)
([16, 18), 1)

Map

([In1, 0, 2], s)
([In1, 3, 2], e)
([In1, 3, 2], s)
([In1, 9, 2], e)
([In1, 9, 1], s)
([In1, 13, 1], e)
([In1, 15, 1], s)
([In1, 20, 1], e)

Map

([In1, 7, 1], s)
([In1, 13, 1], e)
([In1, 16, 1], s)
([In1, 18, 1], e)

Reduce

[In1, {0, 3, 3, 7, 9, 9, 13, 13, 13,
15, 15, 16, 18, 20},
{2, 2, 2, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1}]
{s, e, s, s, e, s, e, e, s, e, s, s, e, e}

Output

([0, 3), 2)
([3, 7), 2)
([7, 9), 3)
([9, 13), 2)
([15, 16), 1)
([16, 18), 2)
([18, 20), 1)

Key: ComFileID,
TimePoint,

Count
Value: Start/End

Interval: [Start - End)
Value: Count

Figure 24: Graph of HTA-Merge Algorithm (Iteration 3)

5 Hadoop Temporal Aggregation - Partition

The two presented techniques use multiple MapReduce iterations to calculate
the temporal aggregate result of the given input file. The third developed al-
gorithm, HTA-Partition, performs all computations in one iteration, leading to
a more complex MapReduce cycle. During the map-phase, the approach gen-
erates an additional ’overflow’ key-value pair for every partition between the
partition assigned to the starting and the one assigned to the ending point of
the input tuple. In the reduce phase, the summed up values of the overflow
pairs represent the total amount of tuples entering the current partition. At
the end the result relation containing the final aggregation values and the valid
time intervals is written to the output file.

5.1 Map

This approach, as just the second iteration of the HTA-Standard algorithm, also
needs the partitions file (subsubsection 6.1.1) to divide the timeline. Afterwards,
the independent partitions can be processed in parallel. Assume that the file is
created successfully and that all Datanode can access and read the contained
information.

Definition 12. (Mapper) Let r be the currently processed tuple read from the
input file and p be the total number of partitions. Further assume that Ts is
the starting and Te is the ending timepoint of the tuple r. Further let Ps be
the partition number including Ts with P.Ts < Ts < P.Te and Pe the respective
partition number for Te. The boolean variable ov set to ’true’ tags the key-value
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pair as an overflow pair. Then the map-function is defined as follows:

Mapper(r)→{([Ps, Ts, ov = false, p], ’s’)} ∪
{([Pe, Te, ov = false, p], ’e’)} ∪

Pe⋃
i=Ps+1

([i, i.Ts, ov = true, p], ’i’)

where i assumes all consecutive partition numbers form (Ps + 1) to Pe.

The map-function (Figure 25) starts by separating the starting Ts and ending
timepoints Te of the read tuple r from the assigned InputSplit. As a next step,
the corresponding partitions Ps and Pe are fetched, using the data from the
partitions file. Then two key-value pairs, one for each timestamp, are created
which contain as key the partition number P , the timestamp T , a boolean value
ov used to identify the pair as ’overflow’ and the total amount of partitions p.
The character ’s’ or ’e’ stored as value is used to tag the contained timepoint as
starting or ending point of the time-interval.

As a next step, the map-function generates so called overflow-keys for ever
partition between the starting partition Ps and the endpoint-partition Pe. If
they are equal, nothing has to be done and the mapper processes the next
tuple. Otherwise, first the starting partition Ps becomes the current partition
Pc. Then a loop is used to generate an additional key-value pair for every
partition between the starting partition Ps and the ending partition number
Pe. These generated pairs contain the following information as key: the current
partition number Pc, the starting timestamp of the current partition Pc.Ts, the
boolean value ov set to true, indicating that this is an overflow pair and the
total amount of partitions p. Due to the restriction that the basic structure of
the pairs has to be same, the char ’i’ is used as value, introducing an additional
identification token for the overflow pairs. After each iteration of the loop
the current partition Pc gets assigned the next partition in chronological order
Pc = Pc + 1.

The amount of additional tuples generated in the loop depends directly on
the total number of partitions and the length of the tuples. In the worst case, if
every tuple spams from the first partition P1 to the last partition Pp we generate
p additional tuples. So the number of total key-value pairs is the sum of the
additional pairs and the two generated from the starting and ending timestamp,
times the amount of tuples in the input file n, i.e. equal to (n∗(p+2)) = O(n∗p).

