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Abstract

Developing for mobile devices poses new challenges for software design and development.
One such challenge is related to the fact that mobile devices can be held in different ori-
entations. This leads to two very common user interface idioms: portrait and landscape
mode. Users expect that the scarce screen of mobile devices is optimally used and that
the user interface adapts immediately to the actual device orientation.

This thesis proposes ARITA, a novel repositioning algorithm for a mobile application
called NetSnips. NetSnips allows to create rectangular snippets from arbitrary web
pages. These snippets can be positioned on multiple virtual pages. On device rotation,
snippets might exceed the new screen limits and therefore only be partially visible or not
visible at all. The ARITA algorithm automatically repositions these snippets in a way
that the original snippet layout is preserved as much as possible.

This work is a first attempt to address the complex problem of automatically reposi-
tioning rectangles (i.e., snippets) in a context where no objectively best solution exists.
ARITA works in 3 steps: First, a sweep line based algorithm identifies the largest free
spaces between the snippets. Second, a heuristic is used to place the snippets that need
to be repositioned in the free rectangular spaces. Third, a so-called layout graph is build
which represents the snippets and their relative position. This graph is used for balancing
the margins between fixed snippets, movable snippets and the screen bounds.

We have evaluated the runtime of ARITA using snippet layouts of different complexity
with a varying number of snippets. The experiments show that ARITA provides good
performance results in realistic layout situations for NetSnips. In order to evaluate the
quality of the layout produced by ARITA, we performed a user experience evaluation
with participants of the NetSnips user base. Although the judgment of the automatically
generated snippet layout depends strongly on habits and preferences, the results show
that the participants of our study generally validate the layout of ARITA from satisfiable
to very good.
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Chapter 1

Introduction

Applications for mobile devices offer undreamt-of possibilities how users interact with
computers. The combination of user specific data, mobile internet and various real-time
sensor inputs allows to build a new generation of software that is personalized, location-
aware, interconnected and adapts to the current user’s context.

However, developing for mobile devices poses additional challenges in software design
and development. Already in the early years of mobile computing Forman and Zahorjan
[1] (1994) identified various new challenges and stated that "the shift toward mobility
and wireless communication is testing the abilities of designers to adapt the abilities of
traditional system structures". Applications for mobile devices are constraint to smaller
displays, energy consumption, slower processors and limited memory. Hence resources
may be scarce, network connections may be slow or error-prone and user interfaces must
be very flexible, touchable and focus on the most essential parts to solve a specific
problem.

In contrast to stationary computers, mobile devices may be held in different orientations.
Two user interface idioms are very common, namely portrait mode (higher as broad)
and landscape mode (broader as high). On most mobile devices acceleration and motion
sensors detect device orientation changes automatically and request applications to adapt
their user interface accordingly. Users expect that the scarce screen is used optimally
and that the user interface adapts immediately to the current device orientation. This is
especially important because on touch-based mobile devices the display serves as input
and output device simultaneously.

This thesis presents a repositioning algorithm for NetSnips, a mobile application that
allows creating rectangular snippets from arbitrary web pages. Section 1.1 describes the
purpose, spreading and background of NetSnips and section 1.2 details the contributions
of this thesis. Finally section 1.3 outlines the organization of this document.

1
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1.1 NetSnips

NetSnips is an utility application that is freely available on the Apple AppStore1 for
iPhone, iPad and iPod Touch. NetSnips allows defining specific areas on arbitrary web
pages, which are updated automatically in regular time intervals. This way, users can
create so-called web snippets that visualize a snapshot of the latest content on the selected
web pages. NetSnips may be used for very different purposes, including tracking the latest
stock changes, monitoring the weather forecast or keeping track of daily comic strips.

Users can position these rectangular web snippets on multiple virtual pages in order to
create their own personalized "wall of information". It is also possible to open the full
web page with a single tap or force a manual snippet reloading by double-tapping on a
snippet.

Figure 1.1: NetSnips with arbitrarily sized snippets for 6 different web pages (left).
Users can freely define the size and content of web snippets on any web page (right).

NetSnips is completely localized in English, French, German, Italian, Russian and Sim-
plified Chinese. The first version was published on June 29 in 2012 on the App Store.
Until today (September 2013) it was downloaded more than 60.000 times all over the
world. The countries with the most downloads are the United States (29%), China (15%),
France (9%), Japan (6%) and Italy (5%). NetSnips received generally high user ratings
and good press reviews for its "unique multitasking web browser experience"2 and for its
"novel way to track updates for favorite web pages"3.

1http://appstore.com/netsnips
2http://appchronicles.com/netsnips-a-truly-unique-multitasking-web-browser-experience/
3http://appadvice.com/appnn/2013/03/todays-apps-gone-free-hackycat-mountain-bike-cycling-

computer-envelope-hd-and-more
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Users position their web snippets with absolute values in the cartesian coordinate system
of a page. A device rotation to landscape mode leads to flipped dimensions for all pages,
i.e., the page width becomes the page height and vice versa. Snippets that are positioned
beyond the new page width and height limits will no longer be visible or partially cut
off. Therefore the current version of NetSnip is limited to portrait interface mode only.
In order to remove this limitation, this thesis presents a repositioning algorithm for
rectangular web snippets on interface orientation changes.

1.2 Contributions

The research project presented in this thesis proposes ARITA, a novel repositioning
algorithm that adapts the position of rectangular web snippets on changes of the user
interface orientation. Figure 1.2 shows the generated landscape snippet layout (right)
based on the user defined portrait snippet layout (left).

Figure 1.2: The user defined snippet layout in portrait interface orientation (left) and
the correspondingly generated layout for landscape interface orientation (right).

The contributions of this thesis can be summarized as follows:

1. Strategy decision: This work is a first attempt to address the complex problem of
repositioning rectangles where no objectively best solution exists. The judgment of
the automatically generated rectangle layout depends strongly on user preferences,
habits and general usage of the application. Therefore, we explored various strate-
gies that address this problem in different ways. For instance, we experimented
with solutions that reposition all snippets on device rotation following a specific
pattern and others that try to preserve the original user defined layout as much
as possible. After various experiments we decided to follow the latter strategy and
specified our exact requirements for the repositioning algorithm.
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2. Conceptual work: The repositioning concept was refined by selecting the foun-
dations and data structures for the solution (e.g., sweep line technique and graph
based storage of rectangle layouts). We have elaborated a sweep line based algo-
rithm that identifies the largest free spaces between rectangles in a given container
rectangle. We have specified a heuristic for placing rectangles in a set of free space
candidates. Finally, we have elaborated an algorithm that builds a graph for de-
scribing a rectangle layout and a strategy for balancing the horizontal and vertical
margins between fixed/variable rectangles and screen bounds.

3. Implementation in a released mobile application: The conceptual work re-
sulted in the implementation of ARITA, a novel algorithm for repositioning rect-
angles. We have implemented ARITA in a released mobile application called Net-
Snips. A new version of NetSnips will benefit from the work of this thesis and will
be available on the Apple App Store shortly.

4. Runtime evaluation: We have evaluated the runtime of ARITA for different
rectangle layouts with various experiments on real devices. The experiments show
that ARITA provides good performance results in realistic layout situations for
NetSnips.

5. User experience evaluation: In order to evaluate the quality of the layout
produced by ARITA, we performed a user experience evaluation with participants
of the NetSnips user base. The results confirm our assumption that the assessment
of automatically generated layouts depends strongly on personal preferences. Our
results show also that, in general, the participants of your study validate the layout
results of ARITA from satisfiable to very good.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 gives an overview of related problems and algorithms. First it de-
scribes the characteristics and solutions to two-dimensional packing problems and
constraint-based layout algorithms. Following that we discuss mobile computing
and power saving in general.

• Chapter 3 describes the problem that was addressed in this thesis. It begins with
a general discussion how the problem of repositioning snippets on interface orien-
tation changes could be solved. It further states the requirements and constraints
that we have defined for the repositioning algorithm.

• Chapter 4 describes the repositioning algorithm ARITA in detail. First it defines
symbols and abbreviations that will be used to describe the concepts in this chapter.
It proceeds by explaining which criteria are used for judging if a rectangle should be
repositioned. Further it shows how the free spaces between rectangles are identified
and which criteria is used by ARITA for to find a new location for a rectangle. It
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describes how we build the layout graph (a graph for describing rectangle layouts)
and how we use this graph for distributing rectangles with equal margins to other
rectangles and screen bounds. Finally it states how all this sub algorithms are used
by ARITA, discusses briefly the algorithmic complexity of the presented solution
and explains how computed layouts could be cached in a database to reduce CPU
load and save battery.

• Chapter 5 evaluates the runtime of ARITA with several experiments that stress
different layout situations. Moreover it evaluates the layout results with a user
experience study, including the results from a questionary that was answered by
NetSnips users.

• Chapter 6 summarizes the presented work in this thesis and gives hints to future
improvements and extensions of ARITA.

• Appendix A and B show the questionary that was used for the user experience
evaluation, including 20 different user generated snippet layouts in portrait screen
orientation and their automatically generated landscape mode counterparts.



Chapter 2

Related Work

The work in this thesis is related to different fields, including two-dimensional pack-
ing problems (section 2.1), constraint-based layout algorithms (section 2.2) and mobile
computing and power saving in general (section 2.3).