Example 17. The example relation and the temporal partitions are shown
in Figure 26. The computation start by assigning the tuples r1, r2 and r3

to the mapper of node 1. The map function, starts with r1, separates the
timepoints Ts = 0 and Te = 3 and retrieves the respective partition number,
which is in both cases P1. Then using the total number of partitions p = 4
the following two intermediate key-value pairs are generated: ([1, 0, false, 4], s)
and ([1, 3, false, 4], e). Since both timepoints are located in the same partition,
nothing more has to be done. The next tuple r2 is retrieved and again the
interval is divided into Ts = 0 and Te = 13. Again the corresponding partitions
Ps = P1 and Pe = P3 are looked up and two pairs emitted: ([1, 0, false, 4], s)
and ([3, 13, false, 4], e). Now we can see that the timepoints are assigned to
different partitions, which trigger the generation of the overflow pairs. The
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Function: Mapper(r[A1, . . . , An, Ts, Te])

Input: The Tuples read from the Input Source
Output: The IKV-Pairs produced from the Input Tuples

Let P be the set of partitions stored in the partitions file;
Let p be the total amount of Partitions;
begin

Ps ← Partition of r.Ts;
Pe ← Partition of r.Te;
ov ← false;
Emit([Ps, r.Ts, ov, p], ’s’);
Emit([Pe, r.Te, ov, p], ’e’);
if Ps 6= Pe then

Pc ← Ps;
while Pc ≤ Pe do

ov ← true;
Emit([Pc, Pc.Ts, ov, p], ’i’);
Pc ← Pc + 1;

Figure 25: HTA-Partition: Mapper

first additional key-value pair is ([2, 5, true, 4], i), where P2 is the next partition
following P1 + 1 = P2. T = 5 is the starting point of the partition P2 and the
boolean value ’true’ and the char ’i’ are identifiers for the overflow pair. In order
to complete the processing of the tuple r2 the following last additional pair is
produced: ([3, 10, true, 4], i), where P3 is the next chronological partition and
T = 10 is the starting point.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 t

r1 = (Ann) r5 = (Ann) r6 = (Ann)

r2 = (Joe) r4 = (Joe)

r3 = (Tim)

2
2

3
2

0
1

2
1

P1 [0− 5) P2 [5− 10) P3 [10− 15) P4 [15− 20]

Figure 26: Example Relation with Temporal Partitions

5.2 Shuffle

The now invoked partition-function (Figure 27) is the same as previously used
by the HTA-Standard algorithm (subsection 3.2). As described, this algorithm
cannot use a modulo-function in the partition-task, because this would lead to
an inappropriate partition distribution of the key-value pair subsets among the
available reducers. The function calculates the offset by dividing the total
number of partitions p trough the total amount of available reducers R. As
a next step, the partition number P is extracted from the key and divide by
the calculated offset. The resulting number is the reduce-task to which the
key-value pair is sent.

The group-comparator groups the set of key-value pairs into subsets
of equal partition number P . The sorting process considers as first pa-
rameter the boolean value, i.e. all pairs containing ’true’ are ranked be-
fore the one holding the value ’false’. Further, the pairs within the two
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boolean groups are sorted by timestamp, placing earlier timepoints before
later ones. The subset sent to the respective reducer has the following form:
([P, {T1, . . . , Tm}, {ov1, . . . , ovm}, p], {v1, . . . , vm}).

Function: Partitioner([P, T, ov, p], R)

Input: The key of the current key-value pair and the total number of reducers
Output: The assigned reducer number

begin
offset← p

R ;

num← b (P−1)
offset c;

return num;

Figure 27: HTA-Partition: Partitioner

Example 18. The partitioner calculates the offset = p
R = 4

2 = 2, which is
constant for all key-value pairs in the system, because both p and R are constant
throughout the system. Each partition number is decremented by 1 and divided
by the offset in order to retrieve the reducer number. For the example this means
that pairs with the partition number P1⇒ b 1−1

2 = 0c and P2⇒ b 2−1
2 = 0c are

send to the reducer of node 1. In the same way, the partitioner determines that
the partitions P3 and P4 are assigned to node 2. The group-comparator now
groups the intermediate key-value pairs by partition number P . This leads to
the following grouping of the 4 key-vlaue pairs containing the partition number
P1: ([1, {0, 0, 3, 3}, {f, f, f, f}, 4], {s, s, s, e}). The contained key-value pairs are
sorted prioritizing the boolean variable ov when ’true’ and as second parameter
the timepoint value T .

5.3 Reduce

Definition 13. (Reducer) Let T = {T1, . . . , Tm} be the set of timestamp all hav-
ing the same partition number P and p be the total number of partitions. In addi-
tion, let V = {v1, . . . , vk, vk+1, . . . , vm} and O = {ov1, . . . , ovk, ovk+1, . . . , ovm}
be the related sets with the same cardinality m. The subset O′ = {ov1, . . . , ovk}
contains k booleans with the value ’true’ and the subset V ′ = {v1, . . . , vk} is
composed of the k associated values. Further let T ′′ = {Tj , Tj+1 . . . , Tj+l} ⊂ T
and |T ′′| = l be a maximum sequence of consecutive identical timepoints, i.e.
Ti = Ti+1 for i = j, . . . , (j + l). The subset V ′′ = {vj , vj+1 . . . , vj+l} is the
respective set of values associated with T ′′ having the same cardinality l. Then
the reducer is defined as follows:

Reducer([P, T,O, p], V )→
m−1⋃
i=k+1

([Ti, Ti+1], ci + inc)) ∪ {([Tm, P.Te], ci + inc))}
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where ci is the value returned by the function f5 with c0 = 0 and inc is the
increment returned by f6.

ci = f5(V ′′) =
∑

v∈V ′′∧
v=’s’

(ci−1 + 1) +
∑

v∈V ′′∧
v=’e’

(ci−1 − 1)

inc = f6(V ′) =

k∑
i=1

vi

Since the HTA-Partition algorithm uses only one MapReduce-iteration, the
reduce-function (Figure 28) creates the file containing the result relation, i.e. the
time-interval and the related temporal aggregation value. As a first step, the
function initializes the time-interval t, the counter c and the increment variable
inc. Then the function starts processing the subset of the assigned intermediate
key-value pairs all having the same associated partition number P . Afterwards,
the boolean parameter ov associated with the key of the pair is checked. In the
case the variable ov is true, meaning that the currently processed pairs is of type
’overflow’, the starting timestamp of the time-interval t.Ts is updated with the
currently processed timestamp Ti = P.Ts. Since it is guaranteed that the whole
subset is totally sorted it can be assumed, that all pairs of type ’overflow’ are
at the beginning of the set and in chronological order. Therefore, the amount
of pairs is counted using a loop, incrementing the variable inc by 1 as long as
the processed pair is of type overflow. In the worst case this loop can run O(n)
times, where n is the total amount of tuples in the input file, which is the case
when all tuples cross the currently processed partition.

When all additional pairs have been processed, the check at the beginning
prevents the other tuples to enter this part of the algorithm and forwards them
to the next test. This analyzes if the currently processed timepoint Ti is strictly
greater than the starting timestamp t.Ts. In the case this is not true i.e. two
or more consecutive timestamps have the same value, the algorithm jumps to
the UpdateCounter(vi, c, 1) (Figure 16), which updates the counter value c
according to the passed parameters v1 and 1. In the other case, a further check
is done, which prevents the generation of an output tuple when the aggregate
value is equal to 0. Assuming that (c + inc) 6= 0, the current timepoint Ti
becomes the ending timestamp t.Te and a new tuple is written to the output file
consisting of the time-interval t and the aggregation value (c+ inc). As a next
step, the starting timepoint of the interval t.Ts is updated with the timestamp
Ti and the counter c with the result of the UpdateCounter(vi, c, 1) function.

Once all timepoints in the assigned subset are processed a last check is
performed analyzing if the valid time interval of the last written output tuple
reached the ending point of the current partition P.Te. In the case the last
tuple did not reach the end of the partition, a last tuple has to be produced,
breaching the gap between the last output tuple and the ending point of the
partition. This is done by overwriting t.Te with the ending timestamp of the
partition Pr.Te and writing the tuple to the output file.

Example 19. The reducer of node 1 receives two subsets having the partition
numbers P1 and P2. The first subset ([1, {0, 0, 3, 3}, {f, f, f, f}, 4], {s, s, s, e})
does not contain any overflow pairs, leading to inc = 0. next, the contained
timestamps T1 = 0 and T2 = 0, having the same value do not generate any
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Function: Reducer([P, {T1, . . . , Tm}, {ov1, . . . , ovm}, ptot], {v1, . . . , vm})
Input: A subset of intermediate key-value pairs with the same partition number P
Output: Writes output tuple to the output file

begin
t[Ts.Te]← [0, 0];
c← 0;
inc← 0;
for i = 1 to m do

if ovi = true then
t.Ts ← Ti;
while ovi = true ∧ vi = ”i” do

inc← inc + 1;
i← i + 1;

if Ti > t.Ts then
if (c + inc) 6= 0 then

t.Te ← Ti;
Output(t, (c + inc));

t.Ts ← Ti;
c← UpdateCounter(vi, c, 1);

else
c← UpdateCounter(vi, c, 1);

if (c + inc) 6= 0 ∧ t.Te < P.Te then
t.Te ← P.Te;
Output(t, (c + inc));

Figure 28: HTA-Partition: Reducer

output tuple, but only cause the following update of the counter: v1 = s, v2 =
s⇒ c = c+ 1 + 1 = 2. The next timestamp T3 = 3 triggers the generation of a
output tuple (t, c) = ((0, 3], 2), followed by an update of the counter c = c+ 1 =
3. The last timestamp of the set T4 = 3 has the same value as the previous one
and the associated value v3 = e. Therefore, a decrement of the counter c = c−
1 = 2 is caused. Since the last generated output tuple does not reach the ending
point P.Te = 5 of the partition P1, an additional tuple ([3, 5), 2) is written
to the file. Next, the subsequent subset ([2, {5, 5, 7, 9}, {t, t, f, f}, 4], {i, i, s, e})
is processed by node 1. This time there are overflow pairs at the beginning,
leading to a update of inc = 2. Further, the starting point of the interval t.Ts
gets assigned the start timeinstant of the current partition t.Ts = P.Ts. The
next timestamp P.Ts < T3 = 5 < 7 being greater as the starting point of t
immediately generates the new output tuple (t, c+ inc) = ((5, 7], 2). As a next
step, the counter is updated as follows: c = c+1 = 1. The last timestamp T4 = 9
produces again a new tuple (t, c+ inc) = ((7, 9], 3) and updates the counter to
its final value c = c − 1 = 2. At the end since the last tuple did not reach the
ending point of partition P2 an additional record (t, c + inc) = ((9, 10], 2) is
created by using the last value of the counter c.