2.1 Two-Dimensional Packing Problems

Two-dimensional packing problems are highly relevant for many applications. In many
industries a set of rectangular items or goods have to be placed in another bigger rect-
angular container by minimizing waste or unused space. For instance, in the wood, steel
and glass industry exact solutions to those problems are important, when arbitrarily
sized customer orders must be cut out from rectangular pallets by minimizing the mate-
rial waste. In the newspaper business it is sometimes important to maximize the amount
of advertisements and minimize the unused space on a page.

Generally speaking, all these problems are variants or special cases of the well-known and
extensively studied knapsack problem, which was first described in 1896 by the British
mathematician Mathews [2]. It describes the problem of selecting items, each of them
with a mass and a value, such that the total value is maximized and the total weight is
below or equal to a defined limit. Two common generalizations of the problem are the
bounded and the unbounded knapsack problem. The former problem specifies for every
item an upper bound on the number of times an item can be selected. The latter problem
defines no constraint on that property. The unbounded knapsack problem was proven to
be NP-complete by Lueker [3] in 1975.

The previously described packing problems in industry can be formalized with the two-
dimensional knapsack packing problem (2DKP). We assume a set of finite rectangles R
= {r1, r2, . . . , rn}, each of them with width wi, height hi and value vi, which should
be placed in a larger container rectangle C with width W and height H such that the
total v is maximized and the solution is feasible. A solution for this kind of problem
is called feasible if no rectangle overlaps with another and if no rectangle exceeds the

6
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bounds of C. Because of the strong need for efficient solutions for these kind of prob-
lems, many heuristic approaches and genetic approaches have been presented in the last
years. Heuristic approaches that solve the two- and three dimensional knapsack prob-
lem efficiently have been studied extensively by Egeblad and Pisinger [4] [5], including
variants where items can be rotated. The genetic approach of Bortfeldt and Winter [6]
analyzes completely defined packing plans in order to solve unresolved packing problems
and adapts its approach by evaluating the results. The authors have shown in experi-
ments with large instances (up to 1000 pieces) that their genetic approach is competitive
with the heuristics proposed in recent years.

The mentioned methods are not directly applicable for our problem, since we do not
want to minimize the free space or create a layout with the most coherent free space
area. Instead, we are searching for a solution that places rectangles equally distributed in
the available space of the container. In contrast to 2DKP problems, our problem allows
overlapping of rectangles and exceeding the container bounds (if necessary). In other
words, in our scenario rectangles can be placed in 2.5 dimensional space, since we are
also distinguishing rectangles by their depth level. Most importantly, all the mentioned
approaches produce layouts which stand for their own, i.e., they are not related in any
way with another rectangle layout. However, as Chapter 3 describes in detail, for our
needs the relation between the layout in the portrait and landscape interface orientation
is crucial.

In 1983, Chazelle [7] originated an algorithm that implements the rectangle bottom left
placement heuristic in O(n2) time. A rectangle layout is said to have the bottom left
property if every rectangle is placed as far south and west as possible. The authors state
that the algorithm places rectangles in bottom left layouts optimally by identifying in
each iteration the most south and left placement point without introducing rectangle
overlapping. Healy et al. [8] extended this, by elaborating an efficient algorithm that
places rectangles in bottom left manner, even in rectangle layouts that may not respect
the bottom left property. For the problem presented in this thesis, this requirement
is fundamental, since users can arrange their snippets freely with no layout constraints
(even with overlapping). Even thought we got some inspiration due to this research work,
ARITA is not based on this algorithm for the following reasons. First, the algorithm of
Healy et al. [8] is not able to handle rectangle overlapping in the original layout. Secondly,
we want to exploit free space "gaps" in the layout in order to distribute rectangles more
equally, rather than placing rectangles in one specific corner of the container (e.g., bottom
left). Moreover, ARITA takes also the original position of the rectangles into account
and tries to rearrange each rectangle in the nearest and most suitable currently available
free space area (refer to Section 4.4 for details).

2.2 Constraint-Based Layout Algorithms

For our needs we do not want to change the user defined rectangle layout completely on an
interface rotation by placing rectangles with one of the previously described algorithms
space-optimally (without margins). Foremost, the automatically generated landscape
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snippet layout should be familiar, clear and visually appealing to the user. Moreover, our
problem has no clear optimal solution, since it depends strongly on the users preferences.
Therefore, we studied various constraint-based layout solutions [9] and machine learning
approaches [10], which adapt the user interface based on previous user interaction.

Constraint-based approaches are common in automatic user interface adaption, since
they allow great flexibility and real-time repositioning of user interface elements. For
instance, Kustanowitz and Shneiderman [11] elaborated a real-time algorithm for dis-
playing and auto-aligning photos for events, consisting of a primary region with the
main event photo and surrounding secondary regions for other related photos. They
introduce a number of constraints that define layout guidelines for photo libraries, which
must be respected by the auto-layout algorithm. Even though relaxing some of those
constraints could lead to more photos in the layout, the authors state that this would
lead also to an unbalanced view and lower visual clarity.

Moghaddam et al. [12] propose a system that, based on an initial user defined photo
layout, generates a new layout for related photos. In situations with many retrieved
images, this may lead to undesired image overlapping. Therefore the same authors
elaborated an optimization process [13] that minimizes overlapping by adjusting sizes
and positions and at the same time tries to preserve the impression that related images
are close to each other.

Our presented solution does not fall in the strict definition of a constraint-base layout
algorithm, but we use constraints implicitly, for instance the decision for fixing rectangles
that stay in screen bounds or the intention to distributed repositioned rectangles equally
in the available free space (refer to Chapter 3 for details).

2.3 Mobile Computing and Power Saving

Since the problem presented in this dissertation targets an implementation for mobile
devices, we are not only interested in highly efficient algorithms for user interface adap-
tion, but also for saving battery power. Longer running algorithms prevent the CPU
from going in power saving idle states, thus reducing the battery life of the device. Car-
roll and Heiser [14] showed that in smartphones the CPU is one of the components that
consumes most energy (1st place in high load scenarios, 2nd place in suspended state
and 4th place in idle case). Burr et al. [15] state that the potential for power savings
in software is greater than the potential for savings in hardware, althought the software
power savings are more difficult to achieve.

Already in 1996 Udani and Smith [16] claimed that, in contrast to memory size and
CPU power, the improvements in battery capacity will not be significant in the next
years. Comparing the battery capacities for mobile devices from the nineties with actual
ones, proves that these predictions were accurate and still valid. For this reasons energy
efficient algorithms must be used in our implementation for carefully utilizing the scarce
battery capacity of mobile devices.
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Even though the processing speed of mobile devices, like smartphones and tablets, im-
proved significantly in the last years, the CPU power of these devices is not yet at the
level of a typical desktop computer. Roberts-Hoffman and Hegde [17] showed in 2009 that
even low-end desktop CPUs (Intel Atom 330) are approximately 3 times faster than high-
end smartphone processors (ARM Cortex-A8), although the mobile processors showed
significantly lower power consumption. This fact was also taken into consideration when
choosing the techniques for ARITA.



Chapter 3

Problem Description

In this chapter, we detail the problem that we address in this thesis. Section 3.1 analyzes
the snippet placing behavior in the current version of NetSnips. Section 3.2 states the
requirements that a repositioning algorithm shall respect in order to fulfill our needs.

3.1 Positioning Snippets in NetSnips

In NetSnips users can define web snippets of almost any size. Starting from very small
to very big web snippets that fill out the complete display. In contrast to many other
applications that give users the possibility to define arbitrarily sized content, in NetSnips
users can position these snippets completely freely and pixel accurately on the user
interface on one of the available pages. Snippets are not forced to "dock" on a specific
raster that partitions the user interface. Snippets are also allowed to (partially) overlap
each other. User may do so, because they find the hidden snippet content less important
or visually more appealing to have specific overlapping.

User reviews show that they really appreciate the high level of customization and the
high flexibility of creating and arranging web snippets. This is confirmed by anonymized
usage statistics, that highlight the fact that users spend a considerable amount of time
with personalizing and positioning their web snippets.

The current version (2.1.1) of NetSnips does only support portrait screen orientation
on all devices. However one of the most popular feature requests is the support for
landscape screen orientation. Especially on tablets, like the iPad, supporting all inter-
face orientation is extremely important. Users expect that applications adapt to their
current context of use, which may be highly varying on mobile devices. Mobile devices
may be used in portrait mode while reading longer texts and whenever one-hand use is
preferred (for instance while walking). Landscape mode is generally favorited for reading
in more relaxed situations, for instance while laying on the bed, examining wide tables
or charts and whenever both hands can be used to interact with the touch screen de-
vice. Moreover due to the fact that mobile devices are generally equipped with smaller

10
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displays, depending on the content, users could find it more comfortable to rotate the
device in their preferred screen orientation.

The high flexibility for creating and positioning web snippets in NetSnips, makes it
difficult to support both screen orientations. Depending on the position and size of the
web snippets, some of them may be (partially) out of screen bounds in one of the two
interface idioms. The simplest solution to this problem would be to introduce a scrolling
view, in order that users can scroll to the snippets that are currently (partially) hidden.
However, we believe that this would lead to a very bad user experience, since it is no
longer possible to see the full content at a glance. This claim is supported by the study
of Sanchez and Branaghan [18], where user experiments showed with a strong evidence
that the need to scroll content on mobile devices influences reasoning performance and
task completion times negatively. Allowing user to rotate the device in landscape screen
orientation in order to minimize or prevent scrolling completely, led to faster information
reception and lower task completion times. Therefore we decided against the trivial
scrolling solution and defined our requirements on a snippet repositioning system.