6 Empirical Evaluation

In this section we provide the results of the experimental evaluation together
with the measured execution time of the three algorithm using different input
files. Further we will compare the MapReduce approaches with another tempo-
ral aggregation algorithm, namely the Bucket & Balance Tree algorithm.
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ID T

r1 [0, 3)
r2 [0, 13)
r3 [3, 9)

r4 [15, 20)
r5 [7, 13)
r6 [16, 18)

Node 1

Node 2

Map

([P1, 0, false, 4], s)
([P1, 3, false, 4], e)
([P1, 0, false, 4], s)
([P3, 13, false, 4], e)
([P2, 5, true, 4], i)
([P3, 10, true, 4], i)
([P1, 3, false, 4], s)
([P2, 9, false, 4], e)
([P2, 5, true, 4], i)

Map

([P4, 15, false, 4], s)
([P4, 20, false, 4], e)
([P2, 7, false, 4], s)
([P3, 13, false, 4], e)
([P3, 10, true, 4], i)
([P4, 16, false, 4], s)
([P4, 18, false, 4], e)

Reduce

[P1, {0, 0, 3, 3}, {f, f, f, f}, 4]
{s, s, s, e}

[P2, {5, 5, 7, 9}, {t, t, f, f}, 4]
{i, i, s, e}

Reduce

[P3, {10, 10, 13, 13}, {t, t, f, f}, 4]
{i, i, e, e}

[P4, {15, 16, 18, 20}, {f, f, f, f}, 4]
{s, s, e, e}

Output

([0, 3), 2)
([3, 5), 2)
([5, 7), 2)
([7, 9), 3)
([9, 10), 2)

Output

([10, 13), 2)
([13, 15), 0)
([15, 16), 1)
([16, 18), 2)
([18, 20), 1)

Key: Partition,
TimePoint,
Overflow,

TotalPartitions
Value: Start/End

Interval: [Start - End)
Value: Count

Figure 29: Graph of HTA-Partition Algorithm

6.1 Setup and Data Sets

The Hadoop-cluster used for the experimental evaluation consists of 5 Datan-
odes, connected using a LAN-network with a capability of 100 Mbit/sec. Due
to the very small amount of nodes, one node has to function as Namenode, Job-
tracker and Datanode at the same time. Each machine has 2 GB RAM, a single
core processor with 2.7 GHz and uses a Linux based operating system. Further
we use Hadoop version 1.1.2 with a default 64 MB data block size running on
Java 1.6.

The input files contain data relations having from 10,000,000 up to
500,000,000 tuples. Further, the files originate from two scenarios that use
a different time granularity and associate various non-temporal attributes with
each data-record. A CSV file format is used, separating the attributes with a
semicolon and the single tuples using new lines. Each tuple consists of 12 fields,
10 for the non-temporal attributes and 2 for the valid timestamp. The size of
the files depends on the number of contained tuples and is between 1 GB with
10∗106 tuples and 60 GB with 500∗106 data records. Due to the random num-
ber generator used to produce the different data files, all records and long-lived
tuples are evenly distributed.

The runtime of all tree approaches is measured and compared with each
other. As explained in detail, the HTA-Standard (section 3) and the HTA-
Partition algorithm (section 5) need a partitions file (subsubsection 6.1.1) in
order to group the timepoints and so form independent subsets. Two different
forms of the partitions file are used during the empirical evaluation of the ap-
proaches, the linear and the probability partitions file. They contain the same
amount of temporal partitions, but the first one uses a constant and the sec-
ond one a variable partition range. Overall, the following list of algorithms is
empirically evaluated:

• HTA-Standard Linear: from section 3 with a linear partitions file
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• HTA-Standard Prob: from section 3 with a probability partitions file

• HTA-Partition Linear: from section 5 with a linear partitions file

• HTA-Partition Prob: from section 5 with a probability partitions file

• HTA-Merge: from section 4

Further a comparison between the developed algorithms and the Bucket
algorithm (subsubsection 6.1.2) is provided. Since the bucket algorithm alone
does only split the input file into buckets, the main memory based Balanced Tree
algorithm is used to compute the final ITA result. The approach is compared
with the slowest and fastest MapReduce in both scenarios. This leads to the
following list of comparisons:

• Comparison of Bucket & Balanced Tree Aggregation algorithm with the
slowest approach of scenario 1, HTA-Partition Prob

• Comparison of Bucket & Balanced Tree Aggregation algorithm with the
fastest approach of scenario 1, HTA-Standard Linear

• Comparison of Bucket & Balanced Tree Aggregation algorithm with the
slowest approach of scenario 2, HTA-Merge

• Comparison of Bucket & Balanced Tree Aggregation algorithm with the
fastest approach of scenario 2, HTA-Standard Linear

6.1.1 Partitioning the Timeline

The so called partitions file is used by the algorithms in order to divide the
timeline into single partitions. The main purpose of these partitions is to en-
able parallel processing without introducing an error in the calculations of the
temporal aggregation values. Further, this technique forms completely indepen-
dent chunks that can be evenly distributed among the available datanodes. In
order to construct an appropriate partitions file the function needs some infor-
mation about the dataset, such as minimal and maximal timeinstants and the
approximated number of tuples. The two timepoints are needed to initialize the
start and end of the timeline, the amount of tuples influences the number of
partitions created (Figure 30a) and so the amount of tuples contained in each
partition (Figure 30b). Two different strategies can be used to construct the
partitions file.

Linear Partitioning: As just the name suggest a linear functions is used to
determine the number of partitions p, given the number of tuples in the input
file and the amount of available reducers R. The entire timeline, from min to
max is simply divided into p parts of equal length, whereas the starting point
of the first partition is always min and the ending point of the last partition is
always max. Notice, this method works best, if the tuples are evenly distributed
over the whole timeline, because then each partition contains a similar amount
of timepoints.
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Figure 30: Number of Partitions and Tuples per Partition

Probability Partitioning: The probability partitioning is a refinement of the
linear partitioning, taking into consideration the distribution of the tuples over
the timeline. The distribution is determined by randomly extracting an user
defined amount of tuples from the input file, creating a sample file. Next, the
timeline is divided again in p partitions all having the same range. Afterwards,
the distribution of the tuples in the sample file is used to modify the length of
the single partitions, creating shorter partitions in case of tuple accumulations
and longer partitions in case of sparse distribution. This technique creates par-
titions containing a similar amount of timepoints despite an antisymmetric data
distribution. Notice, the bigger the sample file is, the exacter is the estimation
of the tuple distribution in the original input file, but causing a increment in
creation time of the sample file and the calculation of the probabilities.

6.1.2 Bucket & Balanced Tree Aggregation Algorithm

The bucket algorithm presented in the work of Bongki Moon et al. [14] is
a sequential approach that allows the processing of large data file using an
arbitrary main memory based temporal aggregation algorithm. The approach
splits the timeline of the input relation into so called buckets, which entirely
fit in main-memory. Long-lived tuples overlapping an entire bucket are only
assigned to the buckets where the tuple starts and ends reducing the amount
of additional tuples needed to preserve the correctness of the algorithm. The
additional information about the long-lived tuples is kept in a separate, so called
meta array, which has to be considered in the calculations of the final aggregation
relation. After the construction of the buckets, the Balanced Tree Aggregation
algorithm, also presented in [14], is used to generate the final ITA result. This
approach loads a entire bucket in main memory and constructs a dynamic tree,
where the nodes contain the start and end timepoints of the tuples and two
partial aggregation values. The result is computed in a final in-order traversal
of the tree, extracting the valid time intervals and the associated aggregation
values.

6.2 Scenario 1: Employee-Project Records

The first scenario involves a company that recorded all hours spent by their
employees on the different project they developed over the past 10 years. This
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means that the involved timeline has a range of 87,611 hours (10 years) and
the tuples have a defined maximal length of 8,760 hours (1 year). Further each
record has 10 non-temporal attributes associated with the time-interval in which
the tuple was valid. Further there are many long-lived tuples having a maximal
length of about 10% of the total timeline. Further, with increasing tuple count,
the result of the aggregation function becomes very large, because of the low
number of possible timepoints. This first setup was chosen, because due to
the relative short timeline the tuples tend to accumulate when their number is
increased, leading to many overlaps and minimizing the occurrence of gaps in
the result relation to almost zero.

6.2.1 Comparison of MapReduce Algorithms

The runtime of the three algorithms is presented in the charts contained in
Figure 31. The first chart (Figure 31a) shows the results using only a single
reducer, which means that the partitioner assigns all key-value pairs to the same
Datanode running on a single machine in the cluster. In this situation, the HTA-
Partition algorithm shows the worst behavior. The amount of time needed to
calculate the aggregation relation increases rapidly with bigger input files. The
performance results can be explained by the fact, that this approach generates
additional so called ’overflow’ tuples during the map phase. Due to the relatively
long tuples, the total number of intermediate key-value pairs that have to be
handled, first by the partitioner and then by the reducer, increase dramatically.
As expected, measurements of the number of tuples being generated by the
map-task resulted in a drastic percental increment of overflow tuples as the
number of input tuples is augmented. The main advantage of the technique to
only use a single MapReduce iteration does not save enough time to compensate
the additional time spent to process the overflow pairs. Further, using only a
single Reducer is not really compatible with the principle used by this algorithm,
which is divide the timeline into partitions in order to enable parallel processing.

The HTA-Merge approach shows a better behavior than the HTA-
Partition algorithm. Due to his nature, only using one reducer and having a
short timeline, shows off the advantage of the merge approach. The first benefit
is that in this situation the HTA-Merge takes only two MapReduce iterations to
complete the final result. Further, the amount of key-value pairs that have to be
handled by the cluster does not considerably increase. Each chunk of input file
determined by the byte-offset is bound by a worst case complexity O(2x − 1),
where x is the amount of tuples in the chunk. This bound applies also to the
second MapReduce iteration, where the partial results are merged together to
form the final aggregation relation. A clear disadvantage of this technique is
the very small size of the chunks formed using the offset as reference, leading to
many subsets which contain only a few tuples.