3.2 Requirements for the Repositioning of Snippets

We define the following non-functional requirements for the repositioning algorithm:

1. Fast adaption to the current interface idiom: Rotating a mobile device is
a very common action. Therefore, users expect that the user interface adapts
almost immediately to the current interface idiom (portrait or landscape). The
repositioning system shall find a solution that adapts the position of all snippets
for the current interface idiom in a reasonable amount of time, typically not more
than 1000ms.

2. Respect for the originally user defined layout: As stated previously, users po-
sition snippets in a very specific and individual way in one interface mode. There-
fore the system shall respect the user defined snippet layout when generating a
similar layout for the other interface idiom, rather than repositioning all snippets.
More specifically the system shall not unnecessarily move snippets to another po-
sition if they are not partially or completely hidden in the current interface idiom.
The motivation behind this requirement is that users might have had good rea-
sons when positioning two snippets next to each other. Snippets may be related
in some way, for instance, users might like to compare multiple weather snippets
from different locations. It is assumed that the system is not able to identify and
validate the importance of the content of a particular snippet and the reasoning
behind the user defined layout. Therefore, the change to the layout shall stick to
the original layout as much as possible.

3. Move snippets to the nearest free space: If the interface orientation changes,
the system shall reposition snippets in the closest free space relative to the original
snippet position. Depending on the original layout, this could enhance the visual
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impression that the new layout did not change fundamentally. This requirement
assumes that the layout offers multiple candidate positions for the current snippet,
which lead to no overlapping with other snippets and/or overflowing the screen
bounds.

4. Minimize overlapping and overflow: This requirement describes the opposite
situation in comparison to the above stated requirement. The system shall set
snippets, which cannot be placed without overlapping or overflowing, to a position
that minimizes overflowing and/or overlapping.

5. Distribute snippets equally: If snippets must be moved to a new position, the
system shall place them in a way that the vertical and horizontal margins to the
screen bounds and to other snippets are equally distributed.

Our requirements for the repositioning system respect the interface design guidelines for
mobile devices of Gong and Tarasewich [19]. More specifically, we focus especially on
"Support Internal Locus of Control" by minimizing the automatically layout changes on
the user defined layout. Our decisions are also influenced by guideline "Design for speed
and recovery" and "Allow for personalization".

According to our knowledge a positioning system for rectangles that fulfills the above
stated requirements has not yet been addressed in literature.



Chapter 4

Adjusting Rectangles on Interface
Turn Algorithm

In this chapter we describe the Adjusting Rectangles on Interface Turn Algorithm
(ARITA). Section 4.1 lists all symbols and abbreviations used in this chapter. Section
4.2 describes the criteria for identifying rectangles that should be repositioned. Section
4.3 and section 4.4 focus on discovering the free space in the rotated interface and finding
a new rough position for rectangles that should be rearranged, respectively. Section 4.5
and section 4.6 discuss how these rough rectangle positions could be fine-tuned, in order
to archive a more harmonious visual result. Section 4.7 describes the complete ARITA,
which performs the described steps in this chapter in the right order. Finally section 4.8
discusses the algorithmic complexity of ARITA and section 4.9 explains how computed
layouts could be cached in a database to reduce CPU load and save battery.

4.1 Symbols and Abbreviations

We describe a rectangle in the coordinate system of the container rectangle by specifying
its frame, which is composed of:

• the left-upper based origin, specified in absolute x/y coordinates and abbreviated
with origin (x/y)

• the size, specified in absolute width/height values and abbreviated with size (width/
height)

Sometimes, especially in pseudo code samples, we are also abbreviating the specification
of the frame by using the notation frame (x, y, width, height). We refer to specific parts
of the frame with the dot notation. For instance, we use frame.width for referring to
the width value or frame.center for the center point of the frame. Moreover we use the
functions minX(frame), maxX(frame), minY(frame) and maxY(frame) for referring to

13
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the minimal/maximal x and y coordinates of a frame. For instance, minX(frame) =
frame.x and maxX(frame) = frame.x + frame.width.

Table 4.1 shows all symbols used in this chapter. We will refer to them in the following
sections.

Symbol Description

C Container rectangle
Rall Set of all rectangles positioned in C
Radj Set of all adjustable rectangles ⊂ Rall
Rfix Set of all fixed rectangles, i.e. Rall\Radj
FSfix Set of all free spaces constraint to the

rectangles in Rfix

Table 4.1: Symbols used in this chapter.

4.2 Identification of Adjustable Rectangles

In the current and following sections, we will perform ARITA step-by-step on the example
layout illustrated in Figure 4.1. The initial layout in portrait mode (outlined with a
green border), is specified by the user and composed of 6 rectangles of different sizes and
proportions. We assume that the device will be rotated to landscape screen orientation
(outlined with a blue border). After the interface rotation some rectangles are positioned
completely out of screen bounds (rectangles 5, 6) or partially (rectangles 3, 4). The
hidden snippet areas in landscape are highlighted in translucent red.

We describe the available area for placing all rectangles (i.e., dimension of the user
interface) with a container rectangle C. Moreover each web snippet is represented by a
rectangle. On device rotation, the orientation of the user interface and therefore also of
C changes, i.e. the previous container width becomes the height and vice versa.

After device rotation, ARITA identifies all rectangles that are positioned partially or
completely out of the bounds of C. The algorithm aggregates all rectangles in Rall that
are adjustable.

Definition 4.1 (No Overflow Criteria). A rectangle r satisfies the no overflow criteria
iff r.width ≤ C.width and r.height ≤ C.height.

Definition 4.2 (Adjustable Rectangle). Let p be the bottom right corner point of
rectangle r. We call r adjustable iff it fulfills the no overflow criteria and either or both
of the following conditions are true: (i) p.x > C.width (ii) p.y > C.height.

This first step of ARITA results in a set of adjustable rectangles Radj, i.e., rectangles
that are positioned (partially) out of the container rectangle and fulfill the no-overflow
criteria. We consider these rectangles for repositioning. If this set is empty, ARITA
does not perform any changes and terminates immediately. In our example illustrated
in Figure 4.1 we have Radj = {r3, r4, r5, r6}.
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Figure 4.1: The user defined layout in portrait mode and in landscape mode. In
landscape some snippets are completely or partially hidden (highlighted in red).

The reason for excluding these very wide and/or high rectangles, which do not fulfill
the no-overflow criteria, is founded in the general idea of the algorithm. As described
in chapter 3, ARITA does only intervene in the user specified rectangle layout if it is
absolutely needed and content is hidden. We do not perform any actions on rectangles
that overflow screen bounds on every position in C. This is true for rectangles that do
not fulfill the no overflow criteria and therefore no processing time should be wasted for
finding another (possible inferior) position for these rectangles. It is assumed that only
the user can valuate the different importance of the visualized content and decide which
part of the snippet is less critical. All rectangles that are not adjustable are part of Rfix

and considered as fixed, i.e., their position should not be changed.

4.3 Determining Free Rectangular Spaces

In order to find a suitable position for every rectangle in Radj, we identify all free spaces
that exist in C constraint to the rectangles in Rfix, that is all rectangles in Rall\Radj.

A free space is a rectangular area in the coordinate system of C, which is not intersected
by any rectangle ∈ R .

Definition 4.3 (Free Space). LetR = {r1, r2, . . . , rn} be a set of rectangles. Amaximal
free space f is a rectangle, which does not intersect with any r ∈ R, i.e., ∀ ri ∈ R (f ∩ ri
= ∅) and @ f’: f’ ≥ f.
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Figure 4.2: All 7 partially overlapping free spaces (translucent colors) in respect to
the fixed rectangles 1 and 2 in landscape interface orientation.

We use the sweep line technique of Shamos and Hoey [20] in order to compute the set
of free spaces FSfix in C. The technique uses an imagined vertical line with height equal
to C.height and sweeps from left to right over the container rectangle. Moreover we
maintain two sets of free spaces. Free spaces that are no longer processed by the sweep
line are closed and considered as dead. Free spaces that did not yet reach their maximum
extend are considered as active. The sweep line stops at x values where special events
occur. For our purposes this are all x values where a fixed rectangle is horizontally
starting or ending. If such an event is triggered, we create new free spaces or split and
close active ones accordingly.

Figure 4.2 shows all free spaces (translucent, colored areas) in respect to the fixed rect-
angles Rfix (rectangles 1 and 2). At this time, all other rectangles (3-6) are not yet
present in the landscape rectangle layout, since their new position will be defined by
the algorithms presented in the following sections. The free spaces in this example are
partially overlapping, which is emphasized by depicting them with translucent colors.

The following two sub sections present the theory behind the two main steps of our
tecnique: the processing, closing and splitting of active spaces and the instantiation of
new active spaces.