The algorithm with the best performance is the HTA-Standard. This tech-
nique uses the most MapReduce iterations, one more than the HTA-Merge, and
needs some additional tuples to be able to generate the final result relation. De-
spite this two drawbacks, the needed time is substantially shorter compared to
the previous algorithms. The first reason is that the second and third MapRe-
duce iteration have to deal with considerably less tuples than the first iteration
step. While the merging step of the HTA-Merge approach has to process a file
having a similar length as the input file, the second iteration, thanks to the
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(c) Runtime Using 4 Reducers
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# Tuples Linear 2R Linear 4R Prob 2R Prob 4R
10,000,000 4.80% 9.58% 3.98% 8.86%
50,000,000 -1.45% 6.12% 7.59% 6.14%

100,000,000 8.71% 13.36% 10.49% 14.23%
250,000,000 2.49% 8.53% 11.12% 15.77%
500,000,000 9.46% 16.23% 12.34% 16.32%

H
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a
rt
it
io
n # Tuples Linear 2R Linear 4R Prob 2R Prob 4R

10,000,000 12.90% 12.94% 12.33% 14.21%
50,000,000 13.25% 10.52% 7.45% 12.86%

100,000,000 18.25% 23.56% 18.96% 21.44%
250,000,000 31.35% 29.08% 27.51% 28.42%
500,000,000 30.92% 30.89% 31.26% 26.78%

H
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e
rg
e

# Tuples 2R 4R
10,000,000 17.25% 3.40%
50,000,000 17.45% 23.45%

100,000,000 21.54% 32.22%
250,000,000 28.33% 37.60%
500,000,000 25.57% 36.50%

(d) Runtime Improvements Compared to 1 Re-
ducer

Figure 31: Runtime of all 3 Algorithms using Different Numbers of Reducers (Scenario 1)

grouping by the timepoints, has to handle a file with the length similar to the
amount of time instants. Further, the additionally generated key-value pairs
depend on the number of partitions p, not on the amount of tuples n as in the
HTA-Partition approach, which are considerably less. A last advantage is that
the arithmetic functions used in the three are all very elementary and therefore
very time-efficient.

The graphs in Figure 31b and Figure 31c show the behavior of the developed
approaches using the same input file, but two and four Reducers respectively.
The Table in Figure 31d shows the performance improvements compared with
the measured execution time using a single reducer. So all three approaches
benefit form the augmentation of the reducers, which splits the workload for a
single node during the reduce phase by half and quarter respectively.

Despite the fact, that the HTA-Standard technique has the worst improve-
ment, it still remains the fastest of the three developed algorithms. With in-
creasing amount of tuples, the percental performance improvement increases,
having a highest value of about 16% compared to the single reducer run. Due
to the increment in the number of reducers, also the amount of partitions is
increased, leading to more additional ’transfer’ key-value pairs generated by the
second iteration of the HTA-Standard approach. This means that an increment
in the number of pairs to be handled by Hadoop has more impact than the
splitting of the work during the reduce-phase of the MapReduce iteration.

The HTA-Partition algorithm has with up to 30% improvement compared
to the runtime with only one reducer, the second best percental reduction of the
execution time. Nevertheless, it remains the slowest approach, because of the
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previously mentioned disadvantages. Due to the fact that with the Reducers
also the amount of partitions increased, the amount of ’overflow’ key-value pair
is even bigger than in the run with only one reducer. The main reason for the
improvement in time is, since the algorithm uses only one MapReduce iteration,
the division of the workload to more Datanodes. So the considerably increased
amount of intermediate key-value pairs can be processed in parallel. Notice, the
performance using two and four Reducers is nearly the same, meaning that the
time saved with the parallel computation is more or less the same as the time
needed to process the additional ’overflow’ tuples.

The approach with the best improvement achieved using an increased num-
ber of reducers is the HTA-Merge algorithm. This is quite surprising, because
every additional reducer-task generates an additional output file, which has
again be merged until only a single file remains. The main reason for this be-
havior is that due to the small amount of possible time instants, the files to
be merged contain only a few tuples leading to a fast merging process. The
measured execution time lead to the statement, that the time saved by using
more datanodes and process the key-value pairs in parallel is much larger, then
the time needed to do an additional MapReduce iteration.

The two different creation techniques of the partitions file have only very
little or no effect on the runtime of the algorithms. The partitions file containing
all partitions with the same range is equally effective than the file containing
time intervals adjusted considering the tuple distribution. The main reason
for this is the creation method (i.e. the random number generator), used to
generate the input files, which always evenly distributes the single tuples.

6.2.2 Comparing to Bucket & Balance Tree Algorithm

Figure 32 shows a comparison of the runtime of the Bucket and Balance Tree
algorithm with the MapReduce approach with the worst execution time (Fig-
ure 32a) and with the best execution time (Figure 32b) respectively. In both
comparisons there is a clear difference between the measured performance of
the two different techniques.
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Figure 32: Compare Slowest and Fastest MapReduce Approach in Scenario 1 to Bucket and
Balance Tree Algorithm

The performance of the HTA-Partition algorithm using a single reducer is
by far the slowest approach using the data files of scenario 1 but is still by a
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factor of 5 faster as the Bucket and Balance Tree algorithm. The fastest of
the MapReduce approaches, the HTA-Standard Linear, outperforms the Bucket
and Balance Tree algorithm by a factor of 20. The main reason for the long
run time of the Bucket and Balance Tree algorithm is the needed division of the
input file into small buckets which fit in main memory. Since the timeline in
scenario 1 are very short, and the size of each bucket has to be relatively small,
a bucket includes only a short time range. Due to the short range and the long
tuples nearly every tuple is split into two records, each assigned to a different
bucket. Therefore, the size of all buckets together is almost doubled compared
to the initial size of the original input file. Further, due to the splitting of the
tuples, the buckets contain many equal timepoints leading to many updates of
the variables contained in the nodes of the balanced tree during the calculation
of the final ITA result relation.

6.3 Scenario 2: Phone-Company Records

The second scenario involves the data recorded by a telephone company. All
calls over a period of one year were registered using a granularity of seconds and
having a maximal length of a day. This setup leads to a timeline with a range
of 31,536,000 and a maximal tuple length of 86,400 seconds. Each data record
consists of 10 non-temporal attributes and the related time-interval marking its
validity. The second scenario, in difference to the first one, involves a relative
long timeline, while the single tuples are short, leading to many possible gaps
and few overlappings even when the amount of tuples increases. In addition the
amount of long-lived tuples is very low because the tuples have a maximal length
of 0.27% compared to length of the involved timeline. Further, the amount of
possible time-intervals in the output file increases drastically, since the values
of the aggregation function might change at every time-instant.

6.3.1 Comparison of MapReduce Algorithms

The execution time of the approaches are presented in the charts in Figure 33.
The structure is the same as before, the first diagram (Figure 33a) shows the
measured runtime when only a single Datanode is involved in the final reduce
phase. In contrast to the previous scenario, now the HTA-Merge algorithm has
by far the worst performance. The reason for this deterioration is the merging
processes needed to produce the final result. Due to the increment in timepoints,
the size of all partial results augmented together with the possible generated
intervals associated with each partial aggregation value. During the execution
of the data file containing 500 ∗ 106 tuples the size of the partial results even
exceeded the capacity of the distributed file system and therefore could not be
completed

The HTA-Partition algorithm shows a huge performance improvement com-
pared to the previous scenario. The reason for this reduction in running time
by nearly half, is the length of the tuples contained in the input file. The short
tuple do not cross any or only a few temporal partitions notably reducing the
amount of additionally generated key-value pairs.

The fastest approach is again the HTA-Standard algorithm, regardless the
slight increment in execution time compared to the first scenario. This augmen-
tation is caused by the raised amount of possible timepoints. This leads to a
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# Tuples Linear 2R Linear 4R Prob 2R Prob 4R
10,000,000 14.35% 25.71% 15.51% 28.08%
50,000,000 5.89% 14.68% 13.12% 19.25%

100,000,000 16.07% 22.03% 14.91% 24.65%
250,000,000 12.33% 15.44% 10.67% 14.86%
500,000,000 20.92% 25.93% 22.65% 25.43%
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n # Tuples Linear 2R Linear 4R Prob 2R Prob 4R

10,000,000 21.52% 25.95% 18.75% 23.40%
50,000,000 24.14% 30.94% 22.25% 30.77%

100,000,000 21.50% 28.76% 23.28% 29.62%
250,000,000 27.02% 34.28% 27.51% 34.88%
500,000,000 27.89% 38.51% 27.47% 36.02%
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10,000,000 -58.88% -162.30%
50,000,000 -33.78% -107.31%

100,000,000 10.03% -50.21%
250,000,000 8.77% -22.91%

(d) Runtime Improvements Compared to 1 Re-
ducer

Figure 33: Runtime of all 3 Algorithms using Different Numbers of Reducers (Scenario 2)

longer first iteration of the algorithm, where the key-value pairs are formed using
the timepoints as main reference. Despite the increased amount of arithmetic
computations, the fact that fewer tuples per timepoint are involved decreases
the execution time of the other two MapReduer iterations.

The graphical illustrations in Figure 33b and Figure 33c show the different
execution time of the three approaches while increasing the used Datanodes
in the reduce-phase first to 2 and then to 4. Figure 33d shows the percental
improvements of the performance compared to the results measured with a
single reducer. An unexpected outcome of the experiments is that the execution
time of the HTA-Merge algorithm, in contrast to the first scenario, further
increased, leading to a negative improvement. This means, that the measured
time drastically increased making the HTA-Merge approach by far the slowest
algorithm in processing the data of scenario 2.

The HTA-Standard shows a better improvement compared to the execution
time measured during the first scenario. The increased amount of timepoints
to be handled by the approach is processed in parallel, further decreasing the
overall runtime.

The algorithm with the best measured improvement is the HTA-
Partition approach. The best measured reduction is with nearly 40% the best
overall improvement. The reason for this is that the amount of key-value pairs
is not heavily increased, because most tuples do not cross any or only a few tem-
poral partitions. This leads to a noticeable decrement of the work done during
the shuffle phase and by the single reduce tasks. Notice, in this scenario, the
execution time of the HTA-Partition algorithm approaches the runtime of the
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HTA-Standard approach. It can be assumed that a further increment in reduce
tasks and size of the input file, further benefits the HTA-Partition algorithm,
decreasing the execution time outperforming all other approaches.