4.3.1 Processing of Active Spaces

If the sweep line collides with a horizontal start of a rectangle, currently existing free
spaces must be closed and split into sub spaces. Figure 4.3 illustrates the sweep line
at x = 20 on the collision with rectangle 1. The initial free space (green) is closed and
results in two new free spaces (yellow and blue) that are partially overlapping the initial
free space. At this time, the new split spaces have width equal to 20, but for a better
general view Figure 4.3 illustrates the final space sizes in dashed-yellow and dashed-blue,
respectively.
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In order define the size and position of resulting split spaces we keep a list of vertical
lines that represent the vertical dimensions of rectangles at a given x value. In other
words, if a rectangle r is colliding with the sweep line at x, then we create a new vertical
line l that describes the y-position and height of that rectangle in C. We set l.start = r.y
and l.length = r.height. If rectangles are overlapping each other at a given x value, then
the vertical lines are intersecting as well. Intersecting lines are combined into a simple
line.

The vertical line list describes where rectangles are present. However, for splitting an
active space into sub spaces, we need the information where no rectangles are present.
Given the line list we can compute the opposite list, called negative line list. Given a x
coordinate in C, the negative line list specifies at which vertical intervals no rectangles are
present. Ultimately, we specify the frames of the new split spaces with the information
contained in the negative line list. Figure 4.3 shows the negative line list (in orange;
containing nl1 and nl2) at x = 20.

Figure 4.3: The sweep line and negative line list at x = 20.

4.3.2 Instantiation of New Active Spaces

If the sweep line collides with a horizontal end of a rectangle, new free spaces must
created. Figure 4.4 illustrates how a new active space is defined as soon as the sweep
line reaches the end of rectangle 2 at x = 350. In order to define the frame of the new
active space, we are again calculating the negative line list. However, this time not at the
current sweep line position, but one step ahead (x = 351). Moreover we are restricting
the calculation of the negative line list to the scope of the currently ending rectangle(s).
Using the lines in the negative line list, we gather the information for creating the frames
for the new free spaces.
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Figure 4.4 depicts the negative line list (in orange; containing only nl1), which was used to
create the new active space (in blue). At this time the new active space has width equal
to zero, but for a better general view the final space size is highlighted in dashed-blue.

Figure 4.4: The sweep line at x = 350 and negative line list for x = 351 in scope of
rectangle 2.

4.3.3 Algorithm for Computing Free Spaces

Algorithm 1 shows the pseudo-code for the ComputeFreeSpaces algorithm, which
implements the free space splitting and creating behavior described previously.

First, ComputeFreeSpaces initializes two empty sets called DeadSpaces and ActiveS-
paces (line 1). A free space is considered as dead as soon it is closed, i.e., the sweep line
passed it and will not process it furthermore. A free space is called active if the sweep
line will process it further on, when new rectangle starting- or ending events are arising.
An initial free space is created with origin (0/0) and size (0/C.height) and added to the
activeSpaces set (lines 2-3). All rectangle starting- and ending event points, as well as
the container end point, are collected in a set (lines 4-5). The sweep line is implemented
with a loop, that iterates through all event points in ascending sorted order. At every
iteration all spaces that are currently in ActiveSpaces set are marked as unprocessed (line
7).

Every iteration passes through two main parts that were discussed previously. The
instantiation of new active spaces (subsection 4.3.2) is implemented in lines 7-16 and
the processing, closing and splitting of active spaces (subsection 4.3.1) is realized in lines
17-28. After processing all event points, all remaining active spaces are added to the
DeadSpaces set which is returned as final result (lines 29-30).
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Input: A container rectangle C ; a set of rectangles R that are positioned in C
Output: The set of free spaces in C in respect to the rectangles in R

1 Initialize empty sets DeadSpaces, ActiveSpaces
2 Let f be the initial free space with frame (0, 0, 0, Ymax)
3 Add f to ActiveSpaces
4 Let X = {x1, x2, ..., xk} be the set of x-values of rectangle starting/ending points in R
5 Add C.width to X
6 foreach x ∈ X in ascending sorted order do
7 Set all spaces in ActiveSpaces unprocessed
8 if at least one rectangle ∈ R is horizontally ending at x then
9 Let LS be the vertical line list returned by Lines(x+1, R)

10 Let NLS be the negative vertical lines list returned by NegativeLines(LS, C)
11 Sort NLS by y-start coordinate
12 foreach nl ∈ NLS do
13 Let a be a new active space with frame (x, nl.start, 0, nl.length)
14 Flag a as processed and add it to ActiveSpaces
15 end
16 end
17 repeat
18 Extract unprocessed space s in ActiveSpaces
19 if s found then
20 Set width of s until x
21 if at least one rectangle ∈ R is horizontally starting at x then
22 Let LS be the vertical line list returned by Lines(x, R)
23 Compute SplitSpaces set for s with SplitSpaces(s, LS)
24 Set spaces in SplitSpaces processed and add them to ActiveSpaces
25 Remove s from ActiveSpaces and add it to DeadSpaces
26 end
27 end
28 until all spaces in ActiveSpaces are processed
29 Add spaces in ActiveSpaces to DeadSpaces
30 return DeadSpaces
31 end

Algorithm 1: ComputeFreeSpaces

The previously discussed concepts of vertical lines and negative lines for detecting the
vertical covering situation of rectangles at x are implemented with the helper algorithms
Lines and NegativeLines, respectively. The algorithm SplitSpaces uses the line list
for splitting a given free space into sub spaces.

4.4 Placing Rectangles in Free Spaces

After identifying all free spaces, we need to select a free space container for all rectangles
in Radj. Every adjustable rectangle should be placed in a free space that fits the dimen-
sions of the actual rectangle. If this is not the case (i.e., the rectangle is higher and/or
broader as any available free space), we select the free space container that minimizes
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the overflow area. However often the opposite is the case and a rectangle could be placed
in more than one free space container. For this reason we compute the set of free space
candidates that can completely fit the actual rectangle. In order to decide which of the
container candidates fits the actual rectangle best, we introduce the container-rectangle
difference.

Definition 4.4 (Container-Rectangle Difference). The difference between free space
container c and rectangle r is defined as:

difference(c, r) = sizeWeight ∗ sizeDiff (c, r) + posWeight ∗ posDiff (c, r)

where sizeWeight and posWeight may be any positive decimal and

sizeDiff (c, r) = |c.width− r.width|+ |c.height− r.height|

posDiff (c, r) = |c.center − r.center|

The container-rectangle difference function takes into account the absolute size and po-
sition differences between a container candidate and a rectangle, in both cases with a
weight parameter. For our experiments we have used sizeWeight = 1 and posWeight = 2
in order to place adjustable rectangles closer to their original position. In some rectan-
gle layouts this emphasizes the visual impression that the new rectangle layout changed
insignificantly compared to the original one.

The placement order of rectangles and the selection of the free space container definitely
affects the final layout. As described in the following, ARITA uses a greedy approach for
finding a new position for all rectangle in Radj.

Algorithm 2 shows the pseudo-code for the PlaceRectangles algorithm. First, it sorts
all rectangles in Radj in descending order by their surface area (line 1). This assumes
that rectangles that with larger surface are more difficult to place, i.e., there exist fewer
free space candidates that match these rectangles. The algorithm loops through all
rectangles in the passed rectangle set and performs the following steps. First it identifies
all free space candidates that can completely fit the passed rectangle (line 3). If this set
is not empty, it returns the container c with the minimal container-rectangle difference
in respect to r (line 5). If no container candidates could be found, which means that the
rectangle does not fit in any free space, the algorithm returns the free space container
that leads to minimal overflow (line 7). The current rectangle is placed at origin (0/0) in
the selected container (line 9). Since usually a rectangle does not fill out the container
completely, the resulting sub container spaces on each side (top, bottom, left, right) are
calculated and added to the current free spaces set (lines 10-11). The selected container
space is removed from the free spaces set (line 12).

The result of PlaceRectangles is an initial, temporary layout that contains the newly
positioned rectangles in Radj and the unaltered rectangles in Rfix. Figure 4.5 shows the
temporary new rectangle layout and highlights all free spaces after placing all adjustable
rectangles.
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Input: A set of free space FS ; a set of rectangles R that should be positioned in C

1 Sort rectangles in R descending by area
2 foreach rectangle r ∈ R do
3 Identify candidate containers CC for r in FS
4 if CC is not empty then
5 Let c be the selected container returned by MinimalDifference(CC, r)
6 else
7 Let c be the selected container returned by MinimalOverflow(FS, r)
8 end
9 Place r in c at origin (0/0)

10 Compute SubSpaces set for c after placing r
11 Add SubSpaces to FS
12 Remove c from FS
13 end

Algorithm 2: PlaceRectangles

Figure 4.5: The temporary landscape rectangle layout. Remaining free spaces are
highlighted with translucent colors.

4.5 The Layout Graph

The PlaceRectangles algorithm places all adjustable rectangles without any margins
in a selected free space container. This behavior is desired during rectangle placement,
since it guarantees that the free space in C is not unnecessarily wasted or "blocked" until
all adjustable rectangles are placed.

Once all rectangles are placed, we perform layout adjustments. This way we achieve
a more balanced rectangle layout, i.e., equally distributed margins between rectangles
and screen bounds. In order to understand how much we can move each rectangle in
horizontal and vertical direction without introducing additional rectangle overlapping or
screen overflow, we use a graph data structure to represent a rectangle layout. We call
this graph layout graph.
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In other words, the results of PlaceRectangles defines the "raw" rectangle layout
and the layout graph is used for balancing the layout, i.e., introducing margins between
adjustable rectangles.