As just in the previous scenario, also in this the different techniques used to
create the partitions file has no effect on the performance of the algorithms.

6.3.2 Comparing to Bucket & Balance Tree Algorithm

In Figure 34 a graphical illustration of the comparison of the Bucket and Balance
Tree algorithm and the slowest (Figure 34a) and fastest (Figure 34b) MapRe-
duce approaches is shown using the data files of scenario 2.
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Figure 34: Compare Slowest and Fastest MapReduce Approach in Scenario 2 to Bucket and
Balance Tree Algorithm

In the second scenario, the difference between the performance of the slowest
MapReduce algorithm HTA-Mergeand the Bucket and Balance Tree is not so
obvious. However, due to the additional time needed by the Bucket and Bal-
ance Tree algorithm to calculate the ITA result, it can be assumed that the
MapReduce approach has a slightly better performance.

However, the MapReduce algorithm, HTA-Standard Linear, with the best
execution time outruns the other approach by a factor of 6. In general we notice
a improvement in the runtime of the Bucket and Balance Tree algorithm. The
cause is that the short tuples and the relatively long timeline of the second
scenario benefit the bucketing process. The shortness of the data records makes
it more likely that the starting and ending timepoint of the tuples are in the
same bucket. This leads to no or only a small increment in the total size of the
data.

6.4 Summary

In general we can say, that an increment in the number of reducers is beneficial
for all three MapReduce algorithms. Further we noticed, that the improvements
of the runtime become bigger, when the amount of tuples in the input file
increased. This is a positive effect, because the algorithms are designed to
handle very large data files containing vast amount of tuples. Nevertheless, due
to the very restrictive amount of disk-space available to us, the creation and
handling of bigger files was impossible. Further our cluster has only a size of
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5 Datanodes, which is extremely small compared to other clusters composed
of hundreds or even thousands of connected machines. The comparison with
the main-memory based Bucket and Balance Tree algorithm showed, that the
developed approaches can compete with existing techniques. In addition, a
further benefit of the MapReduce approaches became clear, which is the relative
insensitivity regarding the structure of the input relation and the contained
amount of long-lived tuples.

7 Conclusion and Future Work

In this thesis we provided three different algorithms to calculate the instant
temporal aggregates for large raw data files using a small cluster. In order to
compute the calculations in parallel, the algorithms implement the abstract pro-
gramming model MapReduce and were executed on the open source framework
Hadoop. For every technique we explained in detail the general concept and
described the single methods together with some implementation details. Addi-
tionally, we evaluated the algorithms using different scenarios having a varying
time granularity and so testing diverse aspects of the techniques. Further we
compared the developed approaches with an existing sequencial algorithm de-
signed to handle large datasets. The results showed that our algorithms have a
good performance and outrun the other approach by a factor of 5 to 20.

Regarding future work, some general Hadoop improvement techniques can
be applied to the cluster, such as enabling the compression of the temporarily
stored intermediate key-value pairs and define a so called combiner function.
The possibility to compress the output of the mapper and the result file is
already integrated in the framework and can simply be activated by setting some
configuration flags. A smaller size of the temporal and final data decreases the
time needed for all performed reading and writing tasks. Further the additional
combiner can be used to get rid of sequences of identical timestamps. The
function combines the values associated with identical timepoints to a single
merged value, i.e. (0, s)(0, s) becomes (0, ss). These two improvements could
noticeably reduce the execution time of the algorithms.

A further improvement involves the integration of a relational database,
such as Oracle or PostgreSQL, in the distributed file system (HDFS) used by
Hadoop. To achieve this task an additional programs is needed, namely Sqoop.
This software allows users to extract data from a relational database and import
it into Hadoop.

Since currently the algorithms can only evaluate the aggregation function
count one of the next steps is to extend the approaches to allow the execu-
tion of a selectable aggregation operator. The needed changes to achieve this
task are kept to a minimum and basically involve the re-engineering of the
UpdateCounter(...) function and some other small changes.

Notice, that the tree techniques until this point are designed to construct
temporal aggregation relations without considering a possible group-by clause.
In order to extend our work to enable the use of a so called grouping attribute
the following steps are essential. First we have to include the different values of
the group-by clause in the key of every key-value pair. Further, the partition-
function has to be changed in order to consider this additional information
during the assignment of the pairs. Notice, that the partitioning is a delicate
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matter, because we have to ensure that identical grouping values are sent to
the same reducer, while enabling large accumulations to be divided into several
partitions. Next, a sort-comparator orders the intermediate key-value pairs
considering the grouping attribute and the timestamp during the determination
of the sort order. As a last step, each reducer has to generate a valid time
interval and calculate the associated aggregation values. Due to the fact that
during the sort-phase, the grouping attributes were considered, intermediate
key-value pairs having the same grouping value are consecutively ordered. This
means, that that the reducer can process the pairs one after the other, generating
a result relation per grouping attribute.
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