4.5.1 Definition

The layout graph is an undirected graph with nodes and edges, whereas each node rep-
resents a rectangle in the layout. In addition to the nodes for all rectangles, the layout
graph contains 4 special nodes that represent the screen bounds in all 4 cardinal direc-
tions. A node exposes 4 anchors, that are named like cardinal directions, namely west
anchor, east anchor, south anchor and north anchor. Each node anchor bundles all edges
for one of the 4 possible directions. An edge describes a connection between a node and
a neighbor node. Two nodes are connected in one of the four directions, if the underly-
ing rectangles are directly adjacent to each other in a particular direction, i.e., no other
rectangle is in between.

Definition 4.5 (Neighbor Rectangle). 2 not overlapping rectangles r and s are called
horizontal (vertical) neighbor rectangles iff they can be connected with a perfectly hori-
zontal (vertical) line without crossing any other rectangle in the layout.

Definition 4.6 (Layout Graph). The layout graph is a 3-tuple G = {N,E,R} s.t.

• N . . . finite set of nodes

• E . . . finite set of edges

• R . . . finite set of rectangles

• each n ∈ N corresponds to one r ∈ R

• 2 nodes are connected if the corresponding rectangles are neighbors

Nodes in the layout graph can be either fixed or movable. Edges between nodes can be
either fixed or adjustable.

Definition 4.7 (Fixed and Movable Node). We say a node is fixed if its underlying
rectangle r is fixed, i.e., r ∈ Rfix. We say a node is movable if its underlying rectangle r
is adjustable, i.e., r ∈ Radj.

Definition 4.8 (Fixed and Variable Edge). We say an edge is fixed if it connects 2
fixed nodes. We say an edge is variable if it connects 2 nodes, whereas at least one of
them is movable.

Figure 4.6 shows the layout graph for the rectangle layout illustrated in Figure 4.5. Since
nodes and rectangles are related to each other, all nodes are depicted at their approximate
rectangle center point. Fixed edges and nodes are shown in light gray, whereas movable
nodes are shown in bold. Horizontal variable edges are shown in orange, whereas vertical
ones are illustrated in red. Moreover all variable edges are labeled with their edge
distance.
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Figure 4.6: The layout graph with all nodes and edges for the rectangle layout in
Figure 4.5.

4.5.2 Constructing the Layout Graph

In the following we will describe how we construct the layout graph. The layout graph
is build in 3 main steps:

1. Node instantiation

2. Identification of west and east neighbors for all nodes

3. Identification of north and south neighbors for all nodes

The first step initializes the layout graph with the 4 special nodes that represent the
screen bounds in a particular cardinal direction. Since these nodes are not included in
the temporary rectangle layout, we have to link them to virtual rectangles. For instance,
WEST node is defined with a rectangle with frame (-∞, 0, ∞, C.height). Next, we
create nodes for every rectangle. Figure 4.7 shows the layout graph after initializing all
nodes for the rectangle layout in Figure 4.5. All movable nodes are shown in bold.

The second step for building the layout graph is performed by SetWestAndEast-
Neighbors (algorithm 3), an algorithm that concatenates each node with its west and
east neighbors. The algorithm loops through the set of nodes (line 1) and identifies for
each of them the west neighbor nodes by using the helper algorithm WestNeighbors
(algorithm 4). After identifying all west neighbors, it concatenates all of them with the
current node (lines 5-6).
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Figure 4.7: The layout graph after initializing all nodes; movable nodes are bold.

Input: A layout graph lg

1 Let N be the set of nodes in lg
2 foreach node n in N do
3 Let OtherNodes be the set N \n
4 Compute west neighbors WN returned by WestNeighbors(n, OtherNodes)
5 foreach west neighbor wn in WN do
6 Add edge from west anchor of n to east anchor of wn
7 end
8 end

Algorithm 3: SetWestAndEastNeighbors

The helper algorithm WestNeighbors (algorithm 4) uses a backward sweep line tech-
nique to identify all west neighbors for a given target node n. First, it initializes an
empty set for storing all identified west neighbor nodes (line 1) and another one for
keeping track of the currently allowed neighbor ranges (line 2). A range is vertical line
with a start point and length. An allowed neighbor range describes a vertical section
that is currently monitored for collisions with rectangles when swiping in west direction.
The initially allowed west neighbor range is defined with start point equal to the target
node’s rectangle y-coordinate and length equal to the rectangles height (line 4). This
initial range is added to the set of all currently allowed neighbor ranges (line 5). All
rectangle ending event points that are positioned more western as the rectangle of the
target node are collected in a set (lines 7).

After initialization, WestNeighbors sweeps backward starting from most eastern rect-
angle ending event point. At every stop, the algorithm checks if the neighbor ranges set
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is not empty (line 9). If so, it identifies all neighbor candidate nodes that are associ-
ated with a horizontally ending rectangle at the current event point (line 10). It loops
through all identified nodes and checks if the vertical range of the node is in scope of
the currently allowed neighbor ranges (line 11-12). If this is the case, it adds the current
neighbor candidate node to the set of identified west neighbors (line 13). It also deletes
the vertical range of the added node from the currently allowed neighbor ranges (line
14).

Figure 4.8 shows the layout graph after identifying west and east neighbors for all nodes,
highlighting all variable edges in orange. Fixed edges and nodes are shown in light gray,
whereas variable edges are shown in orange with their actual edge distance.

Figure 4.8: The layout graph after setting all west and east edges to all nodes.
Variable edges are labeled and highlighted in orange.

The third and last step for building the layout graph is performed by SetNorthAnd-
SouthNeighbors, an algorithm that works analogously to SetWestAndEastNeigh-
bors. The difference is founded in the fact, that all subroutines target the y rather than
the x axis and use rectangle widths rather than the rectangle heights for identifying
neighbors. After concatenating all nodes with their vertical neighbors, the final layout
graph corresponds to the layout graph illustrated previously in Figure 4.6.

4.6 Balancing the Layout Graph

For balancing, we have to extract the variable paths in the layout graph (subsection 4.6.1)
and use them for deciding how the edge distances between nodes must be adjusted
(subsection 4.6.2).
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Input: A target node n; A set of nodes N
Output: The set of west neighbors for target node n

1 Initialize empty set WestNeigbors
2 Initialize empty neighbor ranges set NeighborRanges
3 Let r be the underlying rectangle of n
4 Create initial range ir with start point = r.y and length = r.height
5 Add ir to NeighborRanges
6 Let NC = {nc1, nc2, ..., nck} be the set of neighbor candidates with underlying
rectangle s maxX(sk) < minX(r)

7 Let X = {x1, x2, ..., xk} be the set of x-values of rectangle ending points for all nodes
in NC

8 foreach x ∈ X in descending sorted order do
9 if NeighborRanges not empty then

10 Identify nodes NN = {nn1, nn2, ..., nnl} ending at x
11 foreach nn in NN do
12 if range of nn in NeighborRanges then
13 Add nn to WestNeigbors
14 Delete range of nn from NeighborRanges
15 end
16 end
17 end
18 end
19 return WestNeigbors

Algorithm 4: WestNeighbors

4.6.1 Extracting Variable Paths

We are using the layout graph for adjusting the temporary position for rectangles in
Radj, i.e., we are balancing or equating the margins between these rectangles and screen
bounds. We call this activity layout graph balancing, and perform it in 2 independent
steps: First, we balance the layout graph horizontally, from WEST node to EAST node.
Secondly, we are balancing it vertically, from NORTH node to SOUTH node. In the
following we will describe the horizontal layout graph balancing process in detail. The
vertical process is analogous and differs only in the vertical graph processing direction.

For balancing we exploit the variable paths in the layout graph, either in horizontal or
in vertical direction. Movable nodes that are part of a variable path are considered for
repositioning.

Definition 4.9 (Variable Path). A variable path is a sequence of variable edges starting
from a fixed node to another fixed node.

The previous Figure 4.8 highlights all horizontal variable edges in orange for the example
layout graph. In order to identify the variable paths in the layout graph, we use the
algorithm HorizontalVariablePaths (algorithm 5). Figure 4.9 lists all horizontal
variable paths in the example layout graph with labeled edges before initiating the layout
balancing process.
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Figure 4.9: The list of all horizontal variable paths in the layout graph with labeled
edges before layout balancing.

The algorithm HorizontalVariablePaths first initializes an empty set for storing all
identified horizontal variable paths in the layout graph (line 1). The algorithm repeats
the following steps as long as a start node with unprocessed edges can be found, starting
at WEST node and heading against EAST node. It identifies the current start node with
NodeWithUnprocessedEgde, a depth-first search algorithm [21] that also starts at
WEST node and progresses horizontally. It returns the first found node with at least
one unprocessed edge (line 4). If a start node could be found, the algorithm uses the sub
routine Paths for identifying all variable paths from the current start node to the next
fixed node (line 6). Paths flags internally all visited edges as processed, in order that
HorizontalVariablePaths terminates as soon as no further node with unprocessed
edges could be found, i.e., the algorithm NodeWithUnprocessedEastEdge returns
no further start node.

Input: A layout graph lg
Output: A set of horizontal variable paths in lg

1 Initialize empty variable paths set VP
2 Initialize current start node sn as unspecified
3 repeat
4 Find sn with NodeWithUnprocessedEastEdge(lg)
5 if sn found then
6 Compute current variable paths CVP starting from sn with Paths(sn)
7 Add paths in CVP to VP
8 end
9 until sn not found

10 return VP

Algorithm 5: HorizontalVariablePaths

4.6.2 Balancing Variable Paths

The result of the HorizontalVariablePaths algorithm is a unordered set of horizontal
variable paths. This set can contain variable paths that share the same nodes completely
or partially. All variable paths that include at least one common variable node are called
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conflicting variable paths, since it it is not obviously clear, which of these variable paths
should be used for the balancing process.

Definition 4.10 (Conflicting Variable Path). Let P and Q be 2 horizontal (vertical)
variable paths and N = {n1, n2, ..., nk} and M = {n1, n2, ..., nl} their traversed variable
node sets, respectively. We call P and Q horizontally (vertically) conflicting iff N ∩ M
6= ∅.

We have to decide how to balance conflicting paths, i.e., which of the conflicting paths
should be used for balancing the contained nodes. Choosing the "wrong” path for balanc-
ing could lead to undesired overlapping of adjustable rectangles, therefore it is important
to resolve these conflicts. However it is also common that there exist various possibilities
that lead to no additional rectangle overlapping but result, depending on the chosen
variable path, in different rectangle layouts.

In order to resolve the problem of conflicting paths, we elaborated a strategy that in-
troduces no additional overlapping of adjustable rectangles, i.e., it does not add further
overlapping in comparison to the temporary rectangle layout that resulted after perform-
ing the PlaceRectangles algorithm. Our current solution does not weight which of
the non-overlapping solutions is best against any criteria.

In order to balance all variable paths efficiently based on the previously stated require-
ments, we have elaborated a solution that, instead of identifying and resolving all variable
path conflicts, it sorts and processes variable paths in such a way that conflicts can be
avoided. More precisely, we sort all horizontal (vertical) variable paths in descending
order by their priority and do not move a visited node anymore after it was discovered
and processed for the first time. The priority of a variable path p is higher if the rectangle
of the start node of p is located more eastern and the rectangle of the end node of p is
located more western.

Definition 4.11 (Priority of a Variable Path). Let P and Q be 2 horizontal (vertical)
variable paths and R = {n1, n2, ..., ni} and S = {m1, m2, ..., mk} the rectangles of their
traversed variable node sets, respectively. The priority of a variable path is defined as
positive integer, such that the priority of P is higher as of Q iff at least one of the
conditions is true:

1. maxX(n1) > maxX(m1)

2. minX(ni) < maxX(mk)

3. the number of edges in P is higher as in Q

The previous Figure 4.9 shows the horizontal variable paths in the example layout graph
sorted by their priority in descending order.

After sorting, we balance the priority-sorted variable paths list one after another. A
single variable path is balanced by calculating the arithmetic average of all edge distances
starting from the first edge and ending with either the last edge in the path (i) or the last
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edge that leads to an already processed node (ii). The identified average edge distance is
set as edge distance to all encountered edges. If the balancing process was interrupted at
edge e before reaching the last edge in the path (ii), the balancing process begins again,
starting at the next following edge of e. Otherwise (i) we continue the balancing process
with the next following path.

Figure 4.10 illustrates the horizontal balancing process in the example layout graph.
The paths and and their containing nodes are balanced in the following color order: red,
orange and lastly yellow. All edges show the edge distance after completing the horizontal
balancing.

Figure 4.10: The layout graph and the resulting rectangle layout after completing
the horizontal balancing process. The path balancing was performed in the following

order: red, orange, yellow.

Since for horizontal balancing we do not need north and south edges, we build only the
horizontal part of the layout graph (as shown in Figure 4.8), rather than the complete
graph with north, south, west and east edges. After horizontal balancing, we create
the vertical part of the layout graph and extract all vertical variable paths with Verti-
calVariablePaths, an algorithm that works analogously to Algorithm 5. Finally, we
balance the vertical variable paths in the same manner as the horizontal variable paths.

4.7 ARITA

ARITA (algorithm 6) uses all the reasoning and algorithms described in this chapter.
First, it identifies the set of adjustable rectangles Radj (lines 1-3). If this set is not empty,
the algorithm continues by calculating the set of fixed rectangles Rfix (line 5), otherwise
ARITA terminates and does not perform any changes to the rectangle layout. The algo-
rithm continues by calculating the free spaces in container C, constraint to the rectangles
in Rfix (line 6). It repositions all rectangles in Radj to a new preliminary location (line 7),
which results in a temporary rectangle layout. ARITA continues by building the layout
graph on the basis of the temporary rectangle layout (line 8). Subsequently, we concate-
nate all nodes with their horizontal neighbors and balance the layout graph horizontally
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(lines 9-10). Finally, the algorithm repeats the last two steps in vertical direction (lines
11-12) and terminates.

Figure 4.11 shows the final rectangle layout in landscape interface orientation, after
completing ARITA.

Figure 4.11: The resulting rectangle layout in landscape interface orientation com-
pleting ARITA.

Input: A container rectangle C ; a set of rectangles R

1 Identify rectangles set RO that are positioned (partially) out of C
2 Identify rectangles set RN that do not fulfill the no overflow criteria
3 Let Radj be the set of adjustable rectangles Radj = RO\RN
4 if Radj not empty then
5 Let Rfix be the set of fixed rectangles Rfix = R\RA
6 Compute FS = ComputeFreeSpaces(C, Rfix)
7 Reposition rectangles with PlaceRectangles(FS, Radj)
8 Create layout graph lg
9 Set west and east neighbor nodes with SetWestAndEastNeighbors(lg)

10 Balance lg horizontally using variable paths of HorizontalVariablePaths(lg)
11 Set north and south neighbor nodes with SetNorthAndSouthNeighbors(lg)
12 Balance lg vertically using variable paths of VerticalVariablePaths(lg)
13 end

Algorithm 6: ARITA

4.8 Complexity Analysis

The algorithmic complexity of ARITA can be determined by identifying the complexity
of all sub algorithms.

The sweep line based ComputeFreeSpaces algorithm (algorithm 1) has complexity
O(n2 · log n), where n denotes the number of rectangles in C. The sweep line stops at
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2n event points. At each stop, the algorithm calculates, sorts and processes the line list,
which can contain at most n lines.

The PlaceRectangle algorithm (algorithm 2) has complexity O(n2). A rectangle
layout can contain at most 4n free spaces. In the worst case, the algorithm loops through
all rectangles, and for each of them all free spaces are accessed.

For the construction of the layout graph, a loop first instantiates all nodes in O(n) time.
Then the SetWestAndEastNeighbors algorithm (algorithm 3) connects the nodes
and has complexity O(n2). This quadratic complexity comes from looping through all
nodes and the complexity of the sub algorithm WestNeighbors (algorithm 4) of O(n).
The sweep line in WestNeighbors has to stop on at most 2n − 2 points or has to
validate at most n− 1 vertical lines on a single event stop. Thus, the overall complexity
for creating the layout graph is O(n2).

For the horizontal balancing of the snippets we extract from the layout graph the horizon-
tal variable paths using HorizontalVariablePaths (algorithm 5) that has complexity
O(e), where e denotes the number of edges in the layout graph. This complexity results
from the fact that every edge is visited only once. Since we are balancing the layout
graph by sorting the extracted variable paths, the complexity depends on the number
of variable paths p in the graph. Therefore the overall complexity for the horizontal
balancing step is O(e) +O(p ∗ logp). The vertical balancing has the same complexity.

By putting all formulas together, we get the overall complexity of ARITA as

O(n2 ∗ logn) +O(e) +O(p ∗ logp)

4.9 Adjusting Multiple Pages

As stated in section 2.3, on mobile devices energy efficient implementations are crucial.
Therefore, in order to save battery and increase the performance for adjusting multiple
independent rectangle layouts, we cache the computed layouts with the corresponding
interface orientation in a database. We only need to recompute the layout for a specific
interface orientation if the user manually repositioned, added or deleted a snippet on a
page. Therefore we do not have to perform ARITA on every single device rotation, but
can fall back on precomputed results. This reduces CPU load and thus helps to save
valuable battery.

Moreover, on device rotation, we compute the rectangle layout for the currently visible
page with the highest priority and process remaining pages in the background. This
way we achieve a very fluent repositioning impression even on many pages with complex
rectangle layouts.
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Evaluation

This chapter evaluates ARITA against running time and user satisfaction. In section 5.1
we perform various experiments to analyze the runtime for different rectangle layouts.
Section 5.2 evaluates the layout results of ARITA with a user experience study.

5.1 Runtime Experiments

5.1.1 Setup

We evaluated the running time of ARITA in various experiments with different settings.
Table 5.1 lists all parameters under investigation, their default settings and range values.
In each experiment we vary only a single parameter (in the defined range) and set all
remaining ones to their default values, if not stated differently.

Parameter Default Range

Number of rectangles (Rall) 5 1–20
Number of adjustable rectangles (Radj) 50% of Rall 0, 1, 2, 3, 4, 5
Maximal rectangle width/height (Rmax) 350 150, 250, 350, 450, 550, 650
Minimal rectangle width/height (Rmin) 75 25, 75, 125, 175, 225, 275
Number of pages (P) 1 1, 2, 4, 8, 12, 16

Table 5.1: The parameters under investigation and their default values.

In each experiment we create a randomly generated portrait snippet layout (with no
snippet overlapping) and rotate it to landscape interface orientation. The randomly
generated portrait layout is parameterized by the values in Table 5.1.

The default configuration describes a rectangle layout with 5 rectangles. The percentage
of adjustable rectangles, i.e., rectangles that after rotation are positioned (partially) out
of the screen bounds, is set to 50% (on decimal values we round always up, i.e., to the
upwards nearest integer value). Moreover, in the default configuration, we randomly
created snippets with height and width values in the interval of [75, 350] points. Since
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ARITA considers every page independently from all others, the default configuration
describes a snippet layout on a single page.

We performed the following experiments on an iPad (4th gen), which includes a dual
core Apple A6X processor. Since we created the size and position of snippets randomly,
we repeated every experiment with every parameter configuration 3 times and used the
arithmetic average of the values.

5.1.2 Results

Figure 5.1 measures the effect of number of rectangles (ranging from 1 to 15 rectangles)
for repositioning. In the default settings (orange curve) ARITA needs from 33ms (1
rectangle) to 799ms (15 rectangles) to compute the landscape layout. The blue curve
shows the behavior of ARITA on layouts where all rectangles are out of screen bounds
and therefore must be adjusted. The green curve depicts layout situations with only one
adjustable rectangle. We can observe that ARITA performs best if all rectangles are
adjustable, and it takes the most time to compute layouts where all rectangles, except
one, are fixed. The difference between the 3 curves grows with increasing number of
rectangles.

Figure 5.1: CPU time versus number of rectangles for ARITA with 3 different settings
for adjustable rectangles.

In order further analyze the different performance behavior when the number of ad-
justable rectangles changes, we increased the number of adjustable rectangles step by
step. Figure 5.2 shows the needed CPU time for a 5 rectangles layout with increasing
percentage of adjustable rectangles. If after rotation no rectangles are placed out of
screen bounds, ARITA terminates almost immediately (6ms). If one rectangle must be
adjusted, the CPU time peaks to 131ms and falls continuously with every additional
adjustable rectangle until 69ms, when all of the 5 rectangles must be adjusted.

In order to find the reason for this behavior, we performed the same experiment on a
more complex rectangle layout (12 rectangles) and measured the CPU time for the two
main parts of ARITA:
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Figure 5.2: CPU Time versus Number of Adjustable Rectangles for ARITA.

1. Placing rectangles: Thus includes the initial checks for identifying all adjustable
rectangles, the free spaces calculation (sweep line) and the selection and placement
of rectangles in a free space container.

2. Adjusting rectangles: Thus includes the calculation and balancing of the layout
graph, i.e., the extraction and sorting of variable paths from the graph and the
modifications on the edge distances.

Figure 5.3 shows the runtime to adjust the layout with 12 rectangles with increasing
percentage of adjustable rectangles, split in the two main parts (placing rectangles and
adjusting rectangles) of ARITA.

The curve reaches again its maximum (624ms), if one rectangle is adjustable and all
others are fixed. We can also observe that, at the curves peak, almost 84% of the
runtime was needed to complete the placing of rectangles. The remaining 16% of the time
was used for adjusting the rectangles. As soon as the number of adjustable rectangles
increases, the needed CPU time for placing the rectangles falls continuously, whereas
the CPU time for adjusting the rectangles increases only slightly. As soon as 11 out of
12 rectangles are adjustable, the needed CPU time for placing the rectangles (127ms) is
smaller than the time for adjusting the rectangles (155ms).

This experiment proves that the CPU time for placing rectangles is very sensitive to
the number of fixed rectangles in the layout. More fixed rectangles lead to more events
in the sweep line processing, which again lead to more extensive free spaces processing,
such as processing, splitting and closing of active spaces. In addition, more free spaces
in the rotated interface lead to a costlier free space container selection, when positioning
adjustable rectangles.

By contrast, the adjusting rectangles step is relatively stable with increasing number of
adjustable rectangles. This is founded in the fact that, for the construction of the layout
graph, it makes no difference if the layout is composed of only fixed, only variable or
fixed and variable nodes (rectangles). The slightly CPU time increase in the adjusting
rectangles step for layouts with a higher percentage of adjustable rectangles is justified
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Figure 5.3: CPU time versus number of adjustable rectangles partitioned in the two
main parts of ARITA.

by the higher number of variable paths in the graph. This consequently leads to a certain
higher effort to extract, sort and balance all variable nodes (rectangles) in the graph.

In order to measure the effect of rectangle sizes in the layout, we ranged the maximum
and minimum width and height limits for generating rectangles. Since this experiment
depends strongly on the randomly generated position and size of the rectangles, we
repeated every configuration 5 times instead of 3 times and used again the arithmetic
average of the values.

Figure 5.4 shows the effect of decreasing/increasing the size of rectangles and fixing the
number of rectangles in the layout. We could not find any significant differences in terms
of needed CPU time. In the average, ARITA performs on layouts with small or big
rectangles almost identical.

Figure 5.4: CPU time versus rectangle size for ARITA.

All the experiments presented so far used a single page. In reality, in NetSnips users can
place their web snippets on up to 20 pages. But since the snippet layouts on different
pages do not depend from each other, ARITA can process pages independently and
sequentially.
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We performed an experiment with default layout parameters and increased the number of
pages. Figure 5.5 shows the result of performing this experiment sequentially (one page
was processed after another on a single CPU core) and in parallel (pages are processed
in parallel on two independent CPU cores).

Figure 5.5: CPU time versus number of pages for ARITA.

As expected, the sequential processing (blue line) shows a linear increase in CPU time,
by adding approximately 100ms for every additional page. The parallel processing is
limited to the two CPU cores of the iPad, therefore we expected again a linear but
much flatter increase of needed CPU time; ideally 50% faster in comparison to the
sequential processing. However, the parallel processing (orange line) shows a decrease
in the elapsed CPU time, but only at a maximum of approximately 25%. To implement
the parallel page processing we used Grand Central Dispatch (GCD), a high-level Apple
technology for multithreading, by simply dispatching the processing of each page on the
same concurrent operation queue. This leads to separate threads for every page, which
introduced some overhead in spawning and closing threads. A solution with two fixed
threads separated on the two CPU cores, which process ARITA on all pages in parallel,
might lead to a higher reduction in CPU time.

Please note that, as described in section 4.9, it is very uncommon that we actually need
to compute a new layout for all pages in one single device rotation, since we save and
reuse the computed layouts for both interface orientations in a database on the device.

5.2 User Experience Evaluation

Due to the fact that it is difficult to validate the layout results of ARITA objectively, we
decided to perform a user experience study.

5.2.1 Setup

In order to discuss and decide conceptual, practical and ethical issue in the evaluation,
we used the DECIDE framework of Rogers et al. [22], which structures evaluation studies
in the following points:
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• Determine overall goals of the evaluation: The purpose of this evaluation is
to find out how users react on the auto-layouting behavior of ARITA. Moreover
we focus on the general satisfaction with the automatically generated landscape
layouts, which are based on the user defined portrait layouts. This evaluation
should help us to examine the current level of user satisfaction of ARITA, to find
out the strengths and weaknesses of our approach and to refine it in future versions.

• Explore the specific questions to be answered: Do users expect the auto-
matically generated landscape snippet layout in comparison to the user-defined
portrait snippet layout? Do users perceive the new layout as clear (i.e. well-
structured, comprehensible) and equally distributed? Are user generally satisfied
with the automatically generated snippet layout?

• Choose the evaluation paradigm and techniques to answer questions:
Since we focus only on the evaluation of the automatically generated snippet lay-
outs, we use a questionary in which the user has to evaluate 20 different situa-
tions regarding 4 criteria. Every situation (in the following references as case)
depicts 2 screenshots from an iPad device running NetSnips. The first one shows
a user-defined snippet layout in portrait screen orientation. The second shows a
screenshot of the automatically generated landscape layout computed by ARITA.
The task of the user is to evaluate the automatically generated landscape layout
on a scale of 1-5 (1 = worst; 5 = best) regarding the criteria expectation, clarity,
equally distribution and overall satisfaction.

• Identify the practical issues that must be addressed: Since we are convinced
that only users that are actually familiar with NetSnips can evaluate the automat-
ically generated layouts, we asked real NetSnips users around the world to
participate in this evaluation. We accomplish this by presenting our participation
request on the NetSnips web site1 and by inviting persons that follow the NetSnips
fan pages on Twitter2 and Facebook3. The participants have to rate the 20 exam-
ple cases based on 4 criteria. Ideally users would not evaluate these cases by using
screenshots, but rather on examples running on real devices. However this would
be difficult to accomplish, for instance due to technical limitations. iOS devices
do not allow users to simply download and run a demo/test app from a webpage
(due to security concerns iOS devices allow only installations from the Apple App
Store).

• Decide how to deal with the ethical issues: Participants understand that
their ratings are used in anonymized and summarized form. Since users should
send their results per email after completing their ratings, they can also change
their mind and decide not to participate in this study.

• Evaluate, interpret and present the data: An issue of this evaluation ap-
proach is certainly that some user might evaluate snippet layouts differently if
they use only screenshots, rather than actual devices with a test application. Since

1http://netsnipsapp.com/2013/09/05/netsnips-needs-your-help/
2http://twitter.com/NetSnipsApp
3http://www.facebook.com/NetSnipsApp



Chapter 5. Evaluation 38

we involve only users that are familiar with NetSnips, we assume that the partic-
ipants in this study are able to evaluate all depicted cases the same way as they
would do it on their own device. We use the received data for analyzing cases that
receive the most positive as well as critical ratings. We are also interested in cases
that receive very diverse ratings among the 4 criteria.

5.2.2 Results

Users could participate in the study for one week (05.09.13 - 12.09.13), in which we
received and analyzed results from 31 participants. Please note that all 20 cases can
be found in Appendix B. Figure 5.6 shows the average results for every case for the 4
criteria:

• Expected: "Do you expected the landscape layout? Was it foreseeable?"

• Clear: "Do you think the landscape layout is ordered and comprehensible?”

• Equally distributed: "Are the snippets in the landscape layout equally distributed?”

• Overall satisfaction: "What is your overall satisfaction with the landscape lay-
out?”

Figure 5.6: Average criteria rating on 20 cases.

Even though we are aware that the rating of layouts based on our criteria is subjective
and depends greatly on the users point of view, we could identify cases that lead to a
generally higher (case 12, 15 and 20) or lower (case 1, 3 and 16) average satisfaction. The
cases that lead to higher satisfaction are generally layouts with many smaller snippets,
for which ARITA could identify a layout without snippet overlapping. The cases with
the worst satisfaction are these ones for that no solution without overlapping exists.
Moreover cases that lead to overlapping or overflow, only because the fixed snippets
were not adjusted, were rated generally lower.

It was also interesting that some cases received quite diverse ratings for the 4 criteria.
For instance case 16 (shown in Figure 5.7) received higher ratings for expected (3.45
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+/- 0.86) and illustrates a situation that could not be solved without introducing some
snippet overlapping. In this situation ARITA does not provide good results. The layout
problem with these 3 very broad snippets could be solved better (i.e. solved with fewer
overlapping) if the fixed snippets would be moved just slightly up and down, respectively.
We interpret the rating results, that users expected that the snippets in the layout overlap
somehow, but nevertheless they are not very satisfied with the result.

Figure 5.7: Case 16. Higher ratings for expected ; lower ratings for overall satisfaction
(most probably due to unnecessarily high overlapping).

Case 12 (shown in Figure 5.8) received generally high ratings for all criteria, especially
for equally distribution (4.68 +/- 0.48). ARITA produces a layout with no overlapping
by repositioning 2 out of 5 snippets. Most probably, users perceive this layout as equally
distributed, since there is enough free space for centering the repositioned snippets ver-
tically and horizontally in relation to other snippets and screen bounds.

Figure 5.8: Case 12. High ratings for all criteria.

A diversely rated situation was case 1 (shown in Figure 5.9). The landscape layout with
4 snippets (2 where repositioned), received higher ratings for its clarity (3.81 +/- 0.94),
but lower ones for expectation (2.90 +/- 0.90) and equal distribution (2.87 +/- 1.07). We
have asked some users about their motivation for their ratings: even though the snippet
at the bottom (depicts a cutout of Facebook) was perfectly horizontally centered on the
screen, they felt it was displaced and should be placed in horizontal alignment with the
other snippets. Again we interpreted these results, that even though users felt that the
automatically generated layout is relatively clear and well-structured, it’s not the layout
that they expected and perceived as equally distributed.
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Figure 5.9: Case 1. Diverse ratings for equal distribution.

Figure 5.10 shows the average criteria ratings for all cases. On average users rate the
automatically generated layouts for the overall satisfaction criteria with 3.87 +/- 0.52
(average case satisfaction with standard deviation over all cases). Users generally give
better ratings for the clarity of the layout (3.98 +/- 0.55) as for the equal distribution
of snippets (3.66 +/- 0.66). The average consensus between all participants can be
described with the standard deviation over all ratings in a particular criteria and is 0.88
for expected, 0.82 for clarity, 0.85 for equal distribution and 0.77 for overall satisfaction.

Figure 5.10: Average criteria rating for all cases.

5.2.3 Discussion and Lessons Learned

After discussing with some participants about their motivation behind their ratings, we
learned that some cases were seen very differently by the participants. For instance,
some users really appreciated that ARITA does not reposition snippets that stay in
screen bounds after rotation. But others stated that in some situations they would
expect that these snippets are also adjusted, at least slightly. Regarding to these users,
this is especially important when a possible movement of fixed snippets would lead to a
layout with no overlapping.

The criteria equally distributed was also a controversial concept, since some users are
very sensitive for free space "gaps", others prefer that snippets are always centered and
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still others like that ARITA centers only the repositioned snippets in the available free
space.

In general we are satisfied with the results that we gathered in this study. Nonetheless
this user study led to many ideas how to improve ARITA. Future improvements should
focus on the following points:

• Balance margins of fixed rectangles: Many participants proposed to balance
also the margins of fixed snippet, i.e. snippets that stay in screen bounds after
rotation. In some cases this might lead to a more harmonious appearance of the
snippet layout. At the same time the user specified ordering of all snippets would
not be changed dramatically, since in general, the balancing process repositions
snippets only slightly. Moreover this would enhance layouts, where repositioning
of fixed snippets leads to fewer or no overlapping.

• Introduce satisfaction function for balance possibilities: ARITA balances
the layout without introducing additional overlapping. However, the current im-
plementation does not validate different balancing possibilities, but uses simply on
of these. A satisfaction function could score the different possibilities, which might
lead to better visual results in some situation (see Figure 5.9 and its associated
discussion).

• Add setting for repositioning style: Some users prefer that the algorithm
repositions all snippets in a specific style (e.g. all snippets centered, snippets in
increasing size from left to right), rather than minimizing the changes to the layout.
This could be added with a setting for the repositioning style.
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Conclusion

6.1 Summary

In this thesis we proposed ARITA, a novel repositioning algorithm that adapts the posi-
tion of rectangular web snippets on orientation changes of the user interface. Its feasibility
was proven by implementing it in the mobile application NetSnips.

Even though ARITA follows specific constraints in order to fulfill our requirements, vari-
ous concepts and sub algorithms may be applicable in other contexts. We have developed
a sweep line based algorithm that identifies the largest free spaces between rectangles in
a given container rectangle. We have elaborated a heuristic to place rectangles in a set
of free space candidates. Moreover we have developed an algorithm that builds a graph
that describes a rectangle layout and elaborated a strategy for balancing the horizontal
and vertical margins between fixed/variable rectangles and screen bounds.

We have evaluated the runtime of ARITA for different rectangle layouts with various
experiments on real devices. The experiments show that ARITA provides good perfor-
mance results in realistic layout situations for NetSnips.

We have also evaluated the layout results with a user experience evaluation. The partici-
pants of the evaluation were users from the NetSnips community. The results confirm our
assumption that the assessment of automatically generated layouts depends strongly on
personal preferences. For instance, some users prefer an algorithm that tries to perform
minimal changes on the original layout (like ARITA), whereas others favor complete
repositioning of all snippets. However our results show also that, in general, the par-
ticipants of your study validate the layout results of ARITA from satisfiable to very
good.

42



References 43

6.2 Future Work

This work is a first attempt to address the complex problem of repositioning rectangles
where no objectively best solution exists. The judgment of rectangle layouts depends
strongly on user preferences, habits and general usage of the application.

Future work could relax or alter some of the requirements that we introduced. For
instance, the constraint that prohibits the margin balancing of fixed snippets (i.e., snip-
pets that remained in screen bounds after rotation) could be removed. In some cases this
might lead to a more harmonious visual appearance of the snippet layout. At the same
time the user specified ordering of all snippets would not be changed dramatically, since
in general, the balancing process repositions snippets only slightly. Moreover this would
enhance layouts, where repositioning of fixed snippets leads to fewer or no overlapping.

Another extension might introduce a satisfaction function for the common situation of
various balancing possibilities in a snippet layout. The satisfaction function could be
used to pick the most appropriate solution for a specific case, by scoring the different
possibilities. This might lead to better visual results in some situations. ARITA, in its
current implementation, does not validate different balancing possibilities, but simply
uses one of the solutions that introduces no additional overlapping.

In order to give users more control which overall strategy should be used for automatic
snippet repositioning, a setting for the repositioning style could be introduced. Other
strategies might reposition all snippets in the layout following a specific pattern (e.g. all
snippets centered, snippets in increasing size from left to right), rather than minimizing
the changes to the original layout.

A new version of NetSnips will include the research work of this thesis and will be
available on the Apple App Store shortly. After the public release, we will work on
future improvements for the repositioning algorithm. The specific refinements will be
defined after evaluating reviews and feedback of the established NetSnips user base.
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Appendix A

Evaluation Questionary

Figure A.1: Home page of www.netsnipsapp.com on September 5, 2013.
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Figure A.2: The study description for participants.



Appendix B

Evaluation Cases

Figure B.1: Case 1

Figure B.2: Case 2
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Figure B.3: Case 3

Figure B.4: Case 4

Figure B.5: Case 5
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Figure B.6: Case 6

Figure B.7: Case 7

Figure B.8: Case 8
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Figure B.9: Case 9

Figure B.10: Case 10

Figure B.11: Case 11
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Figure B.12: Case 12

Figure B.13: Case 13

Figure B.14: Case 14
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Figure B.15: Case 15

Figure B.16: Case 16

Figure B.17: Case 17
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Figure B.18: Case 18

Figure B.19: Case 19

Figure B.20: Case 20
